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Abstract

We propose and discuss a model for flagellar mechanics in Euglena gracilis. We show
that the peculiar non-planar shapes of its beating flagellum, dubbed “spinning lasso”,
arise from the mechanical interactions between two of its inner components, namely, the
axoneme and the paraflagellar rod. The spontaneous shape of the axoneme and the
resting shape of the paraflagellar rod are incompatible. The complex non-planar
configurations of the coupled system emerge as the energetically optimal compromise
between the two antagonistic components. The model is able to reproduce the
experimentally observed flagellar beats and their characteristic spinning lasso geometric
signature, namely, travelling waves of torsion with alternating sing along the length of
the flagellum.

Introduction

Flagella and cilia propel swimming eukaryotic cells and drive fluids on epithelial tissues
of higher organisms [1]. The inner structure of the eukaryotic flagellum is an
arrangement of microtubules (MTs) and accessory proteins called the axoneme (Ax). A
highly conserved structure in evolution, the Ax typically consists of nine cylindrically
arranged MT doublets cross-bridged by motor proteins of the dynein family. An
internal central pair of MTs is connected by radial spokes to the nine peripheral
doublets, determining the typical “9+2” axonemal structure. Motor proteins hydrolyze
ATP to generate forces that induce doublet sliding. Due to mechanical constraints
exerted by linking proteins (nexins) and the basal body, dynein-induced sliding of MTs
translates into bending movements of the whole structure. Motor proteins are thought
to self regulate their activity via mechanical feedback, generating the periodic beats of
flagella, see e.g. [6] and [19].

Despite a general consensus on the existence of a self-regulatory mechanism, the
inner working of the Ax is still not fully understood and it is still a subject of active
research [33]. While bending-through-sliding is the accepted fundamental mechanism of
flagellar motility, how specific flagellar shapes are determined is not yet clear. For the
most studied swimming microorganisms, such as animal sperm cells and the biflagellate
alga Chlamydomonas reinhardtii, the flagellar beat is, to a good approximation, planar.
For these organisms, beat planarity is thought to be induced by the inter-doublet links
between one pair of MTs, typically those numbered 5 and 6 [18]. These links inhibit the
relative sliding of the 5-6 MTs pair, thus selecting a beating plane that passes through
the center of the Ax and the midpoint between the inhibited MTs.
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Figure 1. a) A specimen of freely swimming Euglena gracilis, and b) a sketch of the
cross section of its flagellum seen from the distal end. The flagellar inner structure is
composed by the paraflagellar rod (PFR, textured), and the axoneme (Ax). The PFR
is connected via bonding links to the axonemal doublets 1, 2, and 9 (our numbering
convention). The inner structure of the flagellum is enclosed by the flagellar membrane
(dotted line). By inhibiting MTs’ sliding the PFR selects the spontaneous bending plane
of the Ax (dashed line). The solid line that joins the Ax center ra and the PFR center
rp cross at an angle φp the spontaneous bending plane.

A remarkable deviation from the flagellar structure of the aforementioned organisms
is found in euglenids and kinetoplastids. These flagellated protists have a whole extra
element attached alongside the Ax [7], a slender structure made of a lattice-like
arrangement of proteins called “paraxial” or “paraflagellar” rod (PFR), see Figure 1.
The latter name is more common, but the former is possibly more accurate [24]. PFRs
are attached via bonding links to up to four axonemal MTs, depending on the
species [32]. PFRs are thought to be passive but, at least in the case of Euglena, some
degree of activity is not completely ruled out [21].

In this paper, we put forward and test the hypothesis that the distinctive beating
style of Euglena Gracilis, sometimes dubbed “spinning lasso” [5], arises due to PFR-Ax
mechanical interaction.

In order to put our hypothesis into context, we observe that the flagellar beat of
PFR-bearing kinetoplastid organisms, such as Leishmania and Crithidia, is planar [9].
An apparent exception to beat planarity in kinetoplastids is found in the pathogenic
parasite Trypanosoma brucei, which shows a characteristic non-planar “drill-like”
motion [17]. However, Trypanosoma’s flagellum is not free, like that of Leishmania and
Crithidia, but it is attached to the organism for most of its length, wrapped helically
around the cell body. According to [2] the flagellum-body mechanical interaction could
alone explain Trypanosomes’ distinctive motion. Confirming this conclusion, [34]
showed that Trypanosoma mutants with body-detached flagellum generate fairly planar
beating. It is conjectured that the PFR-Ax bonds operate as the 5-6 interdoublet links
in Chlamydomonas and sperm cells, inhibiting MTs sliding and selecting a plane of
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beat [36].
Euglena’s spinning lasso beat does not conform to this scenario. Indeed, the beating

style of Euglena is characterized by high asymmetry and non-planarity. The full 3d
flagellar kinematics of freely swimming cells has recently been revealed [25] thanks to a
mixed approach based on hydrodynamic theory and image analysis. As we report in the
first part of this paper, the geometry of the spinning lasso is characterized by travelling
waves of torsion with alternating sign along the flagellum length.

We argue that the key to the emergence of non-planarity lies in a prominent
asymmetry in the structure of PFR-Ax attachment in euglenid flagella. Figure 1 shows
a sketch of the cross section of the euglenid flagellum redrawn from [20], see also [4].
The PFR is attached to three MTs, which we number 1, 2, and 9. We consider two lines.
One line (dashed) passes through the center of the Ax and MT 1, in the middle of the
bonding complex. The other line (solid) connects the center of the Ax and the center of
the PFR. The two lines cross each other. This is the structural feature on which we
build our model.

In the model we assume that the bonding links to the PFR select the local
spontaneous beating plane of the Ax, from the same principle of MTs’ sliding inhibition
discussed above. The local spontaneous beating plane so generated passes through the
dashed line in Figure 1. We follow closely [14] and [27] in our modeling of the Ax, while
we use a simple elastic spring model for the PFR. We show that, under generic
actuation, the two flagellar components cannot be simultaneously in their respective
states of minimal energy, and this crucially depends on the offset between the
spontaneous beating plane of the Ax (dashed line in Figure 1) and the line joining the
PFR-Ax centers (solid line in Figure 1). Instead, the typical outcome is an elastically
frustrated configuration of the system, in which the two competing components drive
each other out of plane. Under dyneins activation patterns that, in absence of
extra-axonemal structures, would produce an asymmetric beat similar to those of
Chlamydomonas [23], or Volvox [26], the model specifically predicts the torsional
signature of the spinning lasso, which we discuss in the following Section.

Interestingly, the lack of symmetry of the spinning lasso beat produces swimming
trajectories with rotations coupled with translations [25]. In turn, cell body rotations
have a role in phototaxis (see Discussion and Outlook Section and [12]). In the light of
these observations, our analysis shows that the beat of the euglenid flagellum can be
seen as an example of a biological function arising from the competition between
antagonistic structural components. It is not dissimilar from the body-flagellum
interaction in Trypanosoma, which generates 3d motility. But the principle is much
more general in biology and many other examples can be found across kingdoms and
species and at widely different scales. For instance in plants, a mechanism of seed
dispersal arises from the mechanical competition between the two valves of the seed
pods, see, e.g., [3] for Bauhinia variegata and [15] for Cardamine hirsuta. Contraction by
antagonistic muscles is key for animal movement and, in particular, for the functioning
of hydrostatic skeletons (used from wormlike invertebrates to arms and tentacles of
cephalopods, to the trunk of elephants, see [16]). A similar principle of antagonistic
contraction along perpendicularly oriented families of fibers is at work at the
sub-cellualr level, for example in the antagonistic motor protein dynamics in contractile
ring structures important in cell division and development (see, e.g., [8]). At the same
sub-cellular scale, competing elastic forces arising from lipid-protein interactions are
often crucial in determining the stability of complex shapes of the cellular
membrane [31], and in the case of the overall structure of the coronavirus envelope [29].
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Figure 2. Flagellar beat kinematics of freely swimming Euglena gracilis. a) N = 10
flagellar configurations in evenly spaced instants (phases) within a periodic beat. b) The
same configurations overlapped and color coded according to their phases. c) Calculated
torsion τ = τ(s) as a function of the flagellar arc length s. The plot is presented in
terms of the normalized quantities τ/L−1 and s/L, where L is the total length of the
flagellum.

Observations

We first analyze the experimental data from the 3d reconstruction of the beating
euglenid flagellum obtained in [25] for freely swimming organisms. Swimming Euglenas
follow generalized helical trajectories coupled with rotation around the major axis of the
cell body. It is precisely this rotation that allows for a 3d reconstruction of flagellar
shapes from 2d videomicroscopy images. Euglenas take many beats to close one
complete turn around their major body axis. So, while rotating, Euglenas show their
flagellar beat to the observer from many different sides. Stereomatching techniques can
then be employed to reconstruct the flagellar beat in full (assuming periodicity and
regularity of the beat).

Figure 2 shows N = 10 different curves in space describing the euglenid flagellum in
different instants within a beat taken from [25]. The reconstruction fits well
experimental data from multiple specimens. The figure also illustrates the calculated
torsion of the flagellar curve at each instant (not previously published). Torsion, the rate
of change of the binormal vector, is the geometric quantity that measures the deviation
of a curve from a planar path (see the Results Section below for the formal definition).
The spinning lasso shows here a distinct torsional signature characterized by torsion
peaks of alternate sign, traveling from the proximal to the distal end of the flagellum.

To further investigate Euglena’s flagellar beat we observed stationary cells trapped
at the tip of a capillary. In this setting the flagellum is not perturbed by the
hydrodynamic forces associated with Euglena’s rototranslating swimming motion. The
beat can then manifest itself in its most “pristine” form. We recorded trapped Euglenas
during periodic beating. Then, we rotated the capillary and recorded the same beating
cell from different viewpoints. Videomicroscopy images from one specimen are shown in
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Figure 3. a) A specimen of Euglena gracilis trapped at the tip of a capillary (bottom).
The typical outline of its beating flagellum is that of a looping curve, which is consistent
with the outline of a simple curve with two concentrated torsional peaks of alternate sign
along the length of the curve, i.e. a torsional dipole (top). b) Close-up images of the
same specimen of capillary-trapped (CT) Euglena seen from different viewpoints, upon
successive turns of the capillary tube. The body orientation with respect to the objective
is estimated from the anatomy of the cell, and in particular from the position of the
eyespot (a visible light-sensing organelle present on the cell surface). Microscopy images
are decorated with the tracked outlines of the flagellum in different phases (same color
coding as in Figure 2). The outlines (2d projections) of the 3d reconstructed flagellar
beat of freely swimming (FS) specimens are shown for comparison.

Figure 3. While with fixed specimens we cannot reconstruct reliably the 3d flagellar
shapes, Figure 3 shows that there is a high stereographical consistency with the flagellar
shapes obtained from swimming organisms. Flagellar non-planarity is thus not
intrinsically associated with swimming, which reinforce the idea that the mechanism
that generates non-planar flagellar shapes might be structural in origin. Moreover, these
observations justify the choice we made in our study to focus on a model of flagellar
mechanics for stationary organisms, allowing for substantial simplifications.

As a final remark we observe how, from a simple geometric construction, we can
show that the torsional pattern in Figure 2 is consistent with Euglena’s flagellar shapes
as seen from common 2d microscopy, for either swimming or trapped organisms.
Typically, the 2d outline (i.e. the projection on the optic plane) of a beating euglenid
flagellum is that of a looping curve, see e.g. [30] for independent observations. Consider
now an idealized 3d model of the spinning lasso geometry: a curve with two singular
points of concentrated torsion with opposite sign, such as the one shown in Figure 3. If
we move along the curve, from proximal end to distal end, we first remain on a fixed
plane (blue). Then the plane of the curve abruptly rotates by 90 degrees (red plane)
first, and then back by 90 degrees in the opposite direction (yellow plane). These abrupt
changes correspond to concentrated torsional peaks of opposite sign. When seen in a
two dimensional projection, this torsion dipole generates a looping curve that closely
matches euglenid flagella’s outlines during a spinning lasso beat.
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Mechanical model

We model Ax and PFR as cylindrical structures with deformable centerlines, see
Figure 4. The euglenid flagellum is the composite structure consisting of Ax and PFR
attached together. We suppose that the Ax is the only active component of the
flagellum, whereas the PFR is purely passive. Our mechanical model builds on the
definition of the total internal energy of the flagellum

W =Wa
pas +Wa

act +Wp (1)

which is given by the sum of three terms: the passive (elastic) internal energy Wa
pas of

the Ax, the active internal energy Wa
act of the Ax (generated by dynein action), and the

(passive, elastic) internal energy Wp of the PFR. The passive internal energy of the Ax
is given by

Wa
pas =

1

2

∫ L

0

Ba
(
U1(s)2 + U2(s)2

)
+ CaU3(s)2 ds , (2)

which is formally identical to the classical expression for the energy of elastic
(inextensible) rods. We denoted with U1 and U2 the bending strains, U3 is the twist,
while Ba and Ca are the bending and twist moduli, respectively. L is the total length of
the Ax centerline ra. Bending strains and twist depend on the arc length s of the
centerline, and they are defined as follows. We associate to the curve ra an orthonormal
frame di(s), with i = 1, 2, 3, which determines the orientation of the orthogonal sections
of the Ax (enclosed by light blue circles in Figure 4). The unit vectors d1(s) and d2(s)
define the plane of the orthogonal section at s. The unit vector d3(s) = ∂sr

a(s) lies
perpendicular to the section. Bending strains and twist are then given by

U1 = ∂sd2 · d3 , U2 = ∂sd3 · d1 , and U3 = ∂sd1 · d2 . (3)

Thus, U1 and U2 measure the bending of the Ax on the local planes d1-d3 and d2-d3,
respectively, while the twist U3 is given by the rotation rate of the orthonormal frame
around the centerline’s tangent d3.

We remark here that we do not consider the Ax as a “filled” beam but as a hollow
tubular structure; its elasticity comes from the individual MTs lying on its outer surface.
The derivation of (2) from a detailed model of the Ax is given in Appendix A.

The active internal energy of the Ax is defined as minus the total mechanical work of
the dyneins

Wa
act = −

∫ L

0

(
H1(s)γ1(s) +H2(s)γ2(s)

)
ds−

(
Ĥ1γ1(L) + Ĥ2γ2(L)

)
, (4)

where γ1 and γ2 are the two variables that quantifies the shear (i.e. collective sliding) of
MTs, while H1 and H2 are the corresponding shear forces exerted by molecular motors.
Following [28] we also allow for singular shear forces, Ĥ1 and Ĥ2, concentrated at the
distal end of the Ax. This forces arise naturally, as we remark after (22) in the Results
Section. The shear variables are related to the MTs’ kinematics by the following
formulas. The MTs’ centerlines rj , for j = 1, 2 . . . 9 , are given by rj(s) = C(s, φj),
where φj = 2π(j − 1)/9, and

C(s, φ) ≈ ra(s) + ρa
(

cosφd1(s) + sinφd2(s) + (cosφγ1(s) + sinφγ2(s))d3(s)
)

(5)

is the parametrization of the cylindrical surface of the Ax (ρa is the Ax radius) in terms
of the centerline arc length s and the angle φ. In Appendix A we show how the shear
variables are related to the individual sliding of MTs with respect to their neighbours
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(35), and we compute the relations between the dynein forces acting on each pair of
adjacent MTs and the shear forces H1 and H2 (36). A special axonemal deformation
with γ2 = 0 is shown in Figure 4. The Ax is in this case bent into a circular arc, and the
centerline ra lies on the plane generated by the unit vectors d1 and d3. The shear
variable γ1(s) 6= 0 has here a simple geometrical interpretation. For each fixed s the
curve φ 7→ C(s, φ) describes what we call the “material” section of the Ax at s (red
curves in Figure 4). The material section is a planar ellipse centered in ra(s) which
connects points of neighbouring MTs’ corresponding to the same arc length. Formula
(5) says that γ1(s) is the tangent of the angle at which the material sections at s
intersect the orthogonal sections at s.

Shear variables and bending strains are coupled

γ1(s) =

∫ s

0

U2 and γ2(s) = −
∫ s

0

U1 . (6)

The above formulas, which result from the constrained kinematics of the axonemal
structure (as explained further in Appendix A), underlie the essential mechanism of
axonemal motility: collective sliding of MTs generates bending of the whole Ax. We
point out here that there is no coupling between the shear variables γ1, γ2 and the twist
U3, a fact that will have consequences in the remainder.

The special axonemal deformation in Figure 4 shows the case in which U1(s) = 0
and U2(s) = K, so the Ax is bent into a circular arc of radius 1/K. While γ2(s) = 0,
the shear variable γ1(s) = Ks increases linearly with s. Material and orthogonal
sections coincide at the base (the basal body impose no shear at s = 0) and the angle
between them grows as we move along the centerline towards the distal end of the Ax.
In order for the Ax to bend, MTs from one side of the Ax must be driven driven
towards the distal end while the others must be driven toward the proximal end.

We remark here that (4) defines the most general active internal energy generated by
molecular motors, and we do not assume at this stage any specific (spatial) organization
of dynein forces. We will introduce specific shear forces later in the Results Section.

The PFR is modeled as an elastic cylinder with circular cross sections of radius ρp

and rest length L. We assume that the PFR can stretch and shear. The total internal
energy of the PFR is given by

Wp =
1

2

∫ L

0

Dp
(
V1(s)2 + V2(s)2

)
+ EpV3(s)2 ds (7)

where V1 and V2 are the shear strains, V3 is the stretch, Dp and Ep are the shear and
stretching moduli, respectively. We are neglecting here the PFR’s bending and twisting
resistance. Classical estimations on homogeneous elastic rods, see e.g. [13], show that
bending and twist moduli scale with the forth power of the cross section radius, whereas
shear and stretching moduli scale with the second power and hence they are dominant
for small radii. We assume that dynein forces are strong enough to induce shear in the
PFR, thus PFR’s bending and twist contributions to the energy of the flagellum become
negligible. We are also neglecting Poisson effects by treating the PFR cross sections as
rigid.

The PFR shear strains and stretch are defined as follows. The cross sections centers
of the PFR lie on the curve rd, and their orientations are given by the orthonormal
frame gi(s), with i = 1, 2, 3. The unit vectors g1(s) and g2(s) determine the cross
section plane centered at rp(s), while the unit vector g3(s) is orthogonal to it. The
curve rp is not parametrized by arc length and g3 is not in general aligned with the
tangent to rp. Shear strains and stretch are given by the formulas

V1 = ∂sr
p · g1 V2 = ∂sr

p · g2 , and V3 = ‖∂srp‖ − 1 . (8)
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Figure 4. a) Geometry of the Ax. MTs lie on a tubular surface C(s, φ) parametrized
by generalized polar coordinates s and φ, where s is the arc length of the axonemal
centerline ra. The unit vectors d1(s) and d2(s) lie on the orthogonal cross sections of
the Ax (light blue circles). The material sections of the Ax are given by the curves
φ 7→ C(s, φ) (red), which connect points of neighbouring axonemal MTs corresponding
to the same arc length s. Bend deformations of the axoneme are generated by the shear
(collective sliding) of MTs. The shear is quantified by the angle between the orthogonal
sections and the material sections of the Ax. b) Geometry of the euglenid flagellum,
detail of the Ax-PFR attachment. The unit vectors g1(s) and g2(s) generate the plane
of the PFR’s cross sections. The vector g1(s) is parallel to the outer unit normal to the
axonemal surface N(s, φp), while g2(s) is parallel to the tangent vector to the material
section ∂φC(s, φp).

The shear strains thus depend on the orientation of the cross sections with respect to
the centerline (tangent), while the stretch measures the elongation of the centerline.

The PFR-Ax attachment couples the kinematics of the two substructures, see
Figure 4. In the remainder we formalize the attachment constraint and we show how
the PFR’s shear strains and stretch (8), and thus the flagellar energy (1), are
completely determined by the Ax kinematic variables.

For each s, the PFR cross section centered at rp(s) is in contact with the Ax surface
at the point C(s, φp) for for a fixed angle coordinate φp, see Figure 1. The PFR
centerline is given by

rp(s) = C(s, φp) + ρpN(s, φp) , (9)

where N(s, φp) ≈ d1(s) cosφp + d2(s) sinφp is the outer unit normal to the axonemal
surface at C(s, φp). The normal vector N(s, φp) lies on the plane of the PFR cross
section centered at rp(s). Indeed, we have g1(s) = N(s, φp) for the first unit vector of
the PFR orthonormal frame. Only one more degree of freedom remains, namely g2(s),
which must be orthogonal to N(s, φp), to fully characterize the orientations of the PFR
cross sections. Here is where the bonding links attachments are introduced in the model.
The bonding links of the PFR cross section centered at rp(s) are attached to three
adjacent MTs at the same MTs’ arc length s. The individual attachments are therefore
located on the material section of the Ax at s. Given this, g2(s) is imposed to be
parallel to ∂φC(s, φp), the tangent vector to the material section of the Ax at the point
of contact C(s, φp), see Figure 4. This condition critically couples MTs’ shear to the
orientations of the PFR cross sections, as further demonstrated below.

To summarize, we have the following formulas for the PFR orthonormal frame
vectors

g1(s) = N(s, φp) , g2(s) = ∂φC(s, φp)/‖∂φC(s, φp)‖ ,
and g3(s) = g1(s)× g2(s) .

(10)

By replacing the expression (9)-(10) in (8), we obtain formulas for the shear strains and
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stretch of the PFR in terms of the Ax kinematic parameters. We have that the shear
strain V1 and the stretch V3 are of order ρp ∼ ρa (see Appendix A for detailed
calculations). Since ρp is small compared to the length scale L of both PFR and Ax we
can neglect these quantities. The only non-negligible contribution to the PFR energy is
thus given by the shear strain V2. After linearization, we have
V2 ≈ − sinφpγ1 + cosφpγ2. The PFR energy in terms of Ax kinematic parameters is
then given by

Wp ≈ 1

2

∫ L

0

Dp
(
− sinφpγ1(s) + cosφpγ2(s)

)2
ds . (11)

The shear of axonemal MTs determines the orientation of the PFR cross sections. In
Figure 5 (middle pictures) we show an example of this kinematic interplay. The Ax is
again bent in an arc of a circle on the plane d1 − d3, with U1(s) = 0, U2(s) = K,
γ1(s) = Ks, and γ2(s) = 0. PFR and Ax centerlines run parallel to each other, indeed
from (9) we have that ∂sr

a ≈ ∂srp for every deformation. The linking bonds impose a
rotation of the cross sections of the PFR as we progress from the proximal to the distal
end of the flagellum, generating shear strain V2(s) = − sinφpγ1(s) = − sinφpKs on the
PFR. This mechanical interplay leads to non-planarity of the euglenid flagellar beat.
This mechanism is controlled by the offset between the PFR-Ax joining line and the
local spontaneous bending plane of the Ax, as further discussed in the Results Section.

Equilibria

Under generic (steady) dynein actuation, i.e. given H1 and H2 (not time-dependent),
and in the absence of external forces, the flagellum deforms to its equilibrium
configuration δW = 0. Bending strains and twist at equilibrium solve the equations

Ba∂sU−H⊥ −Dpep ⊗ ep

∫ s

0

U = 0 and Ca∂sU3 = 0 , (12)

where U = (U1, U2) is the bending vector, ep = (cosφp, sinφp), and H⊥ = (−H2, H1).
We use the symbol a⊗ b to denote the matrix with components (a⊗ b)ij = aibj . The
field equations (12) are complemented by the boundary conditions

BaU(L) + Ĥ⊥ = 0 and U3(L) = 0 , (13)

where Ĥ⊥ = (−Ĥ2, Ĥ1). Equations (12)-(13) can be interpreted as the torque balance
equations of the Ax. The derivative of the (elastic) bending moment and the internal
shear stresses balance the torque per unit length exerted by the PFR on the Ax, which
is given by the Dp-dependent term appearing in the first equation. The torque depends
on the integral of the bending vector, making the balance equations non-standard
(integrodifferental instead of differential). This dependency is due to the fact that the
torque arises from the shear deformations of the PFR, which are induced by the shear of
axonemal MTs, which is, in turn, related to axonemal bending strains via the integral
relations (6). The torque exerted by the PFR on the Ax is sensitive to the direction
given by the unit vector ep, hence it depends on the angle φp between the Ax-PFR
joining line and the unit vector d1.

Hydrodynamics

We derive here the dynamic equations for a flagellum beating in a viscous fluid. We
consider the extended functional

L =W +

∫ L

0

Λ · (∂sra − d3) (14)
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where Λ is the Lagrange multiplier vector enforcing the constraint ∂sr
a = d3. We treat

the fluid-flagellum interaction in the local drag approximation of Resistive Force Theory,
see e.g. [35]. In this approximation, viscous forces and torques depend locally on the
translational and rotational velocity of the flagellum, represented here for simplicity by
the translational and rotational velocity of the Ax. The external viscous forces F and
torques G (per unit length) acting on the flagellum are given by

F = −µ⊥(Id− d3 ⊗ d3)∂tr
a − µ||d3 ⊗ d3∂tr

a and G = −µr(∂td1 · d2)d3 , (15)

where µ⊥, µ||, and µr are the normal, parallel, and rotational drag coefficient
(respectively), and Id is the identity tensor. The principle of virtual work imposes

δL =

∫ L

0

F · δra + G · δθ (16)

for every variation δra and δθ = δθ1d1 + δθ2d2 + δθ3d3, where δθ1 = (δd2 · d3),
δθ2 = (δd3 · d1), and δθ3 = (δd1 · d2). Linearizing the force balance equations derived
from (16) we obtain the following equations for bending strains and twist

µ⊥∂tU = −Ba∂4sU + ∂3sH
⊥ +Dpep ⊗ ep∂

2
sU , (17)

and µr∂tU3 = Ca∂2sU3 , (18)

which are decoupled from the extra unknown Λ. Equations (17) and (18) are
complemented by the boundary conditions

BaU
∣∣
s=L

+ Ĥ⊥ = 0 ,

(
Ba∂sU−H⊥ −Dpep ⊗ ep

∫ s

0

U

) ∣∣
s=L

= 0 ,

U3

∣∣
s=L

= 0 , ∂sU3

∣∣
s=L

= 0 ,
(
Ba∂2sU− ∂sH⊥ −Dpep ⊗ epU

) ∣∣
s=L

= 0 ,

and
(
Ba∂3sU− ∂2sH⊥ −Dpep ⊗ ep∂sU

) ∣∣
s=L

= 0 .

(19)

The details of the derivation of (17)-(19) are provided in Appendix B.
Once we solve for U1, U2, and U3 either the equilibrium equations (12)-(13) or the

dynamic equations (17)-(19), the shape of the flagellum can be recovered. In particular,
we obtain the orthonormal frame di with i = 1, 2, 3 by solving while the centerline of
the Ax is recovered by integrating ∂sr

a = d3.

Results

We analyze the geometry of the centerline ra which, due to the slenderness of the
flagellar structure, is a close proxy for the shape of the flagellum.

In general, the shape of a curve is determined by its curvature κ and torsion τ . Since
ra is parametrized by arc length, the two quantities are given by the formulas ∂st = κn
and ∂sb = −τn, where t = ∂sr

a, n = ∂st/|∂st|, and b = t× n are the tangent, normal,
and binormal vector to the curve ra, respectively. Given κ and τ , ra is uniquely
determined up to rigid motions.

From the previous definitions and from (3) we obtain the relations between
curvature, torsion, bending, and twist. In compact form these relations are given by

U1 + iU2 = κeiψ and τ = ∂sψ + U3 , (20)

which hold for U 6= 0. In (20) we introduced the angle ψ that the bending vector
U = (U1, U2) forms with the line U2 = 0, see Figure 6. Now, at equilibrium (12) we
have

U3 = 0 , (21)
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under any dynein actuation. In other words, axonemal deformations are twistless. This
is, fundamentally, a consequence of the fact that shear of axonemal MTs and twist are
uncoupled (6). The torsion of the centerline ra is our main focus, since we are interested
in emergent non-planarity. Combining (20) and (21) we have that torsion can arise only
from the rotation rate ∂sψ of the bending vector U along the length of the flagellum.
This last observation will be important in the following.

Dynein actuation induced by sliding inhibition

Under the assumptions (21) and (23), the flagellar energy (1) can be rewritten as

W =
1

2

∫ L

0

Ba
∥∥∥∥U−

(
U∗1
U∗2

)∥∥∥∥
2

+Dp

(∫ s

0

ep ·U
)2

−Ba
(
U∗1

2 + U∗2
2) ,

where U∗1 (s) =

(
Ĥ2 +

∫ L

s

H2

)
/Ba and U∗2 (s) = −

(
Ĥ1 +

∫ L

s

H1

)
/Ba

(22)

are the target bending strains generated by the dynein forces. The use of this
terminology is clear from (22). The effect of dynein actuation at equilibrium (when the
energy is minimized) is to bring the bending strains U1 and U2 as close as possible to
U∗1 and U∗2 , respectively. The emerging bending strains and the target bending strains
might not match due to the interference by the PFR component of the energy (Dp 6= 0).
From the formulas for the target bending strains in (22) we can infer the importance of

the concentrated shear forces Ĥ1 and Ĥ2. Without these forces, admissible spontaneous
configurations of the Ax would be ruled out. If the concentrated shear forces are null,
for example, the Ax cannot spontaneously bend into a circular arc. Indeed, for a
circular arc of radius 1/K on the plane d1-d3 we must have U∗2 = 0 and U∗2 = K. In
this case, from (22) we have that −H1/B

a = ∂sU
∗
2 = 0, which implies H1 = 0 and

Ĥ1 = −BaK, so the concentrated forces must be non zero.
As per our main hypothesis, we suppose that the sliding inhibition exerted by the

bonding links let dyneins organize so that the Ax locally bends spontaneously on the
plane d1(s)-d3(s), as shown in Figure 1. This is equivalent to require that U∗1 = 0,
which leads to the following condition on the shear forces

H2 = Ĥ2 = 0 . (23)

Emergence of non-planarity

We consider here the equilibrium equations (12) under the hypothesis (23). We look at
the equilibrium configurations for every possible value of the angle φp between the
Ax-PFR joining line and the spontaneous bending plane of the Ax, even though the
value of actual interest for Euglena is φp ≈ −2π/9. We can prove analytically the
following statement: if the Ax-PFR joining line is neither parallel nor orthogonal to the
spontaneous bending plane of the Ax, then the emergent flagellar shapes are non-planar.

Indeed, suppose H1 6= 0. From (20) and (21) it follows that the shape of the
flagellum is planar τ = 0 if (and only if) the angle ψ of the bending vector
U(s) = (U1(s), U2(s)) is constant. The bending vector must therefore be confined on a
line for every s. In this case there must be two constants c1 and c2 such that
U1(s) = c1U(s) and U2(s) = c2U(s) for some scalar function U . Now, if a planar U is a
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top view

shearing of PFR
shear
relaxation

non-planarity

forced to match equilibriumspontaneous configurations

side view

planar
bending

PFR

Ax

Figure 5. Flagellar non-planarity arising from structural incompatibility. The Ax-PFR
mechanical interplay is explained in a three-steps argument (left to right). Consider first
the two separated structures in their spontaneous configurations (left). The Ax is bent
into a planar arc while the PFR is straight. Then, the PFR is forced to match to the
Ax, while the latter is kept in its spontaneous configuration (middle). The attachment
constraint induces shear strains in the PFR. The composite system cannot then be in
mechanical equilibrium without external forcing. When the composite system is released
(right), it reaches equilibrium by the relaxation of the PFR shear, which induce additional
distortion of the Ax. At equilibrium, an optimal energy compromise is reached, which is
characterized by an emergent non-planarity.

solution of (12) then we must have

c1B
a∂sU −Dp cosφp(c1 cosφp + c2 sinφp)

∫ s

0

U = 0 (24)

c2B
a∂sU −Dp sinφp(c1 cosφp + c2 sinφp)

∫ s

0

U = H1 (25)

with c1U(L) = 0 and c2U(L) = −Ĥ1/B
a. If φp 6= 0, π/2, π, 3π/2 the system of

equations (24)-(25) admits no solution. Indeed, suppose first that Ĥ1 = 0. Since H1 6= 0
we must have (c1, c2) 6= (0, 0). However, in this case, (24) admits the unique solution

U = 0, which is incompatible with (25). If Ĥ1 6= 0 then the boundary conditions impose
c1 = 0, but in this case (24) has again U = 0 as a unique solution, which is incompatible
with both the boundary conditions and with (25). Our statement is thus proved.

For φp ≈ −2π/9, the characteristic value for Euglena, the non-planarity of flagellar
shapes is not just possible. It is the only possible outcome under any non-trivial dynein
actuation.

Structural incompatibility and torsion with alternating sign

Alongside the previous analysis there is a less technical way to infer the emergence of
non-planarity from our model. We look here more closely to the flagellum energy, and
we think in terms of structural incompatibility between Ax and PFR, seen as
antagonistic elements of the flagellum assembly, see Figure 5.

Under the assumptions (21) and (23), the flagellar energy is given by

W =Wa +Wp , where

Wa =
1

2

∫ L

0

Ba
∥∥∥∥U−

(
0
U∗2

)∥∥∥∥
2

−BaU∗2 2 and Wp = Dp

(∫ s

0

ep ·U
)2

,
(26)
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Figure 6. a) The bending vector U(s) = (U1(s), U2(s)) traces a curve on the plane of
the bending parameters U1 and U2. The norm of the bending vector determines the
curvature κ(s) = |U(s)| of the flagellum. The rate of change of the angle ψ(s) determines
the torsion τ = ∂sψ. b-f) Bending vectors of flagellar equilibrium configurations under
the same (steady) dynein actuation, but different values of the material parameter
ν = Dp/(BaL−2). Equilibria are minimizer of the energy W = Wa +Wp. For small
values of ν the Ax component of the energy Wa dominates. In this case U is close to
the target bending vector (0, U∗2 ) where U∗2 (s) = A0 +A1 sin(2πs/L)). For large values
of ν the PFR component of the energy Wp dominates, and equilibria are dragged closer
to the line orthogonal to the vector ep (dashed green). The bending vector undergoes
rotations which result in torsional peaks of alternating sing.

with U∗2 as in (22). The energy has two components, Wa that depends on the Ax
bending modulus Ba, and Wp that depends on the PFR shear modulus Dp. We can
vary these material parameters and explore what the resulting minima of W, i.e. the
equilibrium configurations (12)-(13), must look like. We consider the nondimensional
parameter ν = Dp/(BaL−2). When ν � 1 the Ax component Wa of the energy
dominates. In this case, at equilibrium, the bending vector has to be close to the target
bending vector U ≈ (0, U∗2 ). In particular, then, U(s) will be confined near the line
U1 = 0 for every s. In the case ν � 1 the PFR component Wp dominates, and the
energy is minimized when U(s) lies close to the line generated by the vector
e⊥p = (− sinφp, cosφp). Clearly, if the latter line is different from U1 = 0, the two
extreme regimes ν � 1 and ν � 1, each of which favours one of the two individual
components, aim at two different equilibrium configurations. In other words, Ax and
PFR are structurally incompatible.

When neither of the two energy components dominates, the emergence of
non-planarity can be intuitively predicted with the following reasoning. In the
intermediate case ν ∼ 1 we expect the equilibrium configurations to be a compromise
among the two extreme cases, with the bending vector U(s) being “spread out” in the
region between the two extreme equilibrium lines. The spreading of the bending vector
is aided by the concentrated shear force at the tip, which imposes U(L) = (0, U∗2 (L))
irrespectively of the PFR stiffness. The bending vector is then “pinned” at s = L on the
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U1 = 0 line while it gets dragged toward the line generated by e⊥p for large values of ν.
Hence the spreading. The bending vector will then span an area and, consequently,
undergo rotations. Since torsion is determined by the rotation rate of the bending
vector τ = ∂sψ, the resulting flagellar shapes will be non-planar.

Figure 6 illustrates a critical example in which the previous intuitive reasoning
effectively plays out. We consider a target bending of the kind
U∗2 (s) = A0 +A1 sin(2πs/L)), a fair idealization of the asymmetric shapes of a
Chlamydomonas-like flagellar beat [10]. We take φp = −π/4 (larger than the Euglena
value, to obtain clearer graphs). For ν = 0 the bending vector lies inside the U1 = 0 line,
and its amplitude oscillates. For positive values of ν, when the PFR stiffness is ”turned
on”, the oscillating bending vector is extruded from the U1 = 0 line. For large values of
ν it gets closer and closer to the line generated by e⊥p . The bending vector spans an
area and, following the oscillations, it rotates clock-wise and anti-clock-wise generating
an alternation in the torsion sign. This is the geometric signature of the spinning lasso.

Hydrodynamic simulations and comparison with observations

Our model is able to predict the torsional characteristic of the euglenid flagellum in the
static case, and in absence of external forces. We test here the model in the more
realistic setting of time-dependent dynein actuation in the presence of hydrodynamic
interactions.

We first observe that, as in the static case, the dynamic equations for U and U3 are
decoupled (17)-(18), and that dynein forces do not affect twist. We have then twistless
kinematics under any actuation also in the dynamic case, at least after a time transient.
We can simply assume (21) for all times, so the torsion of ra is still completely
determined by the bending vector.

We consider a dynein actuation that generates Chlamydomonas-like shapes in a
flagellum with no extra-axonemal structures. The shear forces H1 and Ĥ1 employed in
our simulation are shown in Figure 7. The same figure also shows the emergent bending
strains of a PFR-free flagellum actuated by said forces, beating in a viscous fluid. The
dynamic equations for this system are simply (17)-(18) with Dp = 0. The resulting
bending strains, which generate a planar beat, resembles the experimentally observed
Chlamydomonas flagellar curvatures reported in [23].

Finally, Figure 7 presents the emergent bending strains of the beating euglenid
(PFR-bearing) flagellum, together with the corresponding flagellar torsion. The
spinning lasso torsional signature is clearly present. Indeed, the fluid-structure
interaction does not disrupt the Ax-PFR structural incompatibility, which still
generates non-planar shapes with travelling waves of torsional peaks with alternating
sign and the typical looping-curve outlines, cfr. Figure 2. All the details on the methods
and parameters employed in the simulations are given in Appendix C and Appendix D.

Discussion and Outlook

We have shown how the origin of the peculiar shapes of the euglenid flagellum can be
explained by the mechanical interplay of two antagonistic flagellar components, the Ax
and the PFR. Our conclusions are based mainly on the hypothesis that sliding
inhibition by the PFR organizes dynein activity, and localizes the spontaneous bending
plane of the Ax as the one that passes from the Ax center through the MTs bonded to
the PFR. This is in agreement with the current understanding of the mechanism that
generates beat planarity in other PFR-bearing flagellar systems. Non-planarity in
Euglena can arise because of a marked asymmetry in the Ax-bonding links-PFR
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Figure 7. a-b) Dynein shear forces. c) Resulting bending strains and torsion for an Ax
actuated by the force pattern (a-b), beating in a viscous fluid, and free of extra-axonemal
structures. The beat is planar (Chlamydomonas-like). d) Resulting bending strains
and torsion for an euglenid flagellum (composite structure Ax+PFR) actuated by (a-b)
and beating in a viscous fluid. The Ax-PFR interaction generates torsional peaks with
alternate sign travelling from the proximal to the distal end of the flagellum. e) Resulting
shapes for the euglenid flagellum at different instants within a beat, and comparison
with experimental observations.

complex in the Euglenid flagellum, which is not found in kinetoplastic organisms such
as Leishmania [11] or Trypanosoma [22].

In the absence of a precise knowledge of the dynein actuation pattern we tested our
mechanical model under shear forces that would, in the absence of extra-axonemal
structures, realize a beat similar to those found in model systems like Chlamydomonas.
We appreciate that the emergent distortion of the Ax, generated by the Ax-PFR
interplay, could in principle lead to different actuation patterns, consistently with the
hypothesis of dynein actuation via mechanical feedback. This question will require
further studies.

Along with the mechanism that let the euglenid flagellar shapes emerge, it is worth
considering how this characteristic flagellar beat is integrated in the overall behaviour of
the organism. As shown in [25], the spinning lasso beat produces the typical
roto-translational trajectories of swimming euglenas. Cell body rotation is in turn
associated with phototaxis. Indeed, rotation allows cells to ”scan” the environment, and
veer to the light source direction when stimulated (or escape in the opposite direction,
when the signal is too strong). Here, the key biochemical mechanism could be the one
often found in nature, by which periodic signals generated by lighting and shading
associated with body rotations are used for navigation, in the sense that the existence of
periodicity implies a lack of proper alignment [12]. It is known that the PFR is directly
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connected with the light-sensing apparatus [24], and might even be active [21]. Further
study on euglenid flagellar motility and phototaxis could lead to a more comprehensive
understanding on the role of the PFR.

Materials and Methods

Strain SAG 1224-5/27 of Euglena gracilis obtained from the SAG Culture Collection of
Algae at the University of Göttingen was maintained axenic in liquid culture medium
Eg. Cultures were transferred weekly. Cells were kept in incubator at 15◦ C at a
light:dark cycle of 12:12 h under a cold white LED illumination with an irradiance of
about 50µmol ·m−2 · s−1.

An Olympus IX 81 inverted microscope with motorized stage was employed in all
the experiments. Experiments were performed at the Sensing and Moving Bioinspired
Artifacts Laboratory of SISSA. The microscope was equipped with a LCAch 20X Phc
objective (NA 0.40) for the imaging of cells trapped at the tip of a glass capillary using
transmitted brightfield illumination. The intermediate magnification changer (1.6 X) of
the microscope was exploited to achieve higher magnification. Micrographs were
recorded at a frame rate of 1, 000 fps with a Photron FASTCAM Mini UX100
high-speed digital camera.

Tapered capillaries of circular cross section were obtained from borosilicate glass
tubes by employing a micropipette puller and subsequently fire polished. At each trial
observation a glass capillary was filled with a diluted solution of cells and fixed to the
microscope stage by means of a custom made, 3d-printed holder. The holder allowed for
keeping the capillary in place and rotating it about its axis, so as to image a cell
specimen from distinct viewpoints. Cells were immobilized at the tip of the capillary by
applying a gentle suction pressure via a syringe connected to the capillary by plastic
tubing.
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A Model details

The Ax consists of a bundle of inextensible filaments of length L (MTs) lying on a
cylindrical surface of radius ρa. For simplicity, the model ignores the mechanical effects
of radial spokes and the central pair. The axonemal surface is parametrized by the
generalized cylindrical coordinates z and φ via the map

χ(z, φ) = ra(z) + ρa
(

cosφd1(z) + sinφd2(z)
)
, (27)

with ra, d1, and d2 defined as in the main text. Following [14], we suppose that the
axonemal constraints confine MTs on the Ax surface at a fixed angular distance
∆φ = 2π/9 between each other. More formally, for j = 1, . . . , 9, we define the centerline
rj of the j-th MT as rj(s) = C(s, φj), where

C(s, φ) = χ
(
Z(s, φ), φ

)
, and φj = (j − 1)

2π

9
. (28)

The function Z(s, φ) in (28) is defined (implicitly) via the equality

Z
(
S(z, φ), φ

)
= z where S(z, φ) =

∫ z

0

‖∂zχ(z′, φ)‖ dz′. (29)

From the definitions above follows
∥∥∂srj

∥∥ = 1, so MTs are indeed inextensible and s is
their arc length. Moreover, the Taylor expansion of C at the first order in ρa gives the
approximated formula (5), with γ1 and γ2 given by (6).

We associate to the j-th MT an orthonormal frame along rj given by the unit
vectors

ej3(s) = ∂sr
j(s) , ej1(s) = N(s, φj) , and ej2(s) = ej3(s)× ej1(s) , (30)

where N = cosφd1(Z) + sinφd2(Z) is the (outer) unit normal to the cylindrical
surface. The unit vectors (30) determine MTs’ cross section orientations. The unit
vectors ej1(s) and ej2(s) lie on the cross-section centered at rj(s), while ej3(s) = ∂sr

j(s)
is orthogonal to it. The (passive) elastic energy of the Ax is given by the sum of the
MTs’ elastic energies

Wa
pas =

9∑

j=1

1

2

∫ L

0

Bm
(
U j1 (s)2 + U j2 (s)2

)
+ CmU j3 (s)2 ds

where U j1 = ∂se
j
2 · ej3, U j2 = ∂se

j
3 · ej1, and U j3 = ∂se

j
1 · ej2

(31)

are the strains associated to the j-th MT, while Bm and Cm are the MTs’ bending and
twisting moduli (respectively). At the leading order approximation in ρa we have

ej1 ≈ cosφjd1 + sinφjd2 , ej2 ≈ − sinφjd1 + cosφjd2 , and ej3 ≈ d3 . (32)

From (32) and (3) follows that Wa
pas, as defined in (31), can indeed be approximated by

the right hand side of (2), with Ba = 9Bm and Ca = 9Cm.
We consider now MT sliding. Fixed a point rj−1(s) on the (j − 1)-th MT’s

centerline we look for the nearest point to rj−1(s) on the centerline rj of the j-th MT.
Such a point rj(s∗) (we can think of it as a projection) lies at some arc length s∗, which
depends on s. We write s∗ = Πj(s). We then define the sliding σj(s) as the difference of
the two arc lengths s and Πj(s). More formally,

σj(s) = s−Πj(s) , where Πj(s) = argmin
ξ

∥∥rj−1(s)− rj(ξ)
∥∥ . (33)

Figure A1 illustrates the geometric idea of definition (33).
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Figure A1. Sketch of two MTs’ centerlines during deformation. The sliding σj(s) is
defined as the difference between the arc lengths s and Πj(s). The latter is the arc
length corresponding to the projection of rj−1(s) on the curve rj . We have positive
sliding when dyneins push the j-th MT towards the distal end of the flagellum and the
(j − 1)-th MT toward the proximal end.

The active internal energy of the Ax is defined as minus the total mechanical work of
the dyneins

Wa
act = −

9∑

j=1

∫ L

0

Fj(s)σj(s) ds −
9∑

j=1

F̂jσj(L) , (34)

where Fj(s) are the sliding forces on the j-th MT exerted by the dyneins on the

(j − 1)-th MT, and F̂j are the singular sliding forces (on the j-th MT exerted by the
dyneins on the (j − 1)-th MT) concentrated at the distal end of the Ax. Taylor
expanding (33) in ρa we have, at the leading order,

σj(s) ≈ ρa(cosφj − cosφj−1)γ1(s) + ρa(sinφj − sinφj−1)γ2(s) (35)

with γ1 and γ2 given by (6). From (35) we have that Wa
act, as defined in (34), is

approximated by the right hand side of (4), with

H1(s) = ρa
9∑

j=1

(cosφj − cosφj−1)Fj(s) , H2(s) = ρa
9∑

j=1

(sinφj − sinφj−1)Fj(s) ,

Ĥ1 = ρa
9∑

j=1

(cosφj − cosφj−1)F̂j , and Ĥ2 = ρa
9∑

j=1

(sinφj − sinφj−1)F̂j .

(36)
In the remainder we give some details of the derivation of (11) from (7). Expanding

(10) at the leading order in ρp gives

g1(s) ≈ cosφpd1(s) + sinφpd2(s) ,

g2(s) ≈ 1√
1 + γp⊥(s)2

(
− sinφpd1(s) + cosφpd2(s) + γp⊥(s)d3(s)

)
,

and g3(s) ≈ 1√
1 + γp⊥(s)2

(
γp⊥(s) sinφpd1 − C cosφpd2(s) + d3(s)

)
.

(37)

with γp⊥(s) = − sinφpγ1(s) + cosφpγ2(s). From (8) and (37), leading order calculations

give V1, V3 ∼ ρp, whereas V2 ≈ γp⊥/
√

1 + γ2p⊥. Linearizing in γp⊥ we have V2 ≈ γp,
from which follows (11).
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B Dynamical equations

To derive equations (17)-(19) it is convenient to introduce the quantities M1, M2, and
M3 defined via the following variational equality

δW =

∫ L

0

M1δU1 +M2δU2 +M3δU3 . (38)

These quantities can be interpreted as the local components of the flagellar moment

M = M1d1 +M2d2 +M3d3 . (39)

A direct calculation gives

M1(s) = BaU1(s) +

∫ L

s

H2 + Ĥ2 −Dp cosφp
∫ L

s

γp⊥ ,

M2(s) = BaU2(s)−
∫ L

s

H1 − Ĥ1 −Dp sinφp
∫ L

s

γp⊥ , and M3(s) = CaU3(s)

(40)

where γp⊥(s) = − sinφpγ1(s) + cosφpγ2(s), as in the previous section. We then write
the variations δUi in terms of δθi (defined in the main text) obtaining





δU1 = ∂sδθ1 + δθ3U2 − δθ2U3

δU2 = ∂sδθ2 + δθ1U3 − δθ3U1

δU3 = ∂sδθ3 + δθ2U1 − δθ1U2

(41)

Combining (38), (39) and (41) we have

δW = M(L) · δθ(L)−
∫ L

0

∂sM · δθ , and

δ

∫ L

0

Λ · (∂sra − d3) = Λ(L) · δra(L)−
∫ L

0

∂sΛ · δra −
∫ L

0

(d3 ×Λ) · δθ .

In the calculations above we took variations with δra(0) = δθ(0) = 0, since we consider
a flagellum with a clamped end at s = 0. The principle of virtual work (16) gives us
then the following force and torque balance equations

∂sΛ + F = 0 and ∂sM + d3 ×Λ + G = 0 , (42)

with Λ(L) = 0 , and M(L) = 0 . (43)

Equations (17)-(19) are derived from (42) and (43), after some extra formal
manipulations that we explain in the reminder.

We first introduce the local angular velocities

W1 = ∂td2 · d3 , W2 = ∂td3 · d1 , and W3 = ∂td1 · d2 , (44)

which are related to the strains via the following compatibility equations




∂tU1 + U2W3 − U3W2 = ∂sW1

∂tU2 + U3W1 − U1W3 = ∂sW2

∂tU3 + U1W2 − U2W1 = ∂sW3

(45)

Equations (45) follow from the identities ∂s∂tdi = ∂t∂sdi, with i = 1, 2, 3. We then
rewrite the external forces and torques (15) in compact form as

F = −V [d3] ∂tr
a and G = −µrW3d3 ,

with V [d3] = µ⊥(Id− d3 ⊗ d3) + µ||d3 ⊗ d3 .
(46)
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Scalar multiplying the torque balance equation by d1 and d2 we obtain the expressions
for the first two local components

Λ1 = −∂sM · d2 and Λ2 = ∂sM · d1 (47)

of the Lagrange multiplier vector Λ = Λ1d1 + Λ2d2 + Λ3d3. Scalar multiplying the
torque balance equation by d3 gives

µrW3 = ∂sM · d3 . (48)

We rewrite the force balance equation as ∂tr
a = V [d3]

−1
∂sΛ and, after differentiating

both sides with respect to s and then scalar multiplying by d1, d2, and d3, we have

W1 = −∂s
(
V [d3]

−1
∂sΛ

)
· d2 , W2 = ∂s

(
V [d3]

−1
∂sΛ

)
· d1 , (49)

and 0 = ∂s

(
V [d3]

−1
∂sΛ

)
· d3 . (50)

From (40), (45), and (48) we obtain (18) by first differentiating with respect to s both
sides of (48), and then by linearizing the resulting equation. Similarly, exploiting also
equations (47) this time, we differentiate with respect to s and then linearize (49) to
obtain (17). Boundary conditions (19) follow from (43) and

∂sΛ(0, t) = V[d3]∂tr
a(0, t) = 0 , (51)

which follows from the fixed end condition ra(0, t) = 0.
Given U1, U2, and U3 the orthonormal frame d1, d2, and d3 can be recovered by

integrating the system of equations




∂sd1 = U3d2 − U2d3

∂sd2 = U1d3 − U3d1

∂sd3 = U2d1 − U1d2

(52)

which is derived from (3). We can then recover the centerline ra by integrating
∂sr

a = d3. The PFR centerline rp and the orthonormal frame g1, g2, and g3 follow
from (9) and (10).

C Numerics

We define the nondimensional variables for arc length x, time y, strains ui, shear forces
hi, and concentrated shear forces ĥi as follows

x = s/L , y = t/T , ui = Ui/L
−1 , hi = Hi/B

aL−2 , and ĥi = Ĥi/B
aL−1 .

The equilibrium equations (12), with (21) and (23), are solved by seeking for a
minimizer of the energy (26) in the adimensional form

w =
1

2

∫ 1

0

∥∥∥∥u−
(

0
u∗2

)∥∥∥∥
2

+ ν

(∫ x

0

ep · u
)2

− u∗22 , where ν =
Dp

BaL−2
. (53)

In the formula above u = (u1, u2) is the adimensional bending vector and u∗2 = U∗2 /L
−1

is the adimensional target bending. We find the minimizer using the gradient descend
method

un+1 = un − αδw
δu

[un] , where

δw

δu
[un] = un −

(
0
u∗2

)
+ νep ⊗ ep

∫ 1

x

∫ x′

0

un(x′′)dx′′dx′ ,
(54)
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and α is a conveniently chosen step size. We initiate the algorithm with u0 = (0, u∗2),
and then we iterate (54) until ‖un+1 − un‖ falls below a pre-set tolerance parameter.

The dynamic equations (17) are recast, and then solved, in terms of the shear vector
γ = (γ1, γ2) where

γ1(x) =

∫ x

0

u2 , and γ2(x) = −
∫ x

0

u1 . (55)

After solving for γ, we obtain the bending strains by differentiation. The equation for γ
is

η∂yγ = −∂4xγ + ∂2xh + νe⊥p ⊗ e⊥p ∂
2
xγ , where η =

µ⊥T−1L2

BaL−2
, (56)

and h = (h1, h2). The corresponding boundary conditions are given by

∂xγ
∣∣
x=1

+ ĥ = 0 ,
(
∂2xγ − h− νe⊥p ⊗ e⊥p γ

) ∣∣
x=1

= 0 ,

γ
∣∣
x=0

= 0 ,
(
∂3xγ − ∂xh− νe⊥p ⊗ e⊥p ∂xγ

) ∣∣
x=0

= 0
(57)

where ĥ = (ĥ1, ĥ2). The above (57) are point-wise conditions, which do not involve
integral terms as in (19). Avoiding this non-locality allows for an easier numerical
implementation. The finite difference scheme we employ to solve (56)-(57) is illustrated
in the remainder.

We consider the discrete time sequence yn = n∆y with n = 0, 1, 2, . . . and we define
γn(x) = γ(yn, x), hn(x) = h(yn, x), and ĥn = ĥ(yn). Equation (56) is discretized in
time with the one-step (semi-implicit) numerical scheme

η

∆y
(γn+1 − γn) = −∂4xγn+1 + ∂2xh

n + νe⊥p ⊗ e⊥p ∂
2
xγ

n , (58)

and complemented by the boundary conditions

∂xγ
n+1
∣∣
x=1

+ ĥn+1 = 0 ,
(
∂2xγ

n+1 − hn − νe⊥p ⊗ e⊥p γ
n
) ∣∣
x=1

= 0 ,

γn+1
∣∣
x=0

= 0 ,
(
∂3xγ

n+1 − ∂xhn − νe⊥p ⊗ e⊥p ∂xγ
n
) ∣∣
x=0

= 0 .
(59)

The adimensional arc length interval [0, 1] is discretized uniformly in M + 1 points
xk = k∆x , with k = 0, 1, . . . ,M = 1/∆x. We also consider the extra ”ghost points”
xk = k∆x with k = −1,M + 1,M + 2. The discrete values ∂2xγ

n
k = ∂2xγ

n(xk) of the
second derivative in (58) are approximated by the finite difference scheme

∂2xγ
n
k =





(2γn0 − 5γn1 + 4γn2 − γn3 )/∆x2 for k = 0
(γnk−1 − 2γnk + γnk+1)/∆x2 for 1 ≤ k ≤M − 1
(−γnM−3 + 4γnM−2 − 5γnM−1 + 2γnM )/∆x2 for k = M

(60)

where γnk = γn(xk). Analogous formulas are employed for the second derivative of hn.
The discrete values ∂4xγ

n+1
k = ∂4xγ

n+1(xk) of the forth derivative in (58) are given by
the scheme

∂4xγ
n+1
k =

{
(2γn+1
−1 − 9γn+1

0 + 16γn+1
1 − 14γn+1

2 + 6γn+1
3 − γn+1

4 )/∆x4 for k = 0
(γn+1
k−2 − 4γn+1

k−1 + 6γn+1
k − 4γn+1

k+1 + γn+1
k+2)/∆x4 for 1 ≤ k ≤M

(61)
which involves the ghost points values γ−1, γM+1, and γM+2. The discretized
approximations of the boundary conditions (59) are given by

γn+1
M+1 − γn+1

M−1
2∆x

= −ĥn+1 ,
γn+1
M+2 − 2γn+1

M + γn+1
M−2

4∆x2
= νe⊥p ⊗ e⊥p γ

n
M + hnM ,

γn+1
0 = 0 ,

−3γn+1
−1 + 10γn+1

0 − 12γn+1
1 + 6γn+1

2 − γn+1
3

2∆x3
=

νe⊥p ⊗ e⊥p
−3γn0 + 4γn1 − γn2

2∆x
+
−3hn0 + 4hn1 − hn2

2∆x
.

(62)
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The previous formulas give us the expressions for the ghost points’ values γn+1
−1 , γn+1

M+1,

and γn+1
M+2 in terms of ĥn+1, γn+1

k , γnk , and hnk with 0 ≤ k ≤M . These expressions are

then plugged in (61). In turn, the iterative scheme (58) allows to calculate γn+1
k from

γnk with 0 ≤ k ≤M , while incorporating the boundary conditions (59) in the numerical
solution.

The scheme is iterated for several time periods until a periodic solution is reached.

D Estimation of dynein forces and mechanical
parameters

We obtain the history of shear forces presented in Figure 7 by solving the following
inverse dynamical problem. We assign first a history of normalized bending strains
(0, u2(x, y)), periodic in time, that imitates the experimentally observed
Chlamydomonas flagellar curvatures reported in [23]. We use the following model

u2(x, y) = a0 − a1 cos(λ(x)− ω(y))

with λ(x) = 2πλ0(x+ λ1 sin(πx)) and ω(y) = 2π(y + ω1 sin(πy)) .
(63)

Then, we calculate the shear forces that generate said history of bending strains for an
Ax beating in a viscous fluid (without extra-axonemal structures attached to it).

Equation (56) with ν = 0 and h2 = ĥ2 = 0 defines exactly the dynamics of this system.

We can solve for h1 and ĥ1 explicitly, obtaining ĥ1(y) = −u2(1, y) and

h1(x, y) = ∂xu2(x, y)− η
∫ 1

x

∫ x′

0

∫ x′′

0

∂yu2(x′′′, y) dx′′′dx′′dx′ .

In the dynamic simulation in Figure 7 we used the following numeric values for the
physical parameters of the system. The bending modulus of the Ax is Ba = 840
pN · µm2, taken from [37]. We set L = 28 µm, T = 25 ms, and µ⊥ = 3.1 fN · s · µm−2,
which are all values estimated in [25]. The angle between spontaneous bending plane
and the Ax-PFR joining line φp = −2π/9 is estimated from micrographs in [20] and [4].
Without direct measurements for Dp, we set ν = 20 as the value giving the most
balanced mechanical interplay between Ax and PFR (the value of ν with the most
evenly spread-out bending vector’s solutions in Figure 6). For the bending strains
parameters in (63) we took a0 = 7.8, a1 = 7.5, λ0 = 1.85, λ1 = 0.1, and ω1 = −0.1.
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