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Abstract

Every human somatic cell inherits a maternal and a paternal genome, which

work together to give rise to cellular phenotypes. However, the allele-specific

relationship between gene expression and genome structure through the cell

cycle is largely unknown. By integrating haplotype-resolved genome-wide

chromosome conformation capture, mature and nascent mRNA, and protein

binding data, we investigate this relationship both globally and locally. We

introduce the maternal and paternal 4D Nucleome, enabling detailed analysis

of the mechanisms and dynamics of genome structure and gene function for

diploid organisms. Our analyses find significant coordination between allelic

expression biases and local genome conformation, and notably absent expres-

sion bias in universally essential cell cycle and glycolysis genes. We propose a

model in which coordinated biallelic expression reflects prioritized preserva-

tion of essential gene sets.
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Introduction

Biallelic gene expression in diploid genomes inherently protects against potentially harmful

mutations. Disrupted biallelic expression of certain genes increases vulnerability to disease

in humans, such as in familial cancer syndromes that have loss of function in one allele (1).

BRCA1 and BRCA2 are quintessential examples, for which missense, nonsense, or frameshift

mutations affecting function of one allele significantly increase the risk of breast cancer in

women (2, 3). Imprinted genes are also associated with multiple disease phenotypes such as

Angelman and Prader-Willi syndromes (4, 5). Other genes with monoallelic or allele-biased

expression (MAE, ABE) may be associated with disease, but the contribution of allelic bias to

disease phenotypes remains poorly understood.

ABE can occur with single nucleotide variants (SNVs), insertions or deletions (InDels), and

chromatin modifications (6–10). Analyses of allelic bias suggest high variance across tissues

and individuals, with estimates ranging from 4% to 26% of genes in a given setting (7, 11). In

addition, higher order chromatin conformation and spatial positioning in the nucleus shape gene

expression (12–15). As the maternal and paternal alleles can be distant in nucleus, their spatial

positions may promote ABE (16, 17).

A major step towards understanding the contribution of allelic bias to disease is to iden-

tify ABE genes, recognizing that important biases may be transient and challenging to detect.

Allele-specific expression and 3D structures are not inherently accounted for in genomics meth-

ods such as RNA-sequencing and genome-wide chromosome conformation capture (Hi-C).

These limitations complicate interpretations of structure-function relationships, and complete

phasing of the two genomes remains a significant challenge.

To improve understanding of ABE in genomic structure-function relationships, we devel-

oped a novel phasing algorithm for Hi-C data, which we integrate with allele-specific RNA-

seq and Bru-seq data across three phases of the cell cycle in human B-lymphocytes (Figure

1). RNA-seq and Bru-seq data were separated into their maternal and paternal components

through SNVs/InDels (18). Our algorithm, HaploHiC, uses phased SNVs/InDels to impute
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Hi-C reads of unknown parental origin. Publicly available allele-specific protein binding data

(ChIP-seq) were also included to better understand potential regulatory elements involved in

allelic bias (7, 19). In addition to identifying known ABE genes silenced by X-Chromosome

inactivation (XCI) or imprinting, our analyses find novel expression biases between alleles and

cell cycle phases in several hundred genes, many of which had corresponding bias in allele-

specific protein binding. Furthermore, the alleles of ABE genes were significantly more likely

to differ in local structure compared to randomly selected alleles. In contrast, we observed a

pronounced lack of ABE in crucial biological pathways and essential genes. Our findings high-

light advantages of integrating genomics analyses in a cell cycle and allele-specific manner and

represent an allele-specific extension of the 4D Nucleome (4DN) (20–23). This approach will

be beneficial to investigation of human phenotypic traits and their penetrance, genetic diseases,

vulnerability to complex disorders, and tumorigenesis.

Materials and Methods

Cell Culture and Cell Cycle Sorting

Human GM12878 cells were cultivated in RPMI1640 medium supplemented with 10% fetal

bovine serum (FBS). Live cells were stained with Hoechst 33342 (Cat #B2261, Sigma-Aldrich),

and then sorted by fluorescence-activated cell sorting (FACS) to obtain cell fractions at the

corresponding cell cycle phases G1, S, and G2/M (Figure S2).

RNA-seq and Bru-seq Sequencing

Total RNA was extracted from sorted live cells for both RNA-seq and Bru-seq. We performed

5’-bromouridine (Bru) incorporation in live cells for 30 minutes, and the Bru-labeled cells were

then stained on ice with Hoechst 33342 for 30 minutes before sorting at 4°C to isolate G1, S,

and G2/M phase cells. The sorted cells were immediately lysed in TRizol (Cat # 15596026,
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ThermoFisher) and frozen. To isolate Bru-labeled RNA, DNAse-treated total RNA was incu-

bated with anti-BrdU antibodies conjugated to magnetic beads (24). We converted the tran-

scripts from the RNA-seq and Bru-seq experiments for all samples into cDNA libraries and

deep-sequenced at 50-base length on an Illumina HiSeq2500 platform. The RNA-seq and Bru-

seq data each consist of three biological replicates. From our RNA-seq replicates, we obtained

a total of 193.4, 197.2, and 202.0 million raw reads for G1, S, and G2/M, respectively. From

our Bru-seq replicates, we obtained a total of 162.5, 149.9, and 138.0 million raw reads for G1,

S, and G2/M, respectively.

Hi-C Sequencing

For cells used in construction of Hi-C libraries, cells were crosslinked with 1% formaldehyde,

the reaction was neutralized with 0.125 M glycine, then cells were stained with Hoechst 33342

and sorted into G1, S, and G2/M fractions. Cross-linked chromatin was digested with the

restriction enzyme MboI for 12 hours. The restriction enzyme fragment ends were tagged with

biotin-dATP and ligated in situ. After ligation, the chromatins were de-cross-linked, and DNA

was isolated for fragmentation. DNA fragments tagged by biotin-dATP, in the size range of 300-

500 bp, were pulled down for sequencing adaptor ligation and polymerase chain reaction (PCR)

products. The PCR products were sequenced on an Illumina HiSeq2500 platform. Respective

to G1, S, and G2/M, we obtained 512.7, 550.3, and 615.2 million raw Hi-C sequence reads.

RNA-seq and Bru-seq Data Processing

RNA-seq and Bru-seq analysis were performed as previously described (25, 26). Briefly, Bru-

seq used Tophat (v1.3.2) to align reads without de novo splice junction calling after checking

quality with FastQC (version 0.10.1). A custom gene annotation file was used in which introns

are included but preference to overlapping genes is given on the basis of exon locations and

stranding where possible (see (26) for full details). Similarly for RNA-seq data processing, the

raw reads were checked with FastQC. Tophat (version 2.0.11) and Bowtie (version 2.1.0.0) were
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used to align the reads to the reference transcriptome (HG19). Cufflinks (version 2.2.1) was

used for expression quantification, using UCSC hg19.fa and hg19.gtf as the reference genome

and transcriptome, respectively. A locally developed R script using CummeRbund was used to

format the Cufflinks output.

Separation of Maternal and Paternal RNA-seq and Bru-seq Data

To determine allele-specific transcription and gene expression through Bru-seq and RNA-seq,

all reads were aligned using GSNAP, a SNV aware aligner (27, 28). HG19 and UCSC gene

annotations were used for the reference genome and gene annotation, respectively. The gene

annotations were used to create the files for mapping to splice sites (used with –s option).

Optional inputs to perform SNV aware alignment were also included. Specifically, –v was used

to include the list of heterozygous SNVs and –use-sarray=0 was used to prevent bias against

non-reference alleles (29).

After alignment, the output SAM files were converted to BAM files, sorted and indexed

using SAMtools (30). SNV alleles were quantified using bam-readcounter to count the number

of each base that was observed at each of the heterozygous SNV locations. Allele-specificity of

each gene was then assessed by combining all of the SNVs in each gene. For RNA-seq, only

exonic SNVs were used. Bru-seq detects nascent transcripts containing both exons and introns,

so both exonic and intronic SNVs were used. Maternal and paternal gene expression were

calculated by multiplying the genes’ overall read counts by the fraction of the SNV-covering

reads that were maternal and paternal, respectively. We identified 266,899 SNVs from the Bru-

seq data, compared with only 65,676 SNVs from RNA-seq data. However in the Bru-seq data,

many SNVs have low read coverage depth. We required at least 5 SNV-covering reads for a

SNV to be used to separate the maternal and paternal contributions to gene expression. This

criterion found that there were similar numbers of informative SNVs (19,394 and 19,998) in the

RNA-seq and Bru-seq data, respectively. Genes which did not contain informative SNVs were

divided equally into their maternal and paternal contributions.
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Allele-specific Differential Expression

For a gene’s expression to be considered for differential expression analysis, we require each

of the three replicates to have an average of at least 10 SNV-covering reads mapped to at least

one of the alleles in all three cell cycle phases. This threshold was introduced to reduce the in-

fluence of technical noise on our differential expression results. From the 23,277 Refseq genes

interrogated, there were 4,193 genes with at least 10 read counts mapped to either the mater-

nal or paternal allele (or both) in the RNA-seq data. From Bru-seq, there were 5,294 genes

using the same criterion. We refer to these genes as “allele-specific” genes for their respective

data sources. We observed that there were larger variances between samples and lower read

counts in the Bru-seq data set than in RNA-seq. We identified differentially expressed genes

between alleles and between cell cycle phases for both RNA-seq and Bru-seq using a MATLAB

implementation of DESeq (31). To reduce the possibility of false positives when determining

differential expression, we imposed a minimum FPKM level of 0.1, a false discovery rate ad-

justed p-value threshold of 0.05, and a fold change cutoff of FC > 2 for both RNA-seq and

Bru-seq (32).

Separation of Maternal and Paternal Hi-C Data by HaploHiC

Hi-C library construction and Illumina sequencing were performed using established methods

(9). In this study, we separate the maternal and paternal genomes’ contributions to the Hi-C

contact matrices to analyze their similarities and differences in genome structure. In order to

determine which Hi-C reads come from which parental origin, we utilize differences in genomic

sequence at phased SNVs/InDels. As these variations are unique to the maternal and paternal

genomes, they can be used to distinguish reads. When attempting to separate the maternal and

paternal genomes, complications arise when there are sections of DNA that are identical. There

are a relatively small number of allele-specific variations, and the resulting segregated maternal

and paternal contact matrices are sparse. In order to combat this problem, we seek to infer

contacts of unknown parental origin.
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We propose a novel technique, HaploHiC, for phasing reads of unknown parental origin

using local imputation from known reads. HaploHiC uses a data-derived ratio based on the

following hypothesis: if the maternal and paternal genomes have different 3D structures, we

can use the reads with known origin (at SNV/InDel loci) to predict the origin of neighboring

unknown reads (Figure 4A, Supplemental Methods A) (33). For example, if we observe that

many contacts between two loci can be directly mapped to the paternal genome but few to the

maternal genome, then unphased contacts between those loci are more likely to be from the

paternal genome as well, and vice versa. This process of imputing Hi-C reads of unknown

origin based on nearby known reads is similar to the methods developed by Tan et al. (10).

HaploHiC marks paired-end reads as haplotype-known or -unknown depending on their

coverage of heterozygous phased SNVs/InDels. Haplotype-known reads are directly assigned

to their corresponding haplotype, maternal or paternal. HaploHiC uses a local contacts-based

algorithm to impute the haplotype of haplotype-unknown reads using nearby SNVs/InDels. If

the minimum threshold (ten paired-ends) of haplotype-known reads for local imputation is not

reached, HaploHiC randomly assigns the haplotype-unknown reads to be maternal or paternal

(less than 5% of all haplotype-unknown reads). Detailed materials and methods for haplotype

phasing and Hi-C construction are provided in Supplemental Methods A.

Our validation shows that HaploHiC performs well, with an average accuracy of 96.9%,

97.2%, and 97.3% for G1, S, and G2, respectively, over 10 trials each (Table S12). Each val-

idation trial randomly removed 10% of the heterozygous phased SNVs/InDels, and calculated

imputation accuracy by the fraction of correctly imputed reads from the haplotype-known Hi-C

reads covering these removed heterozygous mutations (Supplemental Methods A.8). Our val-

idation of imputation accuracy is similar to the method presented in Tan et al. (10). We also

perform multiple simulations for further validation (Supplemental Methods A.8). HaploHiC is

available through a GitHub repository.

After haplotype assignment through HaploHiC, Hi-C paired-end reads (PE-reads) were dis-

tributed to intra-haplotype (P-P and M-M) and inter-haplotype (P-M and M-P) (Supplemental
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Methods A.1-A.8). Juicer was applied on intra-haplotype PE-reads, and outputs maternal and

paternal contact matrices which were normalized through the Knight-Ruiz method of matrix

balancing (34,35). Inter-haplotype contact matrices were generated by HaploHiC (Supplemental

Methods A.7). Intra- and inter-haplotype contacts are shown in Figure 4B and Figure S8. Both

base pair level and fragment level matrices were constructed. The resolution of base pair level

matrices are 1 Mb and 100 kb. Gene-level contacts were converted from fragment level matrices

by HaploHiC.

Results

Chromosome-Scale Maternal and Paternal Differences

Spatial positioning of genes within the nucleus is known to be associated with transcriptional

status (12–15). One might expect that the maternal and paternal copies of each chromosome

would stay close together to ensure that their respective alleles have equal opportunities for tran-

scription. Imaging of chromosome territories has shown that this is often not the case (Figure

2A, Supplemental Methods B) (36–38). This observation inspired us to investigate whether the

two genomes operate in a symmetric fashion, or if allele-specific differences exist between the

genomes regarding their respective chromatin organization patterns (structure) and gene expres-

sion profiles (function). We analyzed parentally phased whole-chromosome Hi-C and RNA-seq

data at 1 Mb resolution to identify allele-specific differences in structure and function, respec-

tively. We subtracted each chromosome’s paternal Hi-C matrix from the maternal matrix and

found the Frobenius norm of the resulting difference matrix. The Frobenius norm provides a

measure of distance between matrices, where equivalent maternal and paternal genome struc-

tures would result in a value of zero. Similarly, we subtracted the phased RNA-seq vectors in

log2 scale and found the Frobenius norm of each difference vector. The Frobenius norms were

adjusted for chromosome size and normalized for both Hi-C and RNA-seq.

We found that all chromosomes have allelic differences in both structure (Hi-C, blue) and
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function (RNA-seq, red) (Figure 2B). Chromosome X had the largest structural difference, as

expected, followed by Chromosomes 9, 21, and 14. Chromosome X had the most extreme func-

tional differences as well, followed by Chromosomes 13, 7, and 9. A threshold was assigned

at the median Frobenius norm for Hi-C and RNA-seq (Figure 2B green dashed lines). The

majority of chromosomes with larger structural differences than the median in Hi-C also have

larger functional differences than the median in RNA-seq. There is a positive correlation be-

tween chromosome level differences in structure and function, which is statistically significant

only when Chromosome X is included (R = 0.66 and p < 0.05 with Chromosome X; R = 0.30

and p = 0.17 without Chromosome X).

Allele-Specific RNA Expression

After confirming allelic differences in RNA expression at the chromosomal scale, we examined

allele-specific expression of individual genes through RNA-seq and Bru-seq. We hypothesized

that the chromosome scale expression differences were not only caused by known cases of ABE

such as XCI and imprinting, but also by widespread ABE over many genes (39,40). Therefore,

we evaluated all allele-specific genes (genes with sufficient reads covering SNVs/InDels) for

differential expression across the six settings: maternal and paternal in G1, S, and G2/M (here-

after, G2). These settings give rise to seven comparisons which consist of maternal versus

paternal within each of the cell cycle phases (three comparisons), as well as G1 versus S and

S versus G2 for the maternal and paternal genomes, respectively (two comparisons for each

genome).

First, we identified genes with ABE and cell cycle-biased expression (CBE) from RNA-

seq. While ABE refers to differential expression between alleles in each cell cycle phase, CBE

refers to significant changes in expression from one cell cycle phase to another in each allele.

From 23,277 RefSeq genes interrogated, there were 4,193 genes with sufficient coverage on

SNVs/InDels to reliably determine allele-specific expression (41). We performed differential

expression analysis for the seven comparisons to identify which of the 4,193 genes had ABE
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or CBE (31). We identified 615 differentially expressed genes from RNA-seq: 467 ABE genes,

229 CBE genes, and 81 genes with both ABE and CBE (Tables S2, S4). Both exons and introns

containing informative SNVs/InDels were used for our Bru-seq data, from which 5,294 genes

had sufficient coverage. We identified 505 differentially expressed genes from Bru-seq: 380

ABE genes, 164 CBE genes, and 39 genes with both ABE and CBE (Tables S3, S5). We also

identified 130 genes that had ABE in both RNA-seq and Bru-seq. While this is substantially

smaller than total number of ABE genes for RNA-seq and Bru-seq (467 and 380, respectively),

the number of genes that are allele-specific in both data modalities is also smaller. That is,

only 285 of the ABE genes from RNA-seq are allele-specific in Bru-seq and 192 of the ABE

genes from Bru-seq are allele-specific in RNA-seq. The remaining genes did not have sufficient

expression or SNV coverage to be included in the downstream analysis. We then separated

the differentially expressed genes into their respective chromosomes to observe their distribu-

tion throughout the genome. From RNA-seq (Bru-seq), we found that autosomes had 3-14%

ABE (1-11%) in their allele-specific genes which is comparable to previous findings (11). As

expected, Chromosome X had a particularly high percentage of ABE genes at 90% (91%).

We identified 288 genes that have ABE in all three cell cycle phases from RNA-seq (160

paternally biased, 128 maternally biased) and 173 from Bru-seq (129 paternally biased, 44 ma-

ternally biased). This is the most common differential expression pattern among ABE genes and

these genes form the largest clusters in Figure 3A. These clusters include, but are not limited to,

XCI, imprinted, and other MAE genes. Known examples within these clusters are highlighted

in the ‘X-Linked’ and ‘Imprinted’ sections of Figure 3B. We also identified hundreds of genes

that are not currently appreciated in literature to have ABE, with examples shown in the ‘Au-

tosomal Genes’ sections of Figure 3B for both mature and nascent RNA. Approximately half

of all ABE genes were only differentially expressed in one or two cell cycle phases, which we

refer to as transient allelic biases. These genes form the smaller clusters seen in Figure 3A. Ex-

amples of genes with transient allelic biases are also presented in the ‘Autosomal Genes’ section

of Figure 3B. Transient expression biases like these may be due to coordinated expression of

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2020.03.15.992164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992164


the two alleles in only certain cell cycle phases, though the mechanism behind this behavior is

unclear.

Among the ABE genes from RNA-seq analysis, we found 117 MAE genes. In addition to

the requirements for differential expression, we impose the thresholds of a FC ≥ 10 and for the

inactive allele to have < 0.1 Fragments Per Kilobase of transcript per Million (FPKM), or FC

≥ 50 across all three cell cycle phases. Our analysis confirmed MAE for imprinted and XCI

genes, with examples shown in Figure 3B. Imprinted and XCI genes are silenced via transcrip-

tional regulation, which was verified by monoallelic nascent RNA expression (Bru-seq). The

XIST gene, which is responsible for XCI, was expressed in the maternal allele reflecting the

deactivation of the maternal Chromosome X. XCI was also observed from Hi-C through large

heterochromatic domains in the maternal Chromosome X, and the absence of these domains in

the paternal Chromosome X (Figure 4C). The inactive Chromosome X in our cells is opposite

of what is commonly seen for the GM12878 cell line in literature (likely due to our specific

GM12878 sub-clone), but is consistent between our data modalities (9,10,19). The MAE genes

also include six known imprinted genes, four expressed from the paternal allele (KCNQ1OT1,

SNRPN, SNURF, and PEG10) and two from the maternal allele (NLRP2 and HOXB2). Some

of the known imprinted genes that were confirmed in our data are associated with imprint-

ing diseases, such as Beckwith-Wiedemann syndrome (KCNQ1OT1 and NLRP2), Angelman

syndrome (SNRPN and SNURF), and Prader-Willi syndrome (SNRPN and SNURF) (42, 43).

These genes and their related diseases offer further support for allele-specific analysis, as their

monoallelic expression could not be detected otherwise.

After observing that approximately half of all ABE genes had transient expression biases,

we hypothesized that alleles may have unique dynamics through the cell cycle. We then focused

our investigation on allele-specific gene expression through the cell cycle to determine if alleles

had CBE, and whether alleles were coordinated in their cell-cycle dependent expression (Figure

S1B). We compared the expression of each allele between G1 and S as well as between S and

G2, which provides insight into the differences between maternal and paternal alleles’ dynamics
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across the cell cycle. In the G1 to S comparison, there are 88 (55) genes in RNA-seq (Bru-seq)

which have similar expression dynamics in both alleles. These genes’ maternal and paternal

alleles are similarly upregulated or downregulated from G1 to S. In contrast, 87 (97) genes

in RNA-seq (Bru-seq) have different expression dynamics between alleles. That is, only one

allele is up or downregulated in the transition from G1 to S. In the S to G2 comparison, there

are 26 (3) genes in RNA-seq (Bru-seq) that have similar expression dynamics in both alleles

and 56 (12) genes with different expression dynamics between alleles. From these data, we see

a coordination of expression between many, but certainly not all, alleles through the cell cycle.

Biallelic Expression and Cellular Function

We observed from our analysis of CBE that multiple cell cycle regulatory genes had no instances

of ABE (Figure 3C). We expanded this set of genes to include all allele-specific genes contained

in the KEGG cell cycle pathway (44). Again, we found zero instances of ABE. This may

suggest that genes with certain crucial cellular functions, like cell cycle regulation, may have

coordinated biallelic expression to ensure their sufficient presence as a means of robustness.

This is supported by previous findings which showed restricted genetic variation of enzymes in

the essential glycolytic pathway (45).

We hypothesized that genes implicated in critical cell cycle processes would be less likely to

have ABEs. We tested additional modules derived from KEGG pathways containing at least five

allele-specific genes, with the circadian rhythm module supplemented by a known core circa-

dian gene set (20). Examples of modules with varying proportions of ABE are shown in Table 1

(Table S7), where “Percent ABE” refers to the proportion of genes with ABE to the total num-

ber of allele-specific genes in that module. We found that there are multiple crucial modules,

including the glycolysis/gluconeogenesis and pentose phosphate pathways, which also had zero

ABE genes. To explore the possibility of a global phenomenon by which genes essential to cel-

lular fitness are significantly less likely to have biased expression, we analyzed the frequency

of ABE in 1,734 genes experimentally determined to be essential in human cells (46). Using
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the 662 allele-specific genes in this set, we found that these essential genes were significantly

less likely to have ABE than a random selection of allele-specific genes (5.8% versus 11.1%,

p < 0.001, Supplemental Methods D), consistent with our hypothesis that critical genes are

likely to be expressed by both alleles. In total, we offer a model in which coordinated biallelic

expression reflects prioritized preservation of essential gene sets.

Allele-Specific Genome Structure

Motivated by our observations of chromosome level structural differences between the maternal

and paternal genomes, we examined the HaploHiC separated data in more detail to determine

where these differences reside. The genome is often categorized into two compartments: tran-

scriptionally active euchromatin and repressed heterochromatin. In studies comparing multiple

types of cells or cells undergoing differentiation, areas of euchromatin and heterochromatin of-

ten switch corresponding to genes that are activated/deactivated for the specific cell type (47).

We explored this phenomenon in the context of the maternal and paternal Hi-C matrices to

determine if the two genomes had differing chromatin compartments. Chromatin compart-

ments can be identified from Hi-C data using methods such as principal component analysis or

spectral clustering (Supplemental Methods C) (48). We applied spectral clustering to every

chromosome across all three cell cycle phases at 1 Mb resolution. We found that there were

slight changes in chromatin compartments for all chromosomes, but the vast majority of these

changes took place on the borders between compartments rather than an entire region switching

compartments. These border differences were not enriched for ABE genes. This implies that,

although the structures may not be identical, the maternal and paternal genomes have similar

overall compartmentalization (aside from Chromosome X).

We next applied spectral clustering recursively to the Hi-C data at 100 kb resolution to

determine whether there were differences in TADs between the two genomes throughout the cell

cycle (48). While the current understanding of genomic structure dictates that TAD boundaries

are invariant (between alleles, cell types, etc), it is also known that “intra-TAD” structures
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are highly variable (47, 49, 50). The spectral identification method has an increased ability to

discern these subtle structural changes. We found that TAD boundaries were variable between

the maternal and paternal genomes and across cell cycle phases in all chromosomes. This

supports previous findings of allelic differences in TADs for single cells, and we predict that

they are even more variable across cell types (48, 50). Differences in TAD boundaries were

observed surrounding MAE genes, ABE genes, and genes with coordinated biallelic expression

(Figure S6). This indicated that changes in TAD boundaries were not directly related to allelic

expression differences.

Although we did not find a direct relationship between TAD boundary differences and ABE

genes, we observed during this analysis that the local genome structure around the six imprinted

genes had noticeable differences. We then sought to analyze all genes with ABE or CBE to find

out if they had corresponding structural differences at a local level. We analyzed the local Hi-C

matrices for each of the 615 RNA-seq and 505 Bru-seq differentially expressed genes. Using

a 300 kb flanking region centered at the 100 kb bin containing the transcription start site, we

isolated a 7x7 matrix (700 kb) for each differentially expressed gene (Figure 5A, B). These

matrices represent the local genomic structure of the differentially expressed genes, and are

slightly smaller than average TAD size (∼1 Mb). We then compared the correlation matrices

of the log2-transformed local Hi-C data and determined whether or not the matrices have sta-

tistically significant differences (p < 0.05) (23, 51). We applied this comparison to all genes

that were differentially expressed in RNA-seq (Bru-seq) and found that 515 (403) genes had at

least one comparison in which both the expression and local structure had significantly changed.

While changes in local genome structure and changes in gene expression do not have a one-to-

one relationship, we found that both ABE and CBE genes are more likely to have significant

architectural differences than randomly sampled allele-specific genes (p < 0.01) (Figure S7 and

Supplemental Methods D). This lends further support to the idea that there is a relationship

between allele-specific differences in gene expression and genome structure.
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Allele-Specific Protein Binding

To uncover the mechanisms behind the relationship between allele-specific gene expression

and genome structure, we looked to DNA binding proteins such as RNA polymerase II (Pol II),

CCCTC-binding factor (CTCF), and 35 other transcription factors. We used publicly available

protein binding data from AlleleDB in tandem with RNA-seq and found 114 genes that have an

allelic bias in both gene expression and binding of at least one such protein (19). We identified

13 genes which have ABE and biased binding of Pol II, with bias agreement in 11 cases (85%).

That is, the allelic expression and Pol II binding were biased toward the same allele. For CTCF,

33 of 72 cases have bias agreement (46%), and for all other transcription factors analyzed, 20 of

29 cases have bias agreement (69%) (Table S6). The CTCF binding bias agreement of around

50% is expected, based on previous studies (7). This is likely due to CTCF’s role as an insulator,

since an allele could be expressed or suppressed by CTCF’s presence depending on the context.

To avoid potential inconsistencies between our data and the protein data from AlleleDB, we

excluded Chromosome X when testing for ABE and protein binding biases.

We evaluated the relationship between TAD boundary differences between the maternal and

paternal genomes and allele-specific CTCF binding sites. We found multiple instances of bi-

ased binding of CTCF and corresponding changes to the boundaries of TADs containing ABE

genes. Examples of this phenomenon are shown in the center of Figure S6A, where TAD

boundaries from the maternal (paternal) Hi-C data are closer to a maternally (paternally) biased

CTCF binding site in some cell cycle phases near the ABE genes ANKRD19P, C9orf89, and

FAM120A. Despite observing individual instances of biased CTCF binding corresponding to

TAD boundary differences and ABE genes, there were insufficient data to evaluate this rela-

tionship genome-wide. We hypothesize that differences in TAD boundaries would correspond

to allele-biased CTCF binding provided that there were enough data, as it has been repeatedly

shown that TAD boundaries are enriched with CTCF binding (49, 52).

We analyzed the 11 genes with allelic expression and Pol II binding bias agreement further

to determine if they also had significant changes in local genome structure. Through local Hi-C
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comparisons, we found that all 11 of these genes had significant changes in structure in at least

one cell cycle phase. 3D models for six of these genes are shown in Figure 5B, which high-

light differences in local genome structure (Supplemental Methods F) (53). The genes with

bias agreement and changes in local genome structure include known imprinted genes such as

SNURF and SNRPN, as well as genes with known allele-specific expression (and suggested

imprinting in other cell types) like ZNF331 (54). Additionally, there are multiple genes with

known associations with diseases or disorders such as BMP8A, CRELD2, and NBPF3 (55–57).

These findings suggest that changes in local structure often coincide with changes in expres-

sion due to the increased or decreased ability of a gene to access the necessary transcriptional

machinery within transcription factories (14, 58). We visualize this relationship for the gene

CRELD2 as an example (Figure 5C).

The Maternal and Paternal 4D Nucleome

We define the maternal and paternal 4DN as the integration of allele-specific genome struc-

ture with gene expression data through time, adapted from Chen et al. (20). Many complex

dynamical systems are investigated using a network perspective, which offers a simplified rep-

resentation of a system (59, 60). Networks capture patterns of interactions between their com-

ponents and how those interactions change over time (20). We can consider genome structure

as a network, since Hi-C data captures interactions between genomic loci (12, 15). In network

science, the relative importance of a node in a network is commonly determined using network

centrality (59). For Hi-C data, we consider genomic loci as nodes and use network centrality to

measure the importance of each locus at each cell cycle phase (23, 61). We initially performed

a global analysis of the maternal and paternal 4DN by combining RNA-seq with multiple net-

work centrality measures (Supplemental Methods D) (23). We found differences between the

maternal and paternal genomes and across cell cycle phases, but only Chromosome X had clear

maternal and paternal separation (Figures S9, S10).

In our earlier analysis, we found a significant relationship between ABE and changes in
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local genome structure. We also observed that genes in multiple critical biological modules had

coordinated biallelic expression. Motivated by these results, we performed an integrated anal-

ysis of structure and function to determine allele-specific dynamics of targeted gene sets. We

constructed a sub-network for each gene set (analogous to an in silico 5C matrix), by extracting

rows and columns of the Hi-C matrix containing genes of interest for each cell cycle phase (62).

We used eigenvector centrality (similar to Google’s PageRank) to quantify structure, and used

the average expression from the three RNA-seq replicates to quantify function, for each allele in

the sub-network (63). We utilized the concept of a phase plane to plot the maternal and paternal

4DN (4DN phase plane, adapted from Chen et al.) (Figure 6) (20). We designated one axis

as a measure of structure and the other as a measure of function. Coordinates of each point

in the 4DN phase plane were determined from normalized structure data (x-axis, sub-network

eigenvector centrality) and function data (y-axis, FPKM). The 4DN phase plane contains three

points for each allele, which represent G1, S, and G2. We define allelic divergence (AD) as

the average Euclidean distance between the maternal and paternal alleles across all cell cycle

phases in the 4DN phase plane (Supplemental Methods D).

We show four example 4DN phase planes of gene sub-networks with various ADs in Figure

6. Genes which are known to be crucial for cell cycle regulation have a mean AD of 0.0245

(Figure 6B, middle-left). Given that GM12878 is a B-lymphocyte cell line, we were interested

in the AD of genes which are related to B cell receptor functionality. We found that these genes

had a mean AD of 0.0225 (Figure 6B, left). The ADs of cell cycle regulating genes and B cell

specific genes are smaller than the mean AD of randomly selected allele-specific genes (AD

= 0.0301 over 10,000 samples). This may be indicative of a robust coordination between the

alleles to maintain proper cellular function and progression through the cell cycle, and therefore

a lack of ABE genes or large structural differences. We show a random set of allele-specific

genes with a mean AD of 0.0249 as an example (Figure 6B, middle-right). MAE genes had

a mean AD of 0.1748 (Figure 6B, right), significantly higher than randomly selected allele-

specific genes (p < 0.01, Supplemental Methods E). This approach is useful for quantifying
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differences between maternal and paternal genomes throughout the cell cycle, highlighting gene

sets with large structural or expression differences over time. In previous work, we have also

shown that this method may be broadly applicable to time-series analysis of different cell types

(23).

Discussion

In this study, we present evidence for the intimate relationship among allele-specific gene ex-

pression, genome structure, and protein binding across the cell cycle. We validated our data and

methods using known allele-specific properties such as the monoallelic expression of imprinted

and X-linked genes, broad similarities of chromatin compartments between the maternal and

paternal genomes, and large heterochromatic domains of Chromosome X (9, 64–67). Unique

to this study, we established a coordination of allele-biased expression and changes in local

genome structure, which included hundreds of genes not commonly associated with allele-

biased expression. We observed further evidence of this coordination through corresponding

protein binding biases.

Through our analysis of mature (nascent) RNA, we found 467 (380) genes to be differ-

entially expressed between the two alleles and 229 (164) genes with differential expression

through the cell cycle. Approximately half of the genes with allele-biased expression are only

differentially expressed in certain cell cycle phases, and over half of the genes with CBE are

only differentially expressed in one allele. Further research is needed to explore why certain

genes have coordinated cell cycle dynamics across both alleles, while other genes have disparate

expression in some cell cycle phases. We predict that these transient allelic biases may be asso-

ciated with developmental pathologies and tumorigenesis, similar to imprinted and other MAE

genes. Conversely, we found no allele-biased expression from genes in multiple biological mod-

ules, such as the cell cycle and glycolysis pathways (Table 1). We were not able to establish a

statistical significance here due to the limited number of allele-specific genes in these modules,

so we surveyed a set of 662 essential genes and found that they are significantly less likely to
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have allele-biased expression (46). This supports our hypothesis of highly coordinated biallelic

expression in universally essential genes.

We developed a novel phasing algorithm, HaploHiC, which uses Hi-C reads mapped to

phased SNVs/InDels to predict nearby reads of unknown parental origin. This allowed us to de-

crease the sparsity of our allele-specific contact matrices and increase confidence in our analysis

of the parental differences in genome structure. While we found that the overall compartmental-

ization (euchromatin and heterochromatin) of the two genomes was broadly similar, there were

many differences in TAD boundaries and local genome structure between the two genomes and

between cell cycle phases. We focused our search for allele-specific differences in genome

structure by calculating the similarity of local contacts surrounding differentially expressed

genes (23, 51). We found that differentially expressed genes were significantly more likely to

have corresponding changes in local genome structure than random allele-specific genes.

We incorporated publicly available allele-specific protein binding data for Pol II and CTCF

to explore the mechanisms behind the gene expression and local genome structure relation-

ship (7). In genes that had both allele-biased expression and Pol II binding biases, we found

that 85% of these genes had allelic bias agreement. Additionally, we found that all of the genes

with expression and Pol II binding bias agreement had significant changes in local genome

structure. Analysis of the relationships among allele-specific gene expression, genome struc-

ture, and protein binding is currently hindered by the amount of information available and our

limited understanding of the dynamics of cell-specific genome structure and gene expression

variability (68). The ability to separate maternal and paternal gene expression and protein bind-

ing is dependent on the presence of a SNV/InDel within the gene body and nearby protein

binding motifs. As SNVs/InDels are relatively rare in the human genome, the number of genes

available to study is severely limited. Once we are able to separate the maternal and paternal

genomes through advances in experimental techniques, we will be able to fully study these

relationships.

Overall, these data support an intimate allele-specific relationship between genome structure
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and function, coupled through allele-specific protein binding. Changes in genome structure,

influenced by the binding of proteins such as CTCF, can affect the ability of transcription factors

and transcription machinery to access DNA. This results in changes in the rate of transcription

of RNA, captured by Bru-seq. The rate of transcription leads to differential steady state gene

expression, captured by RNA-seq. Integration of these data into a comprehensive computational

framework led to the development of a maternal and paternal 4DN, which can be visualized

using 4DN phase planes and quantified using allelic divergence. Allele-specific analysis across

the cell cycle will be imperative to discern the underlying mechanisms behind many diseases

by uncovering potential associations between deleterious mutations and allelic bias, and may

have broad translational impact spanning cancer cell biology, complex disorders of growth and

development, and precision medicine.

Description of Supplemental Data

Supplemental Data include additional methods details, 11 figures, and 12 tables.
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Figure Titles and Legends

Fig. 1: Experimental and allelic separation workflow. Cell cycle sorted cells were extracted
for RNA-seq, Bru-seq, and Hi-C (left to right, respectively). RNA-seq and Bru-seq data were
allelicly phased via SNVs/InDels (left). SNV/InDel based imputation and haplotype phasing of
Hi-C data using HaploHiC (right). These data provide quantitative measures of structure and
function of the maternal and paternal genomes through the cell cycle.
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Fig. 2: Genome imaging and chromosome differences. (A) Nucleus of a primary human fi-
broblast imaged using 3D FISH with the maternal and paternal copies of Chromosome 6, 8,
and 11 painted red, green, and white, respectively (left). Subsection highlighting the separa-
tion between the maternal and paternal copies of Chromosome 11, now colored red (right). (B)
Normalized chromosome level structural and functional parental differences of GM12878 cells.
Structural differences (∆ Structure, blue) represent the aggregate changes between maternal
and paternal Hi-C over all 1 Mb loci for each chromosome, adjusted for chromosome size in
G1. Functional differences (∆ Function, red) represent the aggregate changes between mater-
nal and paternal RNA-seq over all 1 Mb loci for each chromosome, adjusted for chromosome
size in G1. Green dashed lines correspond to the median structural (0.48, chromosome 3) and
functional (0.20, chromosome 6) differences, in the top and bottom respectively, and all chro-
mosomes equal to or greater than the threshold are labeled. Scatter plot of maternal and paternal
differences in structure and function with best-fit line (R = 0.66 and p < 0.05).
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Fig. 3: Allele-specific mature and nascent RNA expression. (A) Differentially expressed genes’
maternal and paternal RNA expression through the cell cycle. Expression heatmaps are average
FPKM values over three replicates after row normalization. Genes are grouped by their dif-
ferential expression patterns (Figure S1). (B) Representative examples of X-linked, imprinted,
and other autosomal genes with allelic bias. Top and bottom sections of (A) and (B) show
mature RNA levels (RNA-seq) and nascent RNA expression (Bru-seq), respectively. (C) Ex-
amples of cell cycle regulatory genes’ mature RNA levels through the cell cycle. These genes
are grouped by their function in relation to the cell cycle and all exhibit CBE but none have
ABE. All example genes in (B) and (C) reflect average FPKM values over three replicates, and
ABE in a particular cell cycle phase is marked with an orange or purple asterisk for maternal or
paternal bias, respectively. G2 includes both G2 and M phase.
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Fig. 4: Haplotype phasing of Hi-C data. (A) HaploHiC separates paired-end reads into groups
based on parental origin determined through SNVs/InDels (left, Supplemental Methods A.3).
Reads are grouped by: (i) reads with one (sEnd-P/M) or both ends (dEnd-P/M) mapped to a sin-
gle parent, (ii) reads are inter-haplotype, with ends mapped to both parents (d/sEnd-I), and (iii)
reads with neither end mapped to a specific parent (dEnd-U). An example of a paired-end read
(dEnd-U) with no SNVs/InDels has its origin imputed using nearby reads (right, Supplemental
Methods A.6). A ratio of paternally and maternally mapped reads is found in a dynamically
sized flanking region around the haplotype-unknown read’s location (Supplemental Methods
A.4). This ratio then determines the likelihood of the haplotype-unknown read’s origin. (B)
Whole-genome Hi-C of GM12878 cells (top left). Inter- and intra-haplotype chromatin con-
tacts after phasing Hi-C data using HaploHiC (right). Chromosomes 14 and 15 highlight inter-
and intra-chromosome contacts within and between genomes (bottom left). Visualized in log2
scale 1 Mb resolution in G1. (C) Haplotype phasing illustrates that the inactive maternal Chro-
mosome X is partitioned into large heterochromatic domains, outlined in dotted black boxes.
Visualized in log2 scale 100 kb resolution in G1.
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Fig. 5: Local chromatin structure and transcription factor binding. (A) Local regions around
differentially expressed genes are tested for significant conformational changes. These re-
gions are modeled to visualize the conformations around each allele through G1, S, and G2
(Supplemental Methods F). Example of local chromatin structure extraction is shown for
ZNF331 in G1 phase (center of blue box). Hi-C matrices are shown in log2 scale 100 kb resolu-
tion. (B) 3D models of the local genome structure around six ABE genes with bias agreement
of Pol II and significant changes in local genome structure. (C) Schematic representation of
allele-specific Pol II and CTCF binding, with highlighted gene CRELD2, which had binding
biases in both. Table shows extreme binding biases of Pol II and CTCF on CRELD2 as an
example.
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Fig. 6: 4DN phase planes reveal a wide range of allelic divergences in gene sub-networks.
(A) Workflow to obtain structure and function measures. Eigenvector centrality for each gene
is computed from the extracted sub-network of Hi-C contacts. Expression for each gene can
be found directly from RNA-seq. Simplified phase planes are shown with linear relationships
between changes in structure and function, changes in structure with no changes in function,
and changes in function with no changes in structure. (B) 4DN phase planes of genes specific
to B cell function, cell cycle genes, random allele-specific genes, and MAE genes, highlighting
the similarities and differences between their alleles. Genes such as BUB1B and PIK3AP1 have
similar phase planes between alleles, while RAC1 differs in structure and WRAP73 differs in
function. The bottom plot for each column combines the phase planes of the nine example
genes, and the average allelic divergence is calculated from each of these gene sets.
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Tables

Table 1: Allelic bias in biological modules.
Module Percent ABE

Cell Cycle 0%
Glycolysis/Gluconeogenesis 0%
Pentose Phosphate 0%
BCR Signaling 8%
Circadian Rhythm 9%
p53 Signaling 11%
Wnt Signaling 16%
Hippo Signaling 21%
Whole Genome 11%

Pathways with 0% ABE are highlighted
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