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ABSTRACT

Cancer cells accumulate somatic mutations as result of DNA damage and inaccurate repair

mechanisms. Different genetic instability processes result in distinct non-random patterns of

DNA mutations,  also  known  as  mutational  signatures.  We  developed  mutSignatures,  an

integrated  R-based  computational  framework  aimed  at  deciphering  DNA  mutational

signatures. Our software provides advanced functions for importing DNA variants, computing

mutation types, and extracting mutational signatures via non-negative matrix factorization. We

applied  mutSignatures to  analyze  somatic  mutations  found  in  smoking-related  cancer

datasets. We characterized mutational signatures that were consistent with those reported

before  in  independent  investigations.  Our  work  demonstrates  that  selected  mutational

signatures  correlated  with  specific  clinical  and  molecular  features  across  different  cancer

types, and revealed complementarity of specific mutational patterns that has not previously

been identified. In conclusion, we propose mutSignatures as a powerful open-source tool for

detecting the molecular determinants of cancer and gathering insights into cancer biology and

treatment. 
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INTRODUCTION

Genetic instability is one of the hallmarks of cancer (1). Neoplastic cells accumulate somatic

mutations  in  their  genomes,  resulting  in  aberrant  homeostasis,  cancer  cell  survival,  and

proliferation (2). DNA mutations are the result of the unbalanced interplay between processes

generating  nucleotide  lesions  and  impaired  activity  of  DNA  repair  pathways  (3).  Often,

specific mutations can be traced back to the genetic instability process that generated them.

For example, 8-oxoguanine (8-oxoG) is the most common and best-characterized base lesion

induced  by  oxidative  stress  (4,5),  a  condition  associated  with  cancer  (6).  During  DNA

replication, 8-oxoG can pair with adenine, causing G→T transversions (4,7). On the contrary,

UV radiation elicits C→T substitutions at dipyrimidine sites, inducing CC→TT (8). Likewise,

other molecular processes can be associated with their cognate mutational signatures. The

interest in the identification of mutational signatures and the corresponding genetic instability

processes  is  rapidly  growing  because  these  signatures  are  footprints  of  the  molecular

aberrations occurring in tumors, may be prognostic of clinical outcomes, and could support

personalized anti-cancer treatments in the future (9). 

Seminal work from Nik-Zainal et al  (10) and Alexandrov et al  (11) identified a list of 30 tri-

nucleotide mutational signatures found in human cancer (Catalogue of Somatic mutations in

Cancer, COSMIC signatures). The analytic pipeline was written in MATLAB (Wellcome Trust

Sanger Institute,  WTSI framework),  and relied on non-negative matrix factorization (NMF)

(12). NMF has been widely employed to learn the basic components of objects that can be

represented as non-negative numeric matrices  (13,14), such as mutation counts. Analyses

aimed at deciphering mutational signatures were also performed using R-based pipelines and

the  NMF package  (15-17).  In  addition,  R  packages  dedicated  to  the  identification  of  tri-

nucleotide mutational signatures by NMF and PCA (somaticSignatures R package)  (18), or

using original probabilistic models (pmsignature R package)  (19) were published. However

current R-based approaches for mutational signature analysis carry a series of limitations.

First, most analytic pipelines lack built-in functionalities for computing tri-nucleotide mutations,

or  only  support  analysis  of  human mutations.  Second,  with  few exceptions,  tri-nucleotide

mutations are the only  types of  DNA variants that  were analyzed,  even if  recent  reports

suggested that the standard tri-nucleotide-based approaches may be inadequate to capture

and resolve clinically- or biologically- relevant patterns. For example, it was recently shown

that incorporating additional mutation-flanking nucleotides could be advantageous for better
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establishing  mutational  blueprints  of  smoke-associated  cancers  (17).  Additionally,  current

approaches are limited by both reproducibility issues emerging when comparing results from

different signature extraction pipelines, as well as biases due to differences in total mutation

burden across sequenced samples (20). Finally, a fully integrated R-based framework for the

analysis of DNA variants and the identification and analysis of mutational signatures is still

missing.

These considerations prompted us to develop a software that replicated the WTSI framework

in the R Statistical Computing environment, and at the same time addressed some of the

limitations of the current analytical  approaches. Here, we present  mutSignatures,  which is

available on CRAN (https://CRAN.R-project.org/package=mutSignatures) and GitHub (https://

github.com/dami82/mutSignatures).  This  framework  includes  an  R-ported  version  of  the

software developed by Alexandrov et al (12), accompanied by a wide set of functions for data

import, preparation, analysis, and visualization. Notably, our software is compatible with non-

human genomes, and was successfully employed to extract for the first time two mutational

signatures  from  a  carcinogen-induced  mouse  model  of  bladder  cancer  (21).  Moreover,

mutSignatures provides users with optional tools for inspecting non-standard mutation types,

applying sample-wise mutation count normalization, and using a multiplicative update NMF

algorithm (22) alternative to the standard Brunet’s algorithm (13). Altogether, mutSignatures is

a  powerful  open-source  framework  for  comprehensive  analysis  of  mutational  signatures,

aimed at gathering insights into cancer biology and treatment.
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MATERIAL AND METHODS

Data sources

LUAD  and  BLCA TCGA  datasets  were  described  before  (23,24).  The  MAF files  storing

mutation  data  from  sequencing  experiments  were  downloaded  from  the  Broad  Institute

Repository  at  the  following  URL:

http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/.  Tri-nucleotide

mutation frequencies of 30 COSMIC signatures were downloaded from the Sanger Institute

repositories,  at  the  following  URL:

http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt.  The

TCGAretriever (https://CRAN.R-project.org/package=TCGAretriever) R package was used to

download patient clinical data from cBioPortal (http://www.cbioportal.org).

Computing Mutation types

mutSignatures version 1.3.7 or higher (https://github.com/dami82/mutSignatures) was used.

Tri-nucleotide or non-standard mutation types were computed starting from MAF files, and

using  mutSignatures functions  that  relied  on  the  use  of  GenomicRanges (25) and  the

BSgenome (https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19)

Bioconductor packages. Specifically, the full genome sequences for Homo Sapiens, version

hg19 were used for retrieving the nucleotide context surrounding each SNV in the MAF files,

and  for  computing  mutation  types.  Reverse-complement  transformations  were  applied  to

format all mutations according to the standard style used by COSMIC, which always lists a

pyrimidine as the reference base at the mutated position. 

Non-negative Matrix Factorization

The core functions for performing NMF were ported into R from the MATLAB-based code of

the WTSI (recently renamed to sigProfiler) framework (12), which was downloaded from the

following  URL:   https://www.mathworks.com/matlabcentral/fileexchange/38724.  NMF  was

performed using matrix algebra functions that are included in R base. The Brunet’s and the

Lin’s NMF algorithms were described before  (13,22), and the corresponding MATLAB code

(12,22) was ported to R. De novo signature extractions by NMF were performed by running at

least 500 iterations, and using on-demand Amazon (Seattle, WA, USA) Elastic Cloud 2 (EC2)

Linux instances, typically equipped with at least 36 CPU cores and 60 Gb RAM (m4.10xlarge,

or c4.8xlarge EC2 instances). 
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Simulations, statistical analyses, and patient prognosis

All statistical tests and data analyses were performed using R. Patient survival analyses were

performed using the  survival R package (https://CRAN.R-project.org/package=survival). For

analysis of clinical prognosis in the LUAD dataset, patients were assigned in 2 groups: cases

with survival time longer than 36 months were included in the first group (good prognosis,

n=111), while deceased patients with survival time shorter than 36 months were included in

the second group (poor survival,  n=111).  Patients with insufficient follow-up time (survival

status = alive & survival time less than 36 months; n=196) were excluded from the ‘prognosis’

analysis.   

Signature  matching  was  performed  using  the  matchSignatures() function  from  the

mutSignatures package. This function computed the cosine distance of all pairs of signatures

from  two  mutationSignatures objects  (dist=0  meant  identity;  dist~1  meant  maximum

dissimilarity). Results were visualized by heatmaps. 

For  the  Monte  Carlo  simulation,  a  total  of  10,000  simulations  were  performed.  At  each

iteration,  relative  signature  exposures  of  418  genomes  were  generated,  so  that  each

signature had relative exposure distribution whose mean and standard deviation tracked with

those observed in the original signature exposures. Spearman correlation was then computed

for  all  pairs  of  signatures,  and  the  minimum correlation  value  was  returned.  Finally,  the

original correlation values were examined with respect to the distribution of correlation values

returned by all simulations. Spearman’s and Kendall’s correlation tests were performed using

the cor.test() function from the stats R package.
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IMPLEMENTATION

Overview of mutSignatures pipeline

The mutSignatures framework is organized in three modules (figure 1). The first module deals

with data import and preparation from Variant Call Format (VCF) files or other sources. The

second  module  includes  core  functions  required  for  de  novo extraction  of  mutational

signatures  by  NMF.  Alternatively,  mutation  counts  can  be  deconvoluted  against  known

mutational signatures to determine signature exposures. The third module includes functions

for mutational signature matching, downstream analysis, and visualization. 

Data Import and Preparation

The  mutSignatures framework can import  DNA mutation data from multiple sources. VCF

files, which are typically used to record DNA variants, can be imported individually or in batch.

MAF files,  used by  The Cancer  Genome Atlas (TCGA) to  store cancer  mutation  data in

tabular format, can be easily read in R and analyzed via  mutSignatures. DNA variant data

from  cBioPortal  (27) can  be  programmatically  accessed  using  R  packages  such  as

TCGAretriever (https://CRAN.R-project.org/package=TCGAretriever),  and then analyzed by

mutSignatures. The  mutSignatures framework  can  also  import  and  process  mutations

revealed through the  Sequenza pipeline  (28). After single nucleotide variants are imported,

their genomic location is used to extract the n-nucleotide (by default, n=3) context (centered

on  the  mutated  position)  from  a  BSgenome reference  assembly  (for  example,  hg19

https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19).  Our  framework

allows  import  and  analysis  of  mutation  data  aligned  to  human  as  well  as  non-human

genomes,  including  the  mouse  mm10 assembly  (21).  By  default,  mutations  types  are

formatted according to the style used by COSMIC and the Sanger Institute (for example, A|

C>T|A).  Reverse-complement  transformation  is  automatically  applied  to  display  mutation

types with a pyrimidine (C or T) as reference base at the mutated position. While the Sanger-

derived format is adopted and recommended for consistency with previous analyses, users

can  opt  for  customized  mutation  dictionaries.  Indeed,  downstream  analytic  modules  can

accept either standard or non-standard mutation types as input. In the final data preparation

step, mutation types are counted across all samples, returning a mutationCounts object that

can be piped into the second module of the framework, or used for data visualization.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992826doi: bioRxiv preprint 

https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19
https://CRAN.R-project.org/package=TCGAretriever
https://doi.org/10.1101/2020.03.15.992826
http://creativecommons.org/licenses/by-nc-nd/4.0/


De novo extraction of mutational signatures via NMF

Extraction of mutational signatures is conducted by NMF, as originally described for the WTSI

framework  (12), and according to the equation  V ≈W ×H . Briefly, let  V be an  m-by-n non-

negative mutation count matrix (including  m mutation types and  n biological samples).  V is

factorized into two non-negative matrices, W (m-by-k matrix) and H (k-by-n matrix). While W

stores  k mutational  signatures,  H includes  signature  exposures,  which  estimate  the

contribution of mutational signatures to the total number of mutations found in each sample

(14).

Similar to the WTSI framework, in  mutSignatures the NMF step is executed multiple times

with the input count matrix bootstrapped according to the multinomial distribution of mutations

by  sample  (12).  The  repeated  bootstrapping  followed  by  NMF  is  crucial  to  ensure

identification of consistent and reliable mutational signatures (12). Therefore, this procedure

was implemented in the mutSignatures framework as one of its essential components, unlike

other  analytic  pipelines  where  bootstrapping  is  not  performed.  The  reliability  of  de  novo

extracted  signatures  can  be  readily  assessed  by  inspecting  the  silhouette  plot  that  is

automatically returned at the end of the signature extraction process (supplementary figure

S1A). 

In the WTSI framework, NMF is conducted according to the multiplicative update algorithm

proposed by Brunet et al  (13). Our software implements the same algorithm, as well as an

alternative NMF method that  was first  described by Lin  (22).  Lin’s  modified multiplicative

update algorithm enforced convergence, had similar computational complexity per iteration as

the  original  NMF  algorithm,  and  was  previously  applied  to  the  analysis  of  genomic  and

biomedical data  (29,30). This feature was included in our software since the comparison of

results from different NMF algorithms may facilitate the identification of consistent and reliable

mutational signatures. 

Our R package is already optimized for parallelization: mutSignatures can be easily deployed

on high-performance computational clusters, and relies on the use of the  parallel,  foreach

(https://CRAN.R-project.org/package=  foreach)  ,  and  doParallel

https://CRAN.R-project.org/package=  doParallel)   R packages. The output is a list including a

mutationSignatures object  storing  the  newly  extracted  mutational  signatures

(Results$signatures),  and  a  mutSignExposures object  that  includes  signature  exposures

(Results$exposures).
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Optional Mutation Count Normalization

In the original WTSI framework, no count normalization is applied before NMF, and hence this

approach is inherently biased toward extraction of signatures that are prominent in samples

with high mutation burden. This strategy aligns with the hypothesis that a high total number of

mutations in a sample may be due to many active mutational  processes, and hence that

sample gets a bigger weight in the mutational signature extraction. While this hypothesis is

sound, there are evidences that selected mutational  processes may contribute more than

others to the accumulation of somatic mutations in tumors. An example is that of tumors with

hyper-mutator  phenotype  (31).  If  signatures  are  extracted  from raw mutation  counts,  the

presence of high mutation burden samples in the dataset may prevent precise identification of

mutational signatures that are relevant in a number of low-mutation burden tumor genomes.

Additionally,  the total  number  of  mutations  found in  tumors also  depends on sequencing

depth and sample quality, which are important sources of variability in the analysis of clinical

specimens  (32). To circumvent this problem, it may be desirable to level the weight of all

samples in the dataset. This can be achieved by sample-wise mutation count normalization.

In mutSignatures, normalization is applied by setting the “approach" parameter to "freq”. 

We examined the signatures extracted with or without counts normalization from the TCGA

Bladder  Cancer  dataset  (n=395;  median SNV per  genome,  m=224,  supplementary  figure

S1A),  which  includes  a  single  tumor  with  hyper-mutator  phenotype  (case  id:  TCGA-DK-

A6AW-01;  total  number  of  SNV,  n=4455).  Our  analyses  using  normalized  counts  were

insensitive to the hyper-mutator outlier, and returned 4 signatures matching those previously

identified in bladder tumors, namely COSMIC signatures 1, 2, 5, and 13 (figure 2A, and (11)).

Conversely,  the  results  obtained  using  raw mutation  counts  as  input  showed  a  different

signature, matching the mutation profile of the hyper-mutator sample (figures 2A, 2B, and

supplementary figure S2), and this prevented the correct identification of other signatures,

specifically signatures COSMIC 1 and 5 (figure 2B). Tumors with hyper-mutator phenotype

were  found  in  different  TCGA datasets,  showing  consistent  mutational  profiles  (COSMIC

signature 10, figure 2C). Analysis of these datasets revealed similar disruptions in signature

identification when raw mutation counts were used instead of normalized counts from the

Breast  Carcinoma  (BRCA),  the  Cervical  Squamous  Cell  Carcinoma  and  Endocervical

Adenocarcinoma  (CESC),  and  the  Stomach  Adenocarcinoma  (STAD)  datasets

(supplementary figure S3). Nevertheless, mutation count normalization successfully identified

COSMIC 10-like signatures in a number of TCGA cohorts where the hyper-mutator phenotype
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occurred more frequently (Rectum, READ; Colon, COAD; and Endometrial,  UCEC cancer

datasets, supplementary figure S3). 

Deconvolution of mutation counts against known mutational signatures

Computing exposures when mutational signatures are known means solving the  V ≈W ×H

equation when both V and  W are known and  H is  unknown. Our framework solves this

nonnegative  least  square  linear  problem  via  a  custom  implementation  of  the  fast

combinatorial  strategy proposed by  Van Benthem  (33).  Imputed signature  exposures are

returned as  a  mutSignExposures object.  Removal  of  under-represented signatures  is  not

automatically  applied.  The  deconstructSigs  R  package  (26) is  dedicated  to  this  kind  of

analysis,  and returned overlapping results when compared to our method (supplementary

figure S4), with our approach being about 50 times faster than deconstructSigs. Recently, the

strategy of using our mutSignatures package for de novo signature extraction alongside with

deconstructSigs for mutation counts deconvolution has been successfully implemented (34). 
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RESULTS

Extraction of mutational signatures from smoking-related cancers

A link between DNA mutational signatures and tobacco consumption was reported before

(16,17,35), showing that tumors from smokers had higher mutation burden compared to non-

smokers, and that prevalent mutational signatures in smoking-related cancers were COSMIC

signatures 4, 5 (16,35), as well as the APOBEC-associated signatures (COSMIC signatures 2

and  13)  (35-37).  Here  we  used  the  mutSignatures framework  to  extract  tri-  and  tetra-

nucleotide mutational signatures from the lung adenocarcinoma (LUAD) TCGA dataset, and

analyzed correlations with other molecular or clinical parameters. Samples with at least 50

total SNV (supplementary figure S5A) per genome and including information about survival

and tobacco smoking history were analyzed (figure 3A). We found that genomes of current or

reformed smokers had significant (t-test p-val ≤ 2.0e-13) accumulation of mutations compared

to life-long non-smokers (figure 3B).  Stage I  tumors showed statistically  (log-rank p-val  ≤

6.5e-05)  better  survival  compared  to  higher  tumor  stages  (figure  3C).  On  the  contrary,

smoking status was not indicative of clinical outcomes (supplementary figure S5B). Tri- and

tetra-nucleotide  signatures  were  extracted  from  the  418  genomes  meeting  the  inclusion

criteria. 

Comparison between tri- and tetra-nucleotide mutational signatures

Tri-nucleotide  mutational  signatures  extracted  from  the  LUAD TCGA  dataset  matched

COSMIC  signatures  1,  2,  4,  and  5  (figure  4A,  and  supplementary  figure  S6,  previously

identified in lung cancer genomes (11). Next, we examined tetra-nucleotide signatures, which

were obtained from DNA mutation types including information about the nucleotide at the 5’-

end of the standard tri-nucleotide mutations. To allow comparison with standard mutational

signatures, we aggregated frequencies of tetra-nucleotide DNA variants corresponding the

same tri-nucleotide mutation type. This operation returned a list of simplified tetra-nucleotide

signatures  that  overlapped  with  the  tri-nucleotide  mutational  signatures  derived  before

(figures  4B,  4C,  and  supplementary  figure  S6).  The  close  similarity  between  signatures

extracted via either method demonstrated the reliability of results obtained using our analytic

framework and the context-specificity of mutational signatures. A closer inspection of tetra-

nucleotide signatures confirmed the sensitivity of mutations to their flanking DNA sequences,

including not only the immediate neighboring bases, but also the second base at the 5’-end of

selected SNV. For example, signature luad_tetra_B featured a striking preference for cytosine
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upstream of C|C>A|N, as well as of T|C>A|G mutations (figure 4C, supplementary figure S6),

similar  to  previous  reports  (17).  Therefore,  our  observations  supported  that  the  study  of

extended  mutation  types (such as  tetra-nucleotide  mutations)  could  carry  more  complete

information and provide insights in the biology underlying DNA mutagenesis in cancer.

Mutational signature Exposures in LUAD TCGA genomes

We analyzed the tri-nucleotide mutational signature exposures across lung cancer samples.

Signature exposures indicate how many mutations are the consequence of each mutational

signature in each sample (figure 5A). Analysis of signature exposures revealed two groups in

the data: i) tumors enriched in luad_B signature, usually having high mutation burden (group

1); and ii) tumors depleted in  luad_B signature, usually featuring low total number of DNA

mutations (group 2). Analysis of relative exposures (exposures normalized by total number of

mutations in the genome) showed that the luad_C signature was enriched in group 2 samples

(figure 5A). 

We computed  Spearman correlation between relative signature exposures (figure 5B), and

confirmed our previous observations.  The pairs of  signatures with the lowest Spearman’s

coefficient were signatures A and B (Rho=-0.582), and signatures B and C (Rho=-0.599),

while  signatures  A  and  C  were  uncorrelated  (Rho=-0.047).  Negative  correlations  among

mutational signatures were anticipated because of the constraint that relative exposures had

to sum up to unity, but the observed Rho values were significantly lower compared to those

expected  according  to  Monte  Carlo  simulations  (p<0.005,  supplementary  figure  S7A).  In

addition, we quantile-discretized and examined relative exposures to signatures B and C, and

found that tumors were more likely to have high contribution of one or the other signature

rather than intermediate exposure of both of them (figure 5B). 

Notably, these two signatures matched signatures COSMIC 4 and 1, respectively (figure 4A).

COSMIC 4 was proposed to originate after the activity of cigarette smoke carcinogens, while

COSMIC  1  was  associated  to  spontaneous  deamination  of  5-methylcytosine.  Our

observations  suggested  that  these  two  signatures  and  the  corresponding  mutational

processes had a tendency to occur in mutual exclusive fashion in lung adenocarcinoma. 

Mutational signatures and clinical parameters

We further analyzed mutational signatures and their associations with molecular and clinical

parameters. First,  we compared mutational signatures and mutation burden. In agreement
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with what observed before, we found that signature luad_B was significantly enriched in high

mutation burden genomes (Kendall’s  rank correlation test,  tau = 0.4563,  p-val  < 2.2e-16,

figure 6A), and that the relative contribution of signature luad_C was higher in low mutation

burden samples (Kendall’s rank correlation test, tau = -0.6240, p-val < 2.2e-16, figure 6B). 

Next, we tested whether mutational signatures were prognostic of patient clinical parameters.

We could not find any correlation between mutational signatures and overall patient survival

(supplementary figure S7B). However, we tested whether signatures luad_B and luad_C were

significantly  correlated  with  other  clinical  features,  especially  patient  smoking  status.  Our

analyses revealed that exposures to signature luad_B were increased (t-test, p-val < 3.4e-10)

in  tumors  from  smokers  (both  current  and  reformed,  figure  5C).  Conversely,  relative

exposures to signature luad_C was increased in life-long non-smokers (t-test, p-val < 6.7e-6,

figure 5D). To validate our conclusions, we examined the association between  luad_B and

luad_C mutational  signatures  and  clinical  features  in  a  different  smoking-related  cancer

dataset. We analyzed the Head and Neck Squamous Cell Carcinoma (HNSC) because the

mutational  signatures identified in  this  dataset  using the  WTSI  MATLAB framework  were

similar to those detected by COSMIC in lung adenocarcinoma. We deconvoluted mutation

catalogs from the HNSC TCGA dataset (n=511) against the four signatures extracted from

LUAD TCGA (luad_A,  luad_B,  luad_C,  and  luad_D).  Next,  we  assessed  the  association

between smoking status and relative exposures.  In  agreement with  our  observations,  we

found that signature luad_B was significantly higher in genomes of smoking HNSC patients

(figure  6E;  t-test,  non-smokers  vs.  smokers,  p-val<3.4e-06),  while  relative  exposures  to

signature luad_C were higher in head and neck tumors from non-smoking patients (figure 6F;

t-test, non-smokers vs. smokers, p-val<2.6e-05).

Our results showed that  mutSignatures supported the characterization of genetic instability

mechanisms active in lung adenocarcinoma, and revealed mutational signatures that were

strongly associated with specific molecular and clinical parameters, such as mutation burden,

and  patient  smoking  history.  Likewise,  similar  analyses  may  enable  prediction  of  other

signature-associated  clinical  parameters,  for  example  response  to  selected  anticancer

therapies, and ultimately support gathering insights into tumor biology and treatment.
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DISCUSSION

Identifying the molecular mechanisms driving tumor initiation and progression is crucial  in

cancer research and therapeutics. The study of DNA mutational signatures is an emerging

area of cancer genomics that can help understanding what mechanisms are responsible for

the accumulation of somatic mutations found in tumors. Here, we introduced mutSignatures, a

software supporting extraction and analysis of DNA mutational signatures. Our framework is

written  in  R  (https://www.r-project.org/),  a  free  statistical  programming  environment,  and

aligns  to  the  standards  set  by  the  WTSI  MATLAB framework  by  Alexandrov  et  al  (12).

Moreover, our software includes tools for mutation data import and preparation, mutational

signature extraction and analysis via non-negative matrix factorization, and data visualization.

Compared  to  the  original  WTSI  framework  and  other  available  software,  mutSignatures

includes new functionalities that address some of the current methodological limitations. For

example, our framework is compatible with non-human genomes, can extract and analyze

non-standard mutation types, and enables built-in sample-wise mutation count normalization.

Moreover,  mutSignatures can be easily streamlined with existing R libraries and R-based

genomic analytic pipelines.

Here, we used mutSignatures to extract and analyze mutational signatures from TCGA lung

adenocarcinoma  genomes  and  other  datasets.  We  successfully  identified  mutational

signatures matching those previously reported by COSMIC in the same types of cancer. For

the first  time, we extracted tri-  and tetra-nucleotide mutational  signatures using the same

algorithm. Our characterization revealed a great similarity between signatures obtained using

standard or non-standard mutation types, confirming the reliability of the analytical approach

implemented in our R framework, as well as the nucleotide-context specificity of mutational

signatures. Our results showed that DNA mutations are highly sensitive to their nucleotide

context, which is not solely limited to the immediate flanking bases but extends further. This

provides rationale for the study of non-standard extended (more than 3 nucleotides) mutation

types, a kind of analysis that is supported by mutSignatures.

Finally,  we  analyzed  correlations  between  mutational  signatures  found  in  lung

adenocarcinoma  samples,  and  other  clinical  and  molecular  features.  We  identified  two

signatures, namely  luad_B and  luad_C, which were inversely correlated. Signature  luad_B

was increased in tumors from smokers and correlated with high mutation burden. Conversely,

signature luad_C was enriched in tumors from life-long non-smokers, and correlated with low

mutation  burden.  These  two  signatures  may  be  the  consequence  of  mutually-exclusive
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mutational processes resulting in the incorporation of DNA mutations in lung cancer cells from

smoking  and  non-smoking  patients,  respectively.  Similarly,  mutational  signature  analyses

could reveal correlations with other molecular or clinical parameters, such as expected clinical

course, or patient response to specific anti-cancer drugs.

In  conclusion,  we  presented  mutSignatures,  an  R  package  for  analysis  of  mutational

signatures.  Our  software  can be used for  the  identification  of  mutational  determinants  of

cancer, supports the analysis of signature-associated molecular and clinical features, and has

the potential of revealing insights into tumor biology and treatment.

AVAILABILITY

The latest version of mutSignatures (version 2.0.1) is available on CRAN or at the following

URL:  https://github.com/dami82/mutSignatures.
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Figures

Figure 1. Schematic of mutSignatures Modules. Diagram summarizing the three modules of

the  mutSignatures framework. Module 1 is aimed at importing and preparing mutation data

from VCF files or other sources. A  DBGenome object is required for  computing mutation

types.  Analytic  parameters are set  before running NMF.  Module 2 is  aimed at  extracting

mutational  signatures  by  NMF,  or  computing  signature  exposures via  the  fcnnls function.

Module 3 includes functions for comparing mutational signatures and data visualization. A

summary of Input/Output (I/O) objects is shown.
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Figure  2.  Mutational  signatures  identified  in  Bladder  Cancer  Genomes.  (A)  Heatmaps

showing similarity between COSMIC signatures and mutational signatures that were de novo

extracted from the TCGA bladder cancer dataset. Mutational signatures were identified using

normalized (top heatmap) or raw (bottom heatmap) mutation counts. Cosine distances across

signatures were computed, and displayed by color intensity. The yellow arrow indicates a

signature that was specifically extracted when raw mutation counts were used as input. (B)

Exposures to mutational signatures extracted from raw mutation counts. A limited number

(n=30) of TCGA bladder cancer samples with the highest mutation burden is displayed. Each

bar represents a tumor and the vertical axis denotes the number of mutations imputed to each

signature (highlighted by colors). The leftmost bar of the plot (yellow bar) corresponds to the

hyper-mutator  sample  (TCGA-DK-A6AW-01).  (C)  Barplots  summarizing  the  mutational

profiles of the sample (TCGA-DK-A6AW-01) and mutational signatures (blca_count_1, and

COSMIC #10) corresponding to the hyper-mutator phenotype in cancer. Mutation types were

grouped by SNV. 
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Figure  3.  Mutational  landscape  of  Lung  Adenocarcinoma.  (A)  Diagram summarizing  the

sample inclusion criteria applied for the analysis of the LUAD TCGA dataset. Patients with

both survival and tobacco consumption information, and including at least 50 SNV in their

genome were analyzed (n=418). Samples were used for tri- and tetra-nucleotide signature

extraction.  Pie  charts  summarize  the  distribution  of  smoking status  and prognosis  in  the

included  patients.   (B)  Violin  plot  showing  the  distribution  of  total  number  of  mutations

detected in  LUAD cancer  genomes according  to  the  patients’  smoking status.  Blue  dots

indicate the median values; blue segments indicate the range spanning from the first to the

third quartile. Groups were compared by t-test. (C) Plot comparing survival of LUAD cancer

patients according to tumor stage (I to IV). Groups were compared by log-rank test. Three

asterisks (***) indicate p-value less than 1e-4 for the labelled group compared to all others.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992826
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

C

C
O

S
M

IC
 #

2

C
O

S
M

IC
 #

4

C
O

S
M

IC
 #

1

C
O

S
M

IC
 #

5

Tr
i-

n
u

cl
eo

ti
d

e
s

ig
n

a
tu

re
s

luad_A

luad_B

luad_C

luad_D

COSMIC
signatures B

lu
ad

_t
et

ra
_A

Tr
i-

n
u

cl
e

o
ti

d
e

si
g

n
at

u
re

s

luad_A

luad_B

luad_C

luad_D

Tetra-nucleotide
signatures

lu
ad

_t
e

tr
a_

B

lu
ad

_t
e

tr
a_

C

lu
ad

_t
et

ra
_D

Cosine
Distance

0.00

0.25

0.50

0.75

1.00

5’- A
5’- C
5’- G
5’- T

luad_B

luad_tetra_B
(simplified)

0.12

0.06

0.00

0.12

0.06

0.00F
ra

ct
io

n 
of

 V
a

ria
nt

s
Figure 4

A

5’- A
5’- C
5’- G
5’- T

0.12

0.06

0.00

0.12

0.06

0.00F
ra

ct
io

n 
of

 V
ar

ia
nt

s luad_C

luad_tetra_C
(simplified)

C>A C>G C>T T>A T>C T>G

A
-
A

A
-
C

A
-
G

A
-
T

C
-
A

C
-
C

C
-
G

C
-
T

G
-
A

G
-
C

G
-
G

G
-
T

T
-
A

T
-
C

T
-
G

T
-
T

A
-
A

A
-
C

A
-
G

A
-
T

C
-
A

C
-
C

C
-
G

C
-
T

G
-
A

G
-
C

G
-
G

G
-
T

T
-
A

T
-
C

T
-
G

T
-
T

A
-
A

A
-
C

A
-
G

A
-
T

C
-
A

C
-
C

C
-
G

C
-
T

G
-
A

G
-
C

G
-
G

G
-
T

T
-
A

T
-
C

T
-
G

T
-
T

A
-
A

A
-
C

A
-
G

A
-
T

C
-
A

C
-
C

C
-
G

C
-
T

G
-
A

G
-
C

G
-
G

G
-
T

T
-
A

T
-
C

T
-
G

T
-
T

A
-
A

A
-
C

A
-
G

A
-
T

C
-
A

C
-
C

C
-
G

C
-
T

G
-
A

G
-
C

G
-
G

G
-
T

T
-
A

T
-
C

T
-
G

T
-
T

A
-
A

A
-
C

A
-
G

A
-
T

C
-
A

C
-
C

C
-
G

C
-
T

G
-
A

G
-
C

G
-
G

G
-
T

T
-
A

T
-
C

T
-
G

T
-
T

Freq

0.00

0.01

0.02

0.03

Freq

0.00

0.01

0.02

0.03

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992826
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Analysis of tri- and tetra-nucleotide mutational signatures extracted from the LUAD

TCGA dataset.   (A)  Heatmap examining  similarity  between  COSMIC signatures,  and  tri-

nucleotide mutational signatures that were de novo extracted from the LUAD TCGA dataset.

(B)  Heatmap comparing tri-  and tetra-nucleotide mutational  signatures that  were  de novo

extracted from the LUAD TCGA dataset. Tetra-nucleotide signatures were simplified to the

corresponding tri-nucleotide signatures by mutation type binning. Color intensity tracks with

the value of cosine distance. (C)  Barplots and heatmaps summarizing the mutational profiles

of   tri-  and tetra-nucleotide  mutational  signatures  (top:  luad_B and  luad_tetra_B;  bottom:

luad_C,  and  luad_tetra_C).  Heatmaps  are  visual  representations  of  the  tetra-nucleotide

mutational signatures, where tri-nucleotide mutation types are shown on the x-axis, and the

extra 5’-end nucleotides are shown on the y-axis. Box color intensity tracks with mutation type

frequency.  Tetra-signature simplification can be summarized as the result  of  column-wise

aggregation of tetra-nucleotide mutation frequencies as shown in the heatmaps. Simplification

returned vectors of tri-nucleotide mutation type frequency that are displayed as barplots.
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Figure  5.  Signature  Exposures  in  smokers  and  non-smokers  affected  by  lung

adenocarcinoma. A) Exposures to mutational signatures that were  de novo extracted from

LUAD TCGA. A limited number (n=40, including 20 random genomes from smokers and 20

random genomes from life-long non-smokers) of lung cancer samples are displayed. Each

bar represents a tumor and the vertical axis denotes the total  (top barplot) or the relative

(central barplot) number of mutations imputed to each signature (highlighted by colors). The

patient  smoking status key is shown below the barplots.  B) Heatmap showing  Spearman

correlation  coefficients  (Rho)  across  signature  exposures  in  the  Lung  Adenocarcinoma

dataset. Exposures to standard tri-nucleotide mutational signatures were analyzed. Yellow

boxes correspond to positive correlations; blue boxes indicate pairs of signatures that are

inversely correlated. C) Heatmap highlighting the distribution of exposures to luad_B (y-axis)

and luad_C (x-axis) signatures in LUAD TCGA genomes. Exposures to both signatures were

tertile-discretized (low, medium, and high), and then orthogonally analyzed. Tumors belonging

to each of the 9 possible groups were counted. Color intensity tracks with number of patients.

Yellow arrows indicate the two groups with the highest patient count, which corresponded to

tumors with high exposure to one signature and low exposure to the other. 
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Figure 6. Correlation among mutational signatures, mutation burden, and smoking status in

lung adenocarcinomas. A, B) Boxplots showing relative exposure to signatures luad_B (A)

and  luad_C (B)  according  to  discretized  mutation  burden.  Mutation  burden  was  quartile-

discretized.  Correlation  between  relative  exposures  and  binned  mutation  burden  was

computed by Kendall’s rank correlation test. Kendall’s coefficients (tau) were tau=0.4563 (p-

val  <  2.2e-16)  for  luad_B signature  (A),  and  tau=-0.6240  (p-val  <  2.2e-16)  for  luad_C

signature (B). C, D) Boxplots showing relative exposure to signatures luad_B (C) and luad_C

(D) in LUAD genomes according to patient smoking status. Groups were compared by t-test.

E, F) Boxplots showing relative exposure to signatures luad_B (E) and luad_C (F) in HNSC

genomes  according  to  patient  smoking  status.  Groups  were  compared  by  t-test.  Three

asterisks (***) indicate p-val less than 1e-4. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992826
http://creativecommons.org/licenses/by-nc-nd/4.0/

