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Abstract

Adversarial examples are carefully crafted input patterns that are surprisingly poorly classified by

artificial and/or natural neural networks. Here we examine adversarial vulnerabilities in the processes

responsible for learning and choice in humans. Building upon recent recurrent neural network models of

choice processes, we propose a general framework for generating adversarial opponents that can shape

the choices of individuals in particular decision-making tasks towards the behavioural patterns desired

by the adversary. We show the efficacy of the framework through two experiments involving action

selection and response inhibition. We further investigate the strategy used by the adversary in order

to gain insights into the vulnerabilities of human choice. The framework may find applications across

behavioural sciences in helping detect and avoid flawed choice.

Introduction

Advertisers, confidence tricksters, politicians and rogues of all varieties have long sought to manipulate our

decision-making in their favour, against our own best interests. Doing this efficiently requires a character-

ization of the processes of human choice that makes good predictions across a wide range of potentially

unusual inputs. It therefore constitutes an excellent test of our models of choice (Dan & Loewenstein, 2019).

We have recently shown that recurrent neural network (RNN) models provide accurate, flexible and infor-

mative treatments of human decision-making (Dezfouli, Morris, Ramos, Dayan, & Balleine, 2018; Dezfouli,

Ashtiani, et al., 2019; Dezfouli, Griffiths, Ramos, Dayan, & Balleine, 2019). However, how well these RNNs

can interpolate and extrapolate outside the range of conventional inputs, and then the insights they can

offer into human choice frailty, are unclear. To examine these issues, we require a systematic way of (a)

finding the vulnerabilities in models of choice; and (b) proving that, and how, these vulnerabilities are also

exhibited by humans. Here, we provide a general framework for doing this (Figure 1) based on RNNs fitted

to behavioural data.

One line of systematic study of the first question started in image classification, with seminal early

observations from Szegedy et al (Szegedy et al., 2013) that deep artificial neural networks are brittle to

adversarial change in inputs that would otherwise be imperceptible to the human eye. This computer

vision weakness of the machine has been an angle of attack to design adversaries for reinforcement-learning

agents (Lin et al., 2017), followed by general formal insights on adversarial reinforcement learning on the

more classical bandit settings (Jun, Li, Ma, & Zhu, 2018). To analyse human choice frailty, our framework

involves two steps, the key one also involving a machine-vs-machine adversarial step in which a (deep)

reinforcement-learning agent is trained to be an adversary to an RNN; this latter model is trained in a

previous step to emulate human decisions following (Dezfouli et al., 2018; Dezfouli, Ashtiani, et al., 2019;

Dezfouli, Griffiths, et al., 2019). This provides the general blueprint to tackling the first question. To show

the promise of this framework to answer the second question, we applied it to two decision-making tasks

involving choice engineering (Dan & Loewenstein, 2019) and response inhibition (Eisenberg et al., 2019)

and tested the resulting adversaries on human subjects to assess the biases. We show that in both tasks,

the framework was able automatically to specify adversarial inputs which were effective in steering choice

processes to favour particular target actions. We further used simulations in order to illustrate and interpret

the strategies used by the adversaries.

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992875doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992875
http://creativecommons.org/licenses/by-nc/4.0/


The adversarial framework

The interaction of the subjects with the task is shown in Figure 1a. On each trial t, subject (n) receives what

we call the learner reward (rnt−1) delivered by their previous action (ant−1) and observes the current state of

the task (ont ; e.g., cues on a computer screen). They then take an action, ant . The process then repeats with

the subjects receiving the learner reward of the action chosen (rnt ) and the next observation (i.e., ont+1).

In the non-adversarial case, learner rewards and observations are typically generated by a particular,

pre-defined Markov decision process. For instance, actions might lead to learner rewards with certain fixed

probabilities. By contrast, in our case, an adversarial model operates behind the scenes, deciding the learner

reward of each action and the next observation that will be shown to the subject. To avoid triviality,

adversaries work within budget constraints, which might limit or equalize per action the total number of

learner rewards that the adversary could deliver. Within such constraints, the adversary faces a sequential

decision-making problem to pick the learner rewards and observations that will shape subjects’ behaviours

over the long run according to the target pattern, e.g., will lead them to prefer a certain action over the

others or to take incorrect actions in certain situations.

We modelled the adversary using a reinforcement-learning (RL) agent. On each trial, the agent receives

the learning history of the subject as input, and produces as output the learner reward and the next observa-

tion to be delivered to the subject. In RL terms, the learning history of the subjects constitutes the state of

the agent, and its actions are the learner reward and the observation inputs for the subjects. The immediate

adversarial reward for the agent reflects whether its output made the subjects meet the target behaviour.

Within this structure, the adversary is trained to earn the maximum sum adversarial reward over the whole

task, corresponding to producing outputs which most effectively push the subjects towards target actions.

In principle, the adversary could be trained through direct interactions with humans. In practice, however,

this approach is infeasible given the delays of interacting with humans and the large number of training

samples required. Instead, we use an alternative approach based on recent RNN models of human choice

processes (Dezfouli et al., 2018; Dezfouli, Ashtiani, et al., 2019; Dezfouli, Griffiths, et al., 2019). Here, an

RNN, called the learner model is trained from data collected from humans playing the task non-adversarially,

and is then used to predict human behaviour under the different inputs that the adversary might try. RNNs

are suitable because they provide a flexible differentiable family of models which are able to capture human

choice processes in detail. Our approach has two additional advantages over training the adversary against

humans: first, it can be carried out in settings where substantial training data (non-adversarial) already

exists; second, our approach comes at the reduced human cost of just modelling the human behaviour for

the non-adversarial task, which can then be used as input for diverse adversarial training scenarios.

Learner model

In detail, the learner model (Figure 1b; determined by parameters Θ) comprises an RNN and a softmax

layer which maps the RNN internal state to a probability of selecting each action (Dezfouli, Griffiths, et al.,

2019). On trial t for subject n, the RNN layer has an internal state denoted by vector xnt−1, which reflects

the RNN’s inputs up to that trial. This state is then updated on each trial based on the previous action

(ant−1) and learner reward (rnt−1), the current observations (ont ), and, via recurrence, the internal state (xnt−1).

The output of the RNN layer xnt is passed to a softmax layer to predict the next action (i.e., πt(·)). The

prediction is compared with the subject’s actual action ant , resulting in loss L(Θ) that is used for training

the network. See Material and methods for more details.

Training the adversary

The adversary is modelled as an agent which delivers learner rewards and observations on each trial, with

the goal of maximising target behaviours subject to constraints. Since the agent’s choices on one trial can

affect all the subsequent actions of the learner, the agent faces a sequential decision-making problem, which

we address in an RL framework (Figure 1c).

The future actions of the learner after trial t depend on its prior history only through its internal state

xmt (for simulated learner m). Therefore, the RL agent uses xmt as the state of the environment to decide

the learner reward rmt and next observation omt+1 that it provides to the learner model. The process repeats

with the new state of the learner model (xmt+1) being passed to the adversary. Within this structure, the

policy of the agent in choosing learner rewards and observations is trained to yield maximum cumulative

adversarial reward subject to constraints. We used the advantage actor-critic method (A2C) (Mnih et al.,

2016) and deep Q-learning (DQN) (Mnih et al., 2015) for training the RL agent. See Material and methods

for more details on training and the constraints.

Along with this dynamic or closed-loop adversary, which is guided by the past actions of the subject (via

the internal state of the RNN model), we also consider a static or open-loop adversary. This chooses learner
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rewards and observations without receiving the subject’s actions. Its policy is trained just as above, using

samples generated from the learner model.

Using the adversary

Figure 1d depicts how the trained dynamic adversary and the learner model are used in an experiment

involving human subjects. The learner model does not choose actions, but receives the actions made by

subject n as input, and tracks their learning history using xnt . In turn, on trial t, xnt is received by the

adversary to determine the learner reward rnt and the next observation ont+1 which the subject will use to

choose their next action ant+1. The same input, along with the actual action and learner reward, is delivered

to the learner model. This cycle continues until the end of the task.
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xn
t

<latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit><latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit><latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit><latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit>

⇡n
t (.)

<latexit sha1_base64="RgWkTRlzzao0zm84HdGe2iT/Tcs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSrUS0lE0GPBi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh24ievioKtXzXqnsVt0ZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TMKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR9dyqd3dZrp3mcRTgGE6gAh5cQQ1uoQ4NYKDgGV7hzTHOi/PufMxbV5x85gj+wPn8AY8ekBM=</latexit><latexit sha1_base64="RgWkTRlzzao0zm84HdGe2iT/Tcs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSrUS0lE0GPBi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh24ievioKtXzXqnsVt0ZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TMKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR9dyqd3dZrp3mcRTgGE6gAh5cQQ1uoQ4NYKDgGV7hzTHOi/PufMxbV5x85gj+wPn8AY8ekBM=</latexit><latexit sha1_base64="RgWkTRlzzao0zm84HdGe2iT/Tcs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSrUS0lE0GPBi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh24ievioKtXzXqnsVt0ZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TMKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR9dyqd3dZrp3mcRTgGE6gAh5cQQ1uoQ4NYKDgGV7hzTHOi/PufMxbV5x85gj+wPn8AY8ekBM=</latexit><latexit sha1_base64="RgWkTRlzzao0zm84HdGe2iT/Tcs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSrUS0lE0GPBi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh24ievioKtXzXqnsVt0ZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TMKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHlR9dyqd3dZrp3mcRTgGE6gAh5cQQ1uoQ4NYKDgGV7hzTHOi/PufMxbV5x85gj+wPn8AY8ekBM=</latexit>

ant
<latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit><latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit><latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit><latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit> Task

b)

n
<latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit><latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit><latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit><latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit>

c)

d)

Sbj

ont
<latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit>

Adversary (RL)

Learner 
(RNN)
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ont
<latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit>

rnt�1
<latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit><latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit><latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit><latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit>
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xm
t�1

<latexit sha1_base64="t1qQAXnGLbR0JkLiLslOs2zribw=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP8huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjNOQIg==</latexit><latexit sha1_base64="t1qQAXnGLbR0JkLiLslOs2zribw=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP8huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjNOQIg==</latexit><latexit sha1_base64="t1qQAXnGLbR0JkLiLslOs2zribw=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP8huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjNOQIg==</latexit><latexit sha1_base64="t1qQAXnGLbR0JkLiLslOs2zribw=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP8huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjNOQIg==</latexit>

amt�1
<latexit sha1_base64="g7G7k9cYdSlP4WxnzadSnnsQKV8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHaT+QCw==</latexit><latexit sha1_base64="g7G7k9cYdSlP4WxnzadSnnsQKV8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHaT+QCw==</latexit><latexit sha1_base64="g7G7k9cYdSlP4WxnzadSnnsQKV8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHaT+QCw==</latexit><latexit sha1_base64="g7G7k9cYdSlP4WxnzadSnnsQKV8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHaT+QCw==</latexit>

rmt�1
<latexit sha1_base64="PCl8/GRyuMZ7U7YVmPAUlsG6bgc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHg4uQHA==</latexit><latexit sha1_base64="PCl8/GRyuMZ7U7YVmPAUlsG6bgc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHg4uQHA==</latexit><latexit sha1_base64="PCl8/GRyuMZ7U7YVmPAUlsG6bgc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHg4uQHA==</latexit><latexit sha1_base64="PCl8/GRyuMZ7U7YVmPAUlsG6bgc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHmWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHg4uQHA==</latexit>

omt
<latexit sha1_base64="eJVDml3DVU0aTs8Q6TY7yc32j+M=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpFfcynD6qXrniV/05yCoJclKBHPVe+avbj1mquEYmqbWdwE8wzKhBwSSflrqp5QllYzrkHUc1VdyG2fzcKTl3Sp8MYuNKI5mrvycyqqydqMh1Kooju+zNxP+8ToqDmzATOkmRa7ZYNEglwZjMfid9YThDOXGEMiPcrYSNqKEMXUIlF0Kw/PIqaV5WA78a3F9Vamd5HEU4gVO4gACuoQZ3UIcGMBjDM7zCm5d4L96797FoLXj5zDH8gff5A6G9j6c=</latexit><latexit sha1_base64="eJVDml3DVU0aTs8Q6TY7yc32j+M=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpFfcynD6qXrniV/05yCoJclKBHPVe+avbj1mquEYmqbWdwE8wzKhBwSSflrqp5QllYzrkHUc1VdyG2fzcKTl3Sp8MYuNKI5mrvycyqqydqMh1Kooju+zNxP+8ToqDmzATOkmRa7ZYNEglwZjMfid9YThDOXGEMiPcrYSNqKEMXUIlF0Kw/PIqaV5WA78a3F9Vamd5HEU4gVO4gACuoQZ3UIcGMBjDM7zCm5d4L96797FoLXj5zDH8gff5A6G9j6c=</latexit><latexit sha1_base64="eJVDml3DVU0aTs8Q6TY7yc32j+M=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpFfcynD6qXrniV/05yCoJclKBHPVe+avbj1mquEYmqbWdwE8wzKhBwSSflrqp5QllYzrkHUc1VdyG2fzcKTl3Sp8MYuNKI5mrvycyqqydqMh1Kooju+zNxP+8ToqDmzATOkmRa7ZYNEglwZjMfid9YThDOXGEMiPcrYSNqKEMXUIlF0Kw/PIqaV5WA78a3F9Vamd5HEU4gVO4gACuoQZ3UIcGMBjDM7zCm5d4L96797FoLXj5zDH8gff5A6G9j6c=</latexit><latexit sha1_base64="eJVDml3DVU0aTs8Q6TY7yc32j+M=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpFfcynD6qXrniV/05yCoJclKBHPVe+avbj1mquEYmqbWdwE8wzKhBwSSflrqp5QllYzrkHUc1VdyG2fzcKTl3Sp8MYuNKI5mrvycyqqydqMh1Kooju+zNxP+8ToqDmzATOkmRa7ZYNEglwZjMfid9YThDOXGEMiPcrYSNqKEMXUIlF0Kw/PIqaV5WA78a3F9Vamd5HEU4gVO4gACuoQZ3UIcGMBjDM7zCm5d4L96797FoLXj5zDH8gff5A6G9j6c=</latexit>
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<latexit sha1_base64="FXjV2/Yk87xYuwq3UE60Ppr81L4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBQ8hV0R9Bjw4jGCeUCyhtnJJBkyM7vM9IphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFiRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNG6eG8TqLZWxaEbVcCs3rKFDyVmI4VZHkzWh0M/Wbj9xYEet7HCc8VHSgRV8wik5qPnUznDyobqnsV/wZyDIJclKGHLVu6avTi1mquEYmqbXtwE8wzKhBwSSfFDup5QllIzrgbUc1VdyG2ezcCTlzSo/0Y+NKI5mpvycyqqwdq8h1KopDu+hNxf+8dor96zATOkmRazZf1E8lwZhMfyc9YThDOXaEMiPcrYQNqaEMXUJFF0Kw+PIyaVxUAr8S3F2Wq6d5HAU4hhM4hwCuoAq3UIM6MBjBM7zCm5d4L9679zFvXfHymSP4A+/zB6+Xj7A=</latexit><latexit sha1_base64="FXjV2/Yk87xYuwq3UE60Ppr81L4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBQ8hV0R9Bjw4jGCeUCyhtnJJBkyM7vM9IphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFiRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNG6eG8TqLZWxaEbVcCs3rKFDyVmI4VZHkzWh0M/Wbj9xYEet7HCc8VHSgRV8wik5qPnUznDyobqnsV/wZyDIJclKGHLVu6avTi1mquEYmqbXtwE8wzKhBwSSfFDup5QllIzrgbUc1VdyG2ezcCTlzSo/0Y+NKI5mpvycyqqwdq8h1KopDu+hNxf+8dor96zATOkmRazZf1E8lwZhMfyc9YThDOXaEMiPcrYQNqaEMXUJFF0Kw+PIyaVxUAr8S3F2Wq6d5HAU4hhM4hwCuoAq3UIM6MBjBM7zCm5d4L9679zFvXfHymSP4A+/zB6+Xj7A=</latexit><latexit sha1_base64="FXjV2/Yk87xYuwq3UE60Ppr81L4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBQ8hV0R9Bjw4jGCeUCyhtnJJBkyM7vM9IphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFiRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNG6eG8TqLZWxaEbVcCs3rKFDyVmI4VZHkzWh0M/Wbj9xYEet7HCc8VHSgRV8wik5qPnUznDyobqnsV/wZyDIJclKGHLVu6avTi1mquEYmqbXtwE8wzKhBwSSfFDup5QllIzrgbUc1VdyG2ezcCTlzSo/0Y+NKI5mpvycyqqwdq8h1KopDu+hNxf+8dor96zATOkmRazZf1E8lwZhMfyc9YThDOXaEMiPcrYQNqaEMXUJFF0Kw+PIyaVxUAr8S3F2Wq6d5HAU4hhM4hwCuoAq3UIM6MBjBM7zCm5d4L9679zFvXfHymSP4A+/zB6+Xj7A=</latexit><latexit sha1_base64="FXjV2/Yk87xYuwq3UE60Ppr81L4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBQ8hV0R9Bjw4jGCeUCyhtnJJBkyM7vM9IphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFiRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNG6eG8TqLZWxaEbVcCs3rKFDyVmI4VZHkzWh0M/Wbj9xYEet7HCc8VHSgRV8wik5qPnUznDyobqnsV/wZyDIJclKGHLVu6avTi1mquEYmqbXtwE8wzKhBwSSfFDup5QllIzrgbUc1VdyG2ezcCTlzSo/0Y+NKI5mpvycyqqwdq8h1KopDu+hNxf+8dor96zATOkmRazZf1E8lwZhMfyc9YThDOXaEMiPcrYQNqaEMXUJFF0Kw+PIyaVxUAr8S3F2Wq6d5HAU4hhM4hwCuoAq3UIM6MBjBM7zCm5d4L9679zFvXfHymSP4A+/zB6+Xj7A=</latexit>
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<latexit sha1_base64="1Og/VMh2rVCAxzGotdL7977kotE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpRXsZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AYwxj5k=</latexit><latexit sha1_base64="1Og/VMh2rVCAxzGotdL7977kotE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpRXsZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AYwxj5k=</latexit><latexit sha1_base64="1Og/VMh2rVCAxzGotdL7977kotE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpRXsZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AYwxj5k=</latexit><latexit sha1_base64="1Og/VMh2rVCAxzGotdL7977kotE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpRXsZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AYwxj5k=</latexit>⇡m
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<latexit sha1_base64="aMJCCHQRZvOUCG+5k1b6vRom4Iw=">AAAB83icbVBNS8NAEN3Ur1q/qh69LFahXkIigh4LXjxWsB/QxLLZbtqlu5uwOxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzolRwA5737ZTW1jc2t8rblZ3dvf2D6uFR2ySZpqxFE5HobkQME1yxFnAQrJtqRmQkWCca3878zhPThifqASYpCyUZKh5zSsBKQZDyfg7TR1l3L/rVmud6c+BV4hekhgo0+9WvYJDQTDIFVBBjer6XQpgTDZwKNq0EmWEpoWMyZD1LFZHMhPn85ik+t8oAx4m2pQDP1d8TOZHGTGRkOyWBkVn2ZuJ/Xi+D+CbMuUozYIouFsWZwJDgWQB4wDWjICaWEKq5vRXTEdGEgo2pYkPwl19eJe1L1/dc//6q1jgr4iijE3SK6shH16iB7lATtRBFKXpGr+jNyZwX5935WLSWnGLmGP2B8/kDWO2RHg==</latexit><latexit sha1_base64="aMJCCHQRZvOUCG+5k1b6vRom4Iw=">AAAB83icbVBNS8NAEN3Ur1q/qh69LFahXkIigh4LXjxWsB/QxLLZbtqlu5uwOxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzolRwA5737ZTW1jc2t8rblZ3dvf2D6uFR2ySZpqxFE5HobkQME1yxFnAQrJtqRmQkWCca3878zhPThifqASYpCyUZKh5zSsBKQZDyfg7TR1l3L/rVmud6c+BV4hekhgo0+9WvYJDQTDIFVBBjer6XQpgTDZwKNq0EmWEpoWMyZD1LFZHMhPn85ik+t8oAx4m2pQDP1d8TOZHGTGRkOyWBkVn2ZuJ/Xi+D+CbMuUozYIouFsWZwJDgWQB4wDWjICaWEKq5vRXTEdGEgo2pYkPwl19eJe1L1/dc//6q1jgr4iijE3SK6shH16iB7lATtRBFKXpGr+jNyZwX5935WLSWnGLmGP2B8/kDWO2RHg==</latexit><latexit sha1_base64="aMJCCHQRZvOUCG+5k1b6vRom4Iw=">AAAB83icbVBNS8NAEN3Ur1q/qh69LFahXkIigh4LXjxWsB/QxLLZbtqlu5uwOxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzolRwA5737ZTW1jc2t8rblZ3dvf2D6uFR2ySZpqxFE5HobkQME1yxFnAQrJtqRmQkWCca3878zhPThifqASYpCyUZKh5zSsBKQZDyfg7TR1l3L/rVmud6c+BV4hekhgo0+9WvYJDQTDIFVBBjer6XQpgTDZwKNq0EmWEpoWMyZD1LFZHMhPn85ik+t8oAx4m2pQDP1d8TOZHGTGRkOyWBkVn2ZuJ/Xi+D+CbMuUozYIouFsWZwJDgWQB4wDWjICaWEKq5vRXTEdGEgo2pYkPwl19eJe1L1/dc//6q1jgr4iijE3SK6shH16iB7lATtRBFKXpGr+jNyZwX5935WLSWnGLmGP2B8/kDWO2RHg==</latexit><latexit sha1_base64="aMJCCHQRZvOUCG+5k1b6vRom4Iw=">AAAB83icbVBNS8NAEN3Ur1q/qh69LFahXkIigh4LXjxWsB/QxLLZbtqlu5uwOxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzolRwA5737ZTW1jc2t8rblZ3dvf2D6uFR2ySZpqxFE5HobkQME1yxFnAQrJtqRmQkWCca3878zhPThifqASYpCyUZKh5zSsBKQZDyfg7TR1l3L/rVmud6c+BV4hekhgo0+9WvYJDQTDIFVBBjer6XQpgTDZwKNq0EmWEpoWMyZD1LFZHMhPn85ik+t8oAx4m2pQDP1d8TOZHGTGRkOyWBkVn2ZuJ/Xi+D+CbMuUozYIouFsWZwJDgWQB4wDWjICaWEKq5vRXTEdGEgo2pYkPwl19eJe1L1/dc//6q1jgr4iijE3SK6shH16iB7lATtRBFKXpGr+jNyZwX5935WLSWnGLmGP2B8/kDWO2RHg==</latexit>

rmt
<latexit sha1_base64="wmklrA2Ch0enxxroD8eaDWqvacQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpZXoZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaZbj6o=</latexit><latexit sha1_base64="wmklrA2Ch0enxxroD8eaDWqvacQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpZXoZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaZbj6o=</latexit><latexit sha1_base64="wmklrA2Ch0enxxroD8eaDWqvacQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpZXoZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaZbj6o=</latexit><latexit sha1_base64="wmklrA2Ch0enxxroD8eaDWqvacQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQmdllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaxhsslrFpR9RyKTRvoEDJ24nhVEWSt6Lx7cxvPXFjRawfcJLwUNGhFgPBKDqpZXoZTh9Vr1zxq/4cZJUEOalAjnqv/NXtxyxVXCOT1NpO4CcYZtSgYJJPS93U8oSyMR3yjqOaKm7DbH7ulJw7pU8GsXGlkczV3xMZVdZOVOQ6FcWRXfZm4n9eJ8XBTZgJnaTINVssGqSSYExmv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaZbj6o=</latexit>
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<latexit sha1_base64="0G6HMstBwk5YGtepg17EYbbiecE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj6JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBe9eQFw==</latexit><latexit sha1_base64="0G6HMstBwk5YGtepg17EYbbiecE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj6JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBe9eQFw==</latexit><latexit sha1_base64="0G6HMstBwk5YGtepg17EYbbiecE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj6JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBe9eQFw==</latexit><latexit sha1_base64="0G6HMstBwk5YGtepg17EYbbiecE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj6JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBe9eQFw==</latexit>

rnt
<latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit><latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit><latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit><latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit>

ont+1
<latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit><latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit><latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit><latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit>

rnt
<latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit><latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit><latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit><latexit sha1_base64="TxkoWRln1DoizzgcVd6AYa7VVEI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpowcZzh7VoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/m5M3JulSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkv5Oh0JyhnFpCmRb2VsLGVFOGNqGKDcFbfnmVtC/rnlv37q9qjbMijjKcwClcgAfX0IA7aEILGEzgGV7hzUmcF+fd+Vi0lpxi5hj+wPn8Aaffj6s=</latexit>

ont+1
<latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit><latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit><latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit><latexit sha1_base64="QqkRbtK8FGqpAzpSlgNCbnfsKpU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBqMgCGFXBD0GvHiMYB6SrGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMl7O05oKPBAspgRbJ30oHqZPQ8mj7JXrvhVfwa0TIKcVCBHvVf+6vYVSQWVlnBsTCfwExtmWFtGOJ2UuqmhCSYjPKAdRyUW1ITZ7OAJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauPrMGMySS2VZL4oTjmyCk2/R32mKbF87AgmmrlbERlijYl1GZVcCMHiy8ukeVEN/Gpwd1mpneRxFOEIjuEMAriCGtxCHRpAQMAzvMKbp70X7937mLcWvHzmEP7A+/wBfVuQGA==</latexit>

xn
t

<latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit><latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit><latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit><latexit sha1_base64="Oq3yS593UfS8ZXhGSGgC3iN4t0E=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48V7Ae0sWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2il9lM/w+mD6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVc+tene1Sv0sj6MIJ3AKF+DBFdThFhrQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCxG4+x</latexit>

ant
<latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit><latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit><latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit><latexit sha1_base64="QANM6+Hy/VTDXxfieMISwAlJcFM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPBi8cKpi20sWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px7cxvP3FtRKIecJLyIKZDJSLBKFrJp318VP1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JuVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrsu65de/+qtY4K+IowwmcwgV4cA0NuIMm+MBAwDO8wpujnBfn3flYtJacYuYY/sD5/AHHA46O</latexit>

xn
t�1

<latexit sha1_base64="oagj1cWj0sb9QzcGrbeToG5Sg24=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP6huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjleQIw==</latexit><latexit sha1_base64="oagj1cWj0sb9QzcGrbeToG5Sg24=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP6huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjleQIw==</latexit><latexit sha1_base64="oagj1cWj0sb9QzcGrbeToG5Sg24=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP6huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjleQIw==</latexit><latexit sha1_base64="oagj1cWj0sb9QzcGrbeToG5Sg24=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBW8WBIR9Fjw4rGC/ZA2ls120y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuhcQwwRWrI0fBWolmRIaCNcPh9cRvPjJteKzucJSwQJK+4hGnBK10/9TN8MwfP6huqexVvCncReLnpAw5at3SV6cX01QyhVQQY9q+l2CQEY2cCjYudlLDEkKHpM/alioimQmy6cFj98QqPTeKtS2F7lT9PZERacxIhrZTEhyYeW8i/ue1U4yugoyrJEWm6GxRlAoXY3fyvdvjmlEUI0sI1dze6tIB0YSizahoQ/DnX14kjfOK71X824ty9TiPowCHcASn4MMlVOEGalAHChKe4RXeHO28OO/Ox6x1yclnDuAPnM8fjleQIw==</latexit>

ant�1
<latexit sha1_base64="OJYIdsH1KL1P2Tu2LwKH7oelOB8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHasOQDA==</latexit><latexit sha1_base64="OJYIdsH1KL1P2Tu2LwKH7oelOB8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHasOQDA==</latexit><latexit sha1_base64="OJYIdsH1KL1P2Tu2LwKH7oelOB8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHasOQDA==</latexit><latexit sha1_base64="OJYIdsH1KL1P2Tu2LwKH7oelOB8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSA+lleO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHasOQDA==</latexit>

rnt�1
<latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit><latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit><latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit><latexit sha1_base64="/U7MOpY4w+Zn6RkKch4ICRToV9w=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BKvgxZKIoMeCF48V7Ie0sWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bG6x3HCAkkGikecErTSg+5leO5PHlWvXPGq3gzuMvFzUoEc9V75q9uPaSqZQiqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdSxWRzATZ7OCJe2qVvhvF2pZCd6b+nsiINGYsQ9spCQ7NojcV//M6KUbXQcZVkiJTdL4oSoWLsTv93u1zzSiKsSWEam5vdemQaELRZlSyIfiLLy+T5kXV96r+3WWldpLHUYQjOIYz8OEKanALdWgABQnP8ApvjnZenHfnY95acPKZQ/gD5/MHhQ+QHQ==</latexit>

ont
<latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit><latexit sha1_base64="KfurmJU7jacztuXHbUoDuNSbjNI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKoMeAF48RzAOSNcxOJsmQ2ZllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5q6V6G00fVK1f8qj8HWSVBTiqQo94rf3X7mqUxV8gktbYT+AmGGTUomOTTUje1PKFsTIe846iiMbdhNj93Ss6d0icDbVwpJHP190RGY2snceQ6Y4oju+zNxP+8ToqDmzATKkmRK7ZYNEglQU1mv5O+MJyhnDhCmRHuVsJG1FCGLqGSCyFYfnmVNC+rgV8N7q8qtbM8jiKcwClcQADXUIM7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8AaNBj6g=</latexit>

n
<latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit><latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit><latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit><latexit sha1_base64="qDP/k8jIav5my8XMIsRknwX2qGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6ueW/WatUr9Io+jCGdwDlfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/OC4zU</latexit>

Figure 1: The framework. a) The interaction of the subjects with the task. At each trial t, subject n

receives the learner reward (rnt−1) for its previous action and a new observation (ont ) from the environment,

and takes action ant . The environment then sends a new learner reward and observation back to the subject

and this cycle continues until the end of the task. b) The behaviour of the subjects is modelled by a

recurrent neural network (RNN; parameters Θ). The inputs to the RNN are the previous action (ant−1),

learner reward (rnt−1) and the current observations from the task (ont ) along with the previous internal state

of the RNN (xnt−1). After receiving the inputs, the RNN updates its internal state, which is then mapped to

a softmax layer to predict the next action πn
t (.). These predictions are then compared with the actual actions

taken by the subjects to build loss function L(Θ), which is used for training the model. The trained model

is called the learner model. c) The adversary is a reinforcement-learning (RL) agent which is trained to

control the learner model. The internal state of the learner model (i.e., xmt for simulation m) summarises its

learning history, which is received by the dynamic adversary, determining its state (State). The agent then

determines the learner reward and the next observation to be delivered to the learner model. The learner

model subsequently takes its next actions and this cycle continues. If the action taken by the learner (amt )

is aligned with the objective of the adversary, then the adversary receives an adversarial reward (Reward)

which is used to train the adversary. Static adversaries are RL agents that do not have access to the internal

state of the learner models and generates rewards and observations in an open-loop manner (not shown in the

figure). Note that action amt is not passed to the adversary, but is passed to the task to calculate the reward

that should be delivered to the agent based on the reward that the adversary has assigned to each action.

d) Using the trained adversary and the learner model for generating adversarial inputs to humans. Human

subject n receives the learner reward for their actions and the observations from the trained adversary. They

subsequently take an action (ant ) which is received by the learner model to update its internal state xnt . This

state is then sent to the adversary to determine the learner reward for the action and the next observation.

This cycle continues until the end of the task.
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Results

Bandit task

This experiment is based on the bandit task introduced in (Dan & Loewenstein, 2019). On each trial,

subjects make choices between two squares, one on the left of the screen, and the other on the right. After

each choice, the subjects receive feedback about whether (smiley face) or not (sad face) their choice was given

a learner reward. A priori, before each choice, the adversary assigns an outcome to both potential actions

(e.g., that the left action will be rewarded and the right action will not get rewarded), and this is faithfully

delivered ex post based on the subject’s choice. The goal of the adversary is to assign learner rewards to the

actions in a way that makes subjects prefer one of the actions (called the ‘target’ action) – over the other

one (the ‘non-target’ action). The target action is pre-determined (e.g., before the experiment starts the left

action is set as the target action). The adversary is required to achieve this goal under a constraint: it must

assign exactly 25 a priori learner rewards to each action, i.e., it cannot simply always assign learner rewards

to the target action and no learner reward to the non-target action.

Q-learning model

We first evaluated the framework in the synthetic setting of a Q-learning model. We generated data from a

Q-learning model (1000 agents) with the same parameters used in (Dan & Loewenstein, 2019), and used these

data to train the learner model. Then we trained the adversary RL agent to exploit the learner model. The

agent received an adversarial reward every time the learner model chose the target action. The constraint

was enforced at the task level, i.e., after the agent has allocated 25 learner rewards to an action, no more

learner rewards will be allocated to that action. Conversely, if the agent has only assigned 25 − k learner

rewards to an action by trial T − k (for k > 0, where T is the maximum trial number), that action will be

assigned a learner reward on the remaining k trials.

The trained adversary was evaluated against both the learner model and the Q-learning model. The

main dependent variable is the ‘bias’, which is the percentage of trials on which the target action was chosen

(Figure 2a). As the figure shows, the adversary was able to guide the choices towards the target action.

The average bias in playing the Q-learning model was 73.4% (ADV vs. QL column). This is similar to the

results obtained in (Dan & Loewenstein, 2019), but here the results are obtained without knowing that the

underlying model is Q-learning. The average bias when the adversary was simulated against the learner

model is 73.8% (ADV vs. LRN column), which is comparable with the results against the Q-learning model.

Next, we sought to uncover the strategy used by the adversary. Two 100 trial simulations are shown

in Figure 3a (ADV vs. Q-learning). The blue and red circles indicate that the learner model selected the

target and non-target action respectively. The vertical blue and red lines indicate that a learner reward was

assigned to the target and non-target actions respectively. No line indicates that the learner reward was not

assigned to the corresponding action. The green shaded area shows the probability the learner model awards

to the target action. The general tactic used by the adversary is to assign a few learner rewards to the target

action in the first half of the task; these few learner rewards, however, were sufficient to keep the probability

of choosing the target action around %70-80 (shown by the green area), which is because the adversary never

delivered non-target learner rewards in this period. Towards the end of the task, the adversary ‘burns’ the

non-target learner rewards whenever the probability of the target action is above chance; at the same time

the density of target learner rewards is increased to cancel the effect of non-target learner rewards. The

combination of these strategies made the learner model choose the target action around 73% of the trials.

Human subjects

We next applied the framework to develop an adversary for human choices in the task. The learner model

was trained using the (non-adversarial) data published in (Dan & Loewenstein, 2019) for N = 484 subjects.

The trained adversary and the learner model were used to collect data from humans using Amazon

Mechanical Turk (N = 157). The results are shown in Figure 2b. The bar ‘ADV vs SBJ’ shows the bias

of subjects when playing against the adversary. The average bias was 70%, which is significantly higher

than the equal selection of actions that might naively be implied by the equal numbers of learner rewards

available for each choice (50% bias baseline; Wilcoxon signed-rank test, p−value ¡ 0.001). This shows that

the adversary was successful in leading subjects to choose the target action. Figure 2b bar ‘ADV vs LRN’

shows the bias when the adversary is playing against the learner model (simulated). The average bias is

76.4%, which is better than when the adversary is pitted against human subjects. One major difference

could be the subject populations used to train versus test the adversary.

To investigate the adversary’s strategy, we again simulated it against the human-trained learner model

(Figure 3b). The adversary appears to seek to prevent subjects from experiencing the learner rewards

assigned to the non-target action, but to make them see the learner rewards assigned to the target action,

and therefore to select it. To achieve this, learner rewards are assigned to the target actions when this action
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Figure 2: The performance of the adversary (’ADV’) in the bandit experiment against various opponents.

’bias’ is the percentage of target actions selected by the opponent in response to learner rewards assigned

by the adversary; error-bars represent 1SEM. Each black dot represents one simulation. a) ADV against

an actual Q-learner (’QL’; red) or the learner model trained on Q-learners (’LRN’; blue). b) ADV against

human subjects (’SBJ’: red) or the learner model trained on other human subjects from (Dan & Loewenstein,

2019) (’LRN’: blue). Horizontal dashed lines represent equal selection of actions.

is likely to get selected in the next trial, but for the non-target action, learner rewards are assigned when

this action is unlikely to get selected.

Some of the tactics the adversary employs are evident in these simulations. In the top panel in Figure 3b,

the adversary starts by continuously assigning learner rewards to the target action. Once the subject was set

on choosing the target action, learner rewards are assigned to the non-target action to ‘burn’ them without

subjects noticing. A second tactic is using partial reinforcement after the initial serial learner reward delivery

on the target action (shown by the dashed horizontal line above the panel). This saves target learner rewards

for later while not materially affecting choice probabilities. A third tactic is applied when the learner model

takes a non-target action, as shown by the vertical arrow on the panel; here the adversary briefly increases

target learner reward density to bring the subject back to choosing the target action.

The second simulation (bottom panel in Figure 3b) shows a more complex strategy which allows to

‘discretely’ spend the non-target rewards. In the period indicated by the horizontal dashed arrow, the

learner tends to take a target action (blue circle) after each non-target action (the red circle). This pattern

of behaviour is detected by the adversary and exploited by assigning a learner reward to each non-target

action after each selection of the non-target action. This efficiently hides non-target learner rewards from

the subjects. Altogether, such tactics substantially bias the subjects towards the target action.

Across the two experiments, it is evident that the strategy used against humans is quite different from

the strategy used against Q-learning. Indeed, if we apply the human adversary against a Q-learning model,

the average bias will be 55.2 and if we apply the adversary developed for Q-learning to humans (on a learner

model trained using human data) the average bias will be 58.1 (Figure S1). These differ markedly from the

biases reported when the adversaries play against their corresponding learner models.

Go/No-go task

Our second experiment involved the go/no-go task as implemented in (Eisenberg et al., 2019). On each of

350 trials, subjects see either a go stimulus (e.g., a blue circle) or a no-go stimulus (e.g., an orange circle).

Go stimuli are common (%90 of trials) and subjects are required to press the space bar in response to

them. No-go stimuli are rare and require subjects to withhold responding. In the non-adversarial case, no-go

stimuli are uniformly distributed across trials. By contrast, the adversary rearranges the no-go stimuli to

encourage the largest number of mistakes (i.e., pressing space bar to no-go stimuli, or withholding responding

to go stimuli), without changing the number of each stimulus type. Similar to the previous experiment, the

constraint (exactly 90% of trials should be no-go) is enforced by fiat at the task level.

There are two differences between this experiment and the bandit experiments. First, the adversary

determines observations (go vs. no-go) rather than learner rewards. Second, we considered an open-loop

adversary – i.e., one that did not receive the state information xnt on trial t; and indeed knew nothing about

what how the particular subject responded.

We started by training the learner model using the data generated in the random case (N = 770 subjects

collected using Amazon Mechanical Turk were included in the analysis). Next, we trained the adversary

using the learner model, but unlike the previous experiment, the adversary did not receive the state of the

learner model. The trained adversary was then used to collect data from humans using Amazon Mechanical

Turk (N = 139). The results are shown in Figure 4a. Subjects on average made 11.7 errors when playing

against the adversary and 9.5 errors when no-go trials are distributed randomly (Wilcoxon rank-sum test;

p < 0.001). Therefore the adversary was successful in finding a state distribution which induces at least a

modest number of extra errors.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992875doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992875
http://creativecommons.org/licenses/by-nc/4.0/


b) Adversary versus subjects

a) Adversary versus Q-learning
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Figure 3: Simulations of the adversarial interactions over 100 trials in the bandit task. Blue and red circles

indicate the selection of the target and non-target actions respectively. Vertical blue and red bars indicate

the assignment of learner rewards to target and non-target actions respectively. The green area shows the

probability the learner model accords to the target action. a) Two simulations of the adversary against a

Q-learning model. b) Simulations of the adversary against the learner model trained using human behaviour.

Solid and dashed arrows refer to the trials mentioned in the main text.
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Figure 4: Adversarial strategy in the go/no-go task. a) The number of errors made by the subjects when

no-go trials are delivered at random (‘SBJ vs ADV’) and when no-go trials are delivered by the adversary

(‘SBJ vs ADV’). b) The distribution of the go trials over the task period delivered by the adversary. c)

Percentage of the correct responses by the subjects in go and no-go trials when the no-go trials are delivered

at random. d) A sample simulation. Blue triangles indicate no-go trials. The red shapes indicate the

probability of pressing the key by the learner model. Error-bars represent 1SEM.
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To elucidate the adversary’s strategy, Figure 4b shows the ratio of go trials across the task. The adversary

allocates more no-go trials towards the end of the task. This may be since subjects (in the training data

in which the no-go trials were randomly distributed) were more likely to make errors in the no-go condition

later in the task (Figure 4c). However, it is a challenging task, since assigning all the no-go condition in a

short period at the end of the task will likely have the opposite effect, since the subjects will have to stay

alert only in a short period, and therefore a trade-off between these factors is required.

Figure 4d shows an example simulation. Blue triangles indicate no-go trials and red symbols indicate the

probability of pressing the key (space bar) according to the learner model. Consistent with the data, the

probability of making an error in the no-go trials increases over trials; thus the adversary spread the no-go

trials across the task with a bias towards the end of the task to induce more errors.

Discussion

We provided a general framework for generating adversarial models to elicit target behaviour in a wide

variety of human choice processes. Two experiments showed that the framework is effective in inducing

target behaviours and also interpretable using simulations.

Cognitive biases

The strategies used by the adversarial models are driven by the choice characteristics embedded in the

structure and weights of the learner model. Such choice characteristics can be seen as distilled, implicit,

generalisations of the traditional cognitive biases (Tversky & Kahneman, 1974); and are what the adversary

learns to exploit.

Experiment design

Although we considered one-step adversarial scenarios, in principle the same framework can be used for

multi-step experimental design (see also (Bak, Choi, Akrami, Witten, & Pillow, 2016)). Say, for example,

that an experimenter desires the subjects to exhibit a specific pattern of behaviour, but the experimental

parameters (e.g., probabilities, delays, etc) that yield the pattern are unknown. Following the framework

here, the experimenter can train a learner model and use that model to train an RL agent to develop a static

adversary which determines the optimal set of parameters for obtaining the desired behaviour. The obtained

parameters then can be tested to see whether they make the subjects exhibit the desired behaviour; if they

did not, the learner model can be re-trained using the new dataset and this process can be iterated until the

desired behaviour is obtained. We conjecture that the procedure will often converge.

Batch reinforcement-learning

An alternative to the framework developed here is using batch reinforcement-learning algorithms, which

are able to learn from a pre-collected dataset without interacting with the environment (Lange, Gabel, &

Riedmiller, 2012). One advantage of the current approach over these methods is that the policy of the

adversary can be interpreted with respect to the behavioural of the learner model which has been used to

train the adversary.

Limitations

An assumption in the current framework is the generalisation of the predictions of the learner model from non-

adversarial regimes to the adversarial regimes. The violation of this assumption implies that the adversary

pushes the learner model in the parts of the state-space which have not been visited in the non-adversarial

training and therefore the approximations of the human behaviour in those regions will be poor. This

phenomenon is known as ‘extrapolation error’ in the batch reinforcement learning literature (Fujimoto, Van

Hoof, & Meger, 2018) and several solutions have been suggested (see also (Cranko et al., 2019) for batch

supervised learning), which can be applied to the current framework. Here, we used RNNs with a relatively

small number of cells to avoid this issue, but the extension of the framework to address extrapolation error

can be an interesting future step.

Material and methods

Training the learner model

The learner model was trained using the objective function: L(Θ) = −
∑

n=1...N

∑
t=1...Tn log πn

t (ant ), in

which Θ refers to the free parameters of the model, N is the total number of subjects, and Tn is the

number of trials completed by subject n. Note that πt(at) depends on the history of inputs, which are

omitted for simplicity. Optimisation was based on the Adam optimiser (Kingma & Ba, 2014). The model

was implemented using Tensorflow (Martin˜Abadi et al., 2015) and the gradients were calculated using
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automatic differentiation. The recurrent neural network in the learner model was based on gated recurrent

unit (GRU) architecture (Cho et al., 2014). The optimal number of training iterations (early-stopping) and

the number of cells for each experiment were determined using 10-fold cross-validation. The optimal number

of iterations and cells were then used to train a model using the whole dataset for each experiment. The

number of cells considered was 5,8,10 cells, which was inspired by the previous works (Dezfouli, Griffiths, et

al., 2019). The optimal number of cells and training iterations for each experiment is presented in Table S1.

Training the adversary

The DQN algorithm was used for training the adversary in the bandit experiments (Mnih et al., 2015). The

inputs to the RL agent were the internal state of the learner model (xt), its policy vector (probability of

taking each action by the learner model), the trial number, and the of number rewards assigned to each

action. Note that the internal state of the learner embeds other elements such as policy vector, but we also

fed these elements explicitly to the RL agent to speed up the training. The output of the network was the

value of each of the four actions corresponding to the combination of assigning reward/no-reward to each of

the choices available to the learner model.

The model included three fully connected layers with 64, 64, and 4 units, with ReLU, ReLU, and linear

activation functions. Models with replay buffer sizes of 200000, 400000 were considered. ε−greedy method

was used for exploration with ε ∈ {0.01, 0.1, 0.2}. Learning rates {10−3, 10−4, 10−5} were considered for

training the model using Adam optimiser. These 18 combinations were trained and their performance was

evaluated after {1, 2, 3, 4, 5, 6, 7, 8, 9} × 105 training iterations. For the performance evaluation, the model

was simulated against the learner model for 2000 times and the average bias was calculated. The model with

the highest average bias was used. For the humans/Q-learning experiments, the highest bias was achieved

with buffer size 400000/400000, ε = 0.1/0.01 and learning rate 0.0001/0.001

For the Go/No-go experiment, since the task was longer (350 trials), we used policy-gradient method

and advantage actor-critic algorithm (A2C) (Mnih et al., 2016) for training the model. We also used an

additional entropy term to encourage sufficient exploration (Ahmed, Le Roux, Norouzi, & Schuurmans,

2019). The input to the model was the current trial number and the total number of go/no-go states

assigned. The output of the model was the policy (i.e., the probability of taking go/no-go). Note that the

policy is stochastic. The network did not receive the learner internal state as input since we sought a static

adversary. Both value and policy models had three layers, with 256, 256, and 1 unit(s) in the value layer, and

256, 256, and 2 units in the policy layer. The activation functions were ReLU, ReLU and linear respectively

in each layer. We considered two values for the weight of entropy {0.01, 0.5} and the model with 0.01 entropy

weight achieved a higher performance against the learner model (in terms of the average number of errors

made by the learner model in 1500 simulation). The agents were implemented in Tensorflow and trained

using Adam optimisation method (Kingma & Ba, 2014).

Data collection

The study was approved by the CSIRO ethics committee (Ethics Clearance 102/19). The data were collected

using Amazon Mechanical Turk. In both experiments, the participants received $0.4 USD. In the bandit

task, they also could earn $0.01 USD for each smiley face.

For the bandit task, during the data collection, the adversarial model was running on a back-end Python

server communicating with the task running in the web browser by receiving the action information from

the task and sending the assigned rewards back to the test for the next trial. For the go/no-go experiment,

since the delay between the trials was fast, it was not feasible to run the adversarial model on the back-end

due to the communication lag. Instead, the adversarial models were exported to Javascript and ran in the

web browser using Tensorflow.js framework.

For the case of the go/no-go task, we selected subjects with performance in the 75th percentile (which

corresponded to less than 32 errors) and used their data for training the learner model. We then collected

the data in the adversarial conditions and used the same threshold (less than 32 errors) to select the subjects

who were included in the analysis. In the bandit task, all the subjects were included in the analysis.
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Supplementary Materials

Task details

Bandit task

The implementation of the bandit task was based on the implementation in
(Dan & Loewenstein, 2019):

We made the modifications to the task in order to communicate with a
back-end for getting reward information before each choice. We also made
modifications to the introduction pages of the task to be consistent with the
ethics clearance requirements.

Go/no-go task

The implementation of the go/no-go task was based on the implementation in
(Eisenberg et al., 2019):

We modified the code to interact with the adversarial model (using Tensor-
flow.js). We also made modifications to the introduction pages of the task to
be consistent with the ethics clearance requirements.
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Figure S1: The performance of the human adversary when tested against the
Q-learning learner model (Human adversary vs QL-learner), and the perfor-
mance of the Q-learning adversary when tested against the human learner (QL-
adversary vs human learner). Error-bars represent 1SEM.
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Table S1: Optimal number of cells and training iterations.
Experiment #cells in RNN #training iterations learning rate

Bandit (Q-learning) 5 46700 0.005
Bandit (Humans) 10 1100 0.005
Go/No-go 8 11600 0.001
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