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Abstract 
Recent long-read assemblies often exceed the quality of available reference genomes, making 
validation challenging. Here we present Merqury, a novel tool for reference-free assembly 
evaluation based on efficient k-mer set operations. By comparing k-mers in a de novo assembly 
to those found in unassembled high-accuracy reads, Merqury estimates base-level accuracy and 
completeness. For trios, Merqury can also evaluate haplotype-specific accuracy, completeness, 
phase block continuity, and switch errors. Multiple visualizations, such as k-mer spectrum plots, 
are provided for evaluating assembly quality. We demonstrate on both human and plant genomes 
that Merqury is a fast and robust method for assembly validation. 
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Background 
With recent advances in long-read1–3 and long-range sequencing technologies4–6, new 

assembly pipelines are generating more continuous, complete, and accurate diploid genome 
assemblies than ever before4,7–14. 

 
However, de novo assembled genomes are difficult to validate due to the lack of a known 

truth. Existing methods use Illumina reads to infer base-level accuracy by aligning the reads to 
the assembly for evaluation15. Base errors in the consensus are detected as variants (SNPs or 
small indels) when aligning the short reads. However, this method is heavily reliant on the short-
read mapping, which could be biased in repetitive regions, under-collapsed regions, or regions of 
low consensus accuracy. For measuring completeness and false duplications, near-universal 
single-copy orthologs (BUSCOs)16 have been widely used to evaluate the gene content of 
assemblies. BUSCO is robust for species that have been widely studied, such as human and 
mouse. However, this analysis can be inaccurate when the newly assembled genome contains 
true copy number or sequence variants that were not considered when building the initial BUSCO 
gene set. 

 
In contrast, k-mers (genomic substrings of length k) can be used in a reference-free manner 

for assessing genome assembly quality metrics. Genome assembly validation via k-mer copy 
number analysis was introduced by Mapleson et al. in their KAT tool17, which enables visual 
inspection of k-mer spectra plots to identify artificial duplications and missing sequences. Merqury 
takes much of its inspiration from the ideas introduced by KAT. QUAST-LG18 is another assembly 
validation tool that provides both BUSCO and KAT measurements, as well as alignments against 
a reference genome. However, such reference-based metrics assume a closely related reference 
genome, and report true variants in the assembled genome as potential mis-assemblies. 

 
Diploid genome assemblers generate both primary and alternate assemblies representing the 

two haplotypes. In the case of FALCON-Unzip, the primary assembly is a pseudo-haplotype that 
captures both the homozygous regions along with a single copy of the heterozygous alleles. Such 
a pseudo-haplotype does not guarantee long-range phasing, so to estimate phase block statistics, 
the alternate alleles are mapped back to the primary assembly to determine regions 
corresponding to the primary-alternate haplotype phase blocks9. However, this can be challenging 
when the alternate alleles do not map well to the primary sequence due to high sequence 
divergence or mis-assemblies. Moreover, long-read assemblies often collapse regions of low 
heterozygosity, which are excluded when calculating phase block statistics, thus over-
representing the correctness. 

 
Alternative methods report phasing statistics from small variants (mostly SNPs) called with 

short-read mapping 8,19–22, or use benchmark genomes that have curated, phased variation call 
sets23–26. Both methods rely on a reference sequence as the primary source to detect 
heterozygous variations. However, these reference sequences are incomplete and recent studies 
have demonstrated the shortcomings of the current human reference genome and variant call 
sets8,20,27. For example, the highly variable major histocompatibility complex (MHC) is excluded 
from the Genome in a Bottle (GIAB) or Global Alliance for Genomic Health (GA4GH) reference 
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panel25, due to its repetitive nature and need of a specialized mapping strategy to account for the 
high allelic diversity28. Moreover, reference-guided strategies require significant manual curation 
and effort and will not scale as large cohort sequencing projects become common29,30. This 
validation strategy is also not applicable to any species without a curated and complete 
reference31. 

 
To overcome these limitations, we developed Merqury, which generates assembly 

assessment metrics using k-mers alone. Merqury compares a set of k-mers derived from 
unassembled, high accuracy sequencing reads to a genome assembly for evaluation. The 
generated assembly metrics include consensus quality (QV), k-mer completeness, and visual 
aids for representing the copy number spectrum and k-mer coverage across the assembly. When 
parental genomic sequences are available (either assembled or unassembled), Merqury can also 
report haplotype completeness, phase block statistics (including switch error rates), and visual 
representations of phase consistency for the child’s genome. We show that k-mer-based 
assembly validation produces comparable or better results than existing methods, such as 
BUSCO gene completeness and mapping-based measurements. 
 
 
Table 1. Merqury quality and completeness statistics for example Arabidopsis thaliana and human genome assemblies. 

  Assembly 
Continuity QV k-mer completeness BUSCO (%) 

Total # Contigs Max NG50 Meryl Mash Map All Hap1 Hap2 PPV Comp. Dup. Frag. Mis. 

A. thaliana 
Col x Cvi 

F1 

TrioCanu                

Col 124 215 13.1 4.6 35.1 34.6 37.5 83.8 99.5 0.7 99.3 98.2 1.6 0.5 1.3 

Cvi 122 163 12.2 5.6 36.4 35.9 38.6 83.6 1.1 99.4 98.9 98.0 1.4 0.4 1.6 

Col + Cvi 246 378 13.1 5.5 35.7 33.0 38.0 98.3 99.7 99.4 99.1 98.2 78.8 0.2 1.6 

FALCON-Unzip                

pri 140 172 13.3 8.0 34.8 33.9 36.9 87.1 65.2 59.8 N/A 98.1 6.2 0.3 1.6 

alt 105 248 11.6 4.3 38.3 37.9 39.9 74.5 38.2 40.6 N/A 93.1 2.0 0.3 6.6 

pri + alt 245 420 13.3 6.9 36.0 33.5 37.9 97.8 99.1 98.2 N/A 98.1 93.2 0.3 1.6 

Canu 248 2,368 6.9 2.3 29.3 26.8 27.2 95.7 90.5 90.8 N/A 97.6 61.5 0.4 2.0 

H. sapiens 
NA12878 

TrioCanu                

mat 2,749 7,388 9.0 1.1 31.3 30.4 34.1 94.0 90.7 0.9 99.1 86.5 0.8 6.9 6.6 

pat 2,743 7,252 11.5 1.1 31.0 30.1 34.1 93.7 1.0 91.0 98.8 85.1 0.7 7.8 7.1 

mat + pat 5,492 14,640 11.5 1.1 31.1 27.5 34.1 98.2 90.9 91.2 99.0 90.0 47.3 5.0 5.0 
All bases in the continuity stats are in Mbp. Haploid genome size of 130 Mbp and 3.2 Gbp was used for NG50 in the A. thaliana and 
H. sapiens NA12878 haploid assemblies, respectively, with twice the haploid genome size for combined assemblies. Mercury-specific 
column headers are in bold, including k-mer-based quality (QV) and completeness estimates. Merqury includes both exact (Meryl) 
and approximate (Mash) methods for measuring k-mer QV, while completeness uses only the exact k-mer counting method. 
Consensus QV scores are Phred-scaled where QV = -10 log10 E for a probability of error E at each base in the assembly. K-mer 
completeness is measured by the fraction of all distinct, reliable k-mers (all) and haplotype specific k-mers. Hap1 and Hap2 
corresponds to Col and Cvi in A. thaliana, maternal and paternal in NA12878. BUSCO v3 was run with embryophyta_odb9 (n=1440) 
for A. thaliana and mammalia_odb9 (n=4104) for NA12878. Metrics generated with Merqury are highlighted in bold. Map. Mapping; 
Comp., Complete; Dup. Duplicated; Frag. Fragmented; Mis. Missing. 
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Results 

 
To demonstrate the ability of Merqury to evaluate the accuracy, completeness, and phasing 

of an assembly, we first applied it to an Arabidopsis thaliana F1 hybrid20, for which the parental 
strains (Col-0 and Cvi-0, simplified as Col and Cvi) have also been sequenced. For a comparison 
of multiple assemblies, we demonstrate Merqury on haplotype-resolved (TrioCanu10), pseudo-
haplotype (FALCON-Unzip20), and mixed-haplotype (Canu32) assemblies of this hybrid genome. 
Total assembly size is typically used as a rough measure of haplotype completeness. For 
example, the TrioCanu haplotype assemblies have similar total bases, 122~124 Mbp (Table 1), 
close to the expected haploid genome size of 130 Mbp, indicating the haplotype assemblies are 
well balanced (assuming haplotype specific bases are evenly inherited). In comparison, the 
primary assembly of FALCON-Unzip has ~35 Mbp bases more than the alternate assembly. 
However, it is difficult to understand where this difference originates from the assembly size alone. 
The mixed-haplotype Canu assembly, in comparison, is ~100 Mbp larger than the expected 
genome size of 130 Mb. Again, we can assume this assembly resolved both haplotypes, but since 
the haplotypes have been combined in a single assembly we cannot know the composition from 
the size and continuity measures alone. In the following sections we describe how Merqury’s 
statistics and plots can be used to dissect and understand these assemblies. 
 
Copy number spectrum 
 

We counted k-mers from Illumina whole-genome sequencing of the A. thaliana F1 hybrid, as 
well as from each assembly, using Meryl, a k-mer counting tool we extended to support k-mer set 
operations for Merqury (Methods). The copy number spectrum plot, known as “spectra-cn” plot17 
tracks the multiplicity of each k-mer found in the Illumina read set (Fig. 1a) and colors it by the 
number of times it is found in a given assembly (Fig. 1b). The result is a stratified set of densities 
relating k-mer counts in the read set to their associated counts in the assembly. Here the Illumina 
dataset (which we will refer to as the “read set”) was sequenced to an average coverage of 45x, 
so we expect a density peak near x=45 corresponding to k-mers present in both haplotypes, and 
a peak at half coverage (x=22) representing k-mers found on only one haplotype (FIg. 1a). We 
refer to these as 2-copy and 1-copy k-mers, respectively. Thus, when a k-mer is found 
approximately 22 times in the read set, we expect it to be found only once in the assembly, as it 
is likely a 1-copy, haplotype-specific (heterozygous) sequence (Fig. 1b). In the spectra-cn plot, k-
mers are colored based on their count in the assembly. For a complete haplotype-resolved 
assembly, where even the homozygous part of the genome is included in both haplotypes, we 
expect most k-mers in the 2-copy peak to be found twice in the assembly (Fig. 1b). For partially 
phased assemblies, 2-copy k-mers may be found either once or twice in the assembly (e.g. Fig. 
2), depending on which homozygous sequences of the genome were separated and which were 
collapsed. In contrast, a pseudo-haplotype collapses homozygous alleles, so 2-copy k-mers are 
expected to appear only once in the assembly. One notable exception is haplotype-specific 
duplictions, which can occur in two copies on the same haplotype, and thus may also appear in 
two copies in a pseudo-haplotype assembly. 
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Fig. 1 | Merqury copy number spectrum plots for haploid and diploid assemblies of an Arabidopsis thaliana F1 hybrid 
genome. (a) Histogram of k-mer multiplicity collected from Illumina reads. The first peak represents 1-copy (heterozygous) kmers in 
the genome, and the second peak represents 2-copy k-mers originating from homozygous sequence or haplotype-specific 
duplications. Depth of sequencing coverage determines where these peaks appear. In this example, sequencing coverage is 
approximately 45x, corresponding to the 2-copy peak. (b) Copy number spectrum (spectra-cn) of the same k-mers in a, colored by 
copy numbers found in the combined TrioCanu assembly. The assembly k-mers absent from the read set (likely to be base errors in 
the assembly) are plotted as a bar at zero multiplicity, colored by the copy numbers found in the assembly. (c) Unstacked, line plot of 
b for visualizing the distribution of k-mer counts per copy numbers found in the assembly. This plot shows an ideal pseudo haplotype 
assembly. (d) Spectra-cn plot of the combined FALCON-Unzip assembly. (e) Spectra-cn plot of the mixed-haplotype Canu assembly. 
Missing single copy k-mers (black) and k-mers from artificial duplications (green, purple, yellow in 30–60x) are noticeable. Note this 
assembly was not polished and so has a larger error k-mer bar. (f) Spectra-cn plot of the TrioCanu Col haplotype assembly. Half the 
single copy k-mers are missing and found in the other haplotype (black). Two-copy k-mers are found once (red) in each haplotype 
assembly. (g) Spectra-cn plot of the FALCON-Unzip primary assembly. (h) Spectra-cn plot of the FALCON-Unzip alternate assembly. 
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Any copy number pattern abnormal from this expectation indicates problems in the assembly. 
The k-mers found only in the read set (black) at low frequency are almost always indicative of 
sequencing error in the read set, however higher-frequency k-mers found only in the read set 
indicate missing sequences in the assembly (e.g. black k-mers within the 1- or 2-copy peaks). 
Likewise, any k-mers with a higher copy number in the assembly than would be predicted by the 
read set are indicative of artificial duplications in the assembly, e.g. see the 2-copy k-mers 
appearing three times in the Canu assembly shown in Fig. 1e. 
 

The bar at the origin of the plots represents k-mers found only in the assembly. From these 
k-mers, we can estimate an assembly consensus quality value (QV), which represents a log-
scaled probability of error for the consensus base calls (Methods). Higher QVs indicate a more 
accurate consensus, where Q30 corresponds to 99.9% accuracy, Q40 to 99.99%, etc. The trio-
binned assembly has QV scores of 35~36 for each haploid assembly, and 35.7 for the combined 
version. The FALCON-Unzip assembly has a similar QV score of 35~38 for each haplotype, and 
36 for the combined version. The error k-mer bar for Canu is much higher than the other two 
diploid assemblies, as we omitted signal-level polishing33 from this assembly to show an 
intermediate assembly product. The estimated QV for this assembly is 29.3 (Table 1). 
 

To better visualize the k-mer distribution by each copy number found in an assembly, we also 
provide unstacked versions of the spectra-cn plots (Fig. 1c-e). The 1-copy (heterozygous) k-mers 
appear once in the combined TrioCanu assemblies (red), and 2-copy k-mers twice (blue) as 
expected (Fig. 1c). The partially phased FALCON-Unzip assembly shows a similar distribution to 
TrioCanu (Fig. 1d), indicative of good k-mer completeness. The lower fraction of 2-copy k-mers 
found three times in the assembly (green hump under the 2-copy peak) indicates fewer false 
duplications in the TrioCanu compared to FALCON-Unzip and Canu. 

 
When generating the same spectrum on the mixed-haplotype Canu assembly (Fig. 1e), we 

can see the assembly has only partially assembled both haplotypes and there is a higher fraction 
of k-mers (37 kbp) missing from the assembly (black). In addition, the assembly has artificial 
duplications inflating the assembly size. The plot also shows fewer 2-copy k-mers (blue peak) 
compared to the other assemblies, and a significant fraction of 2-copy k-mers appearing only 
once in the assembly (second red peak), suggesting the mixed-haplotype assembly has partially 
collapsed the haplotypes. Based on the number of 2-copy k-mers found twice in the assembly, 
we estimate 42.7 Mbp of homozygous sequence remains uncollapsed, typically at the boundary 
of heterozygous and homozygous alleles. This partial separation is also evident in the higher 
number of k-mers appearing three (green), four (purple), and more (yellow) times in the assembly, 
representing 10.8 million artificially duplicated k-mers that would need to be identified and 
removed to form a fully collapsed, haploid assembly. This example highlights the benefits of the 
TrioCanu and FALCON-Unzip approaches for this heterozygous genome. Additional processing 
with a tool such as purge_dups34 would be required to convert Canu’s mixed haplotypes into a 
pseudo-haplotype. 

 
The spectra-cn plots can also be useful for evaluating haploid assemblies, e.g. of a single 

haplotype from a diploid genome. When plotting the same k-mer spectrum on one haplotype 
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(“Col” in this case), we can see both 1-copy and 2-copy k-mers are now observed just once in the 
assembly (Fig. 1f, red curve). This is because the read set represents the full diploid genome, 
while the assembly isolates a single haplotype. The usual 1-copy peak is now exactly half the size 
and perfectly overlaps with a peak of missing k-mers (black) that belong to the other haplotype 
(“Cvi”). In comparison, the pseudo-haplotype FALCON-Unzip primary and alternate assemblies 
(Fig. 1g-h) show imbalanced peaks, with more assembly k-mers appearing in both the 1- and 2-
copy peaks than expected. This suggests that the FALCON-Unzip is erroneously including 
sequences from both haplotypes into the primary pseudo-haplotype. A similar portion of 1-copy 
k-mers are missing from the alternate assembly (imbalanced red and black peaks), suggesting 
that the alternate haplotype is missing some heterozygous variants. 
 
Assembly spectrum 
 

In the above FALCON-Unzip pseudo-haplotype example (Fig. 1g-h), it is possible to infer that 
the missing sequences in the alternate assembly are likely found in the primary assembly. 
However, if there are shared sequences between the two assemblies, it is difficult to know the 
exact sequence composition. To better address this question, we introduce a new method to show 
the shared and unique k-mers in each assembly (spectra-asm), instead of showing the overall 
copy-numbers (Fig. 2). This plot is helpful for measuring diploid assembly completeness as it 
shows the fraction of k-mers unique to both the primary and alternate assemblies. For example, 
a perfectly assembled diploid genome is expected to have a balance of unique k-mers in each 
haplotype representing the heterozygous alleles (exceptions to this include sex chromosomes of 
different size). The spectra-asm of the TrioCanu combined assembly (Fig. 2a) shows such an 
example, where 1-copy k-mers are unique to each haplotype assembly (red and blue), and the 2-
copy k-mers are shared by both assemblies (green). In comparison, the FALCON-Unzip assembly 
is imbalanced, with more 1-copy and 2-copy k-mers in the primary assembly than expected (Fig. 
2b). This imbalance is also evident from Merqury’s k-mer completeness metrics for the primary 
and alternate assemblies (Table 1, completeness “all”). By stacking the distribution, we can 
confirm the primary assembly contains all the missing k-mers from Fig. 1h in the 2-copy peak. 
Compared to TrioCanu and FALCON-Unzip, Canu does not partition its output into primary and 
alternates, and so k-mers from both haplotypes are present in the combined assembly. However, 
the spectra-asm plot shows a few 1-copy k-mers are missing from the assembly (Fig. 2c). This is 
in concordance with the lower k-mer completeness score in the Canu assembly (95.7%) 
compared to the other diploid assemblies (98.3% and 97.8%, Table 1), and indicates that some 
heterozygous variants are missing. 
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Fig. 2 | Merqury assembly spectrum plots for evaluating k-mer completeness. K-mers are colored by their uniqueness in the 
reads and primary/alternate assemblies. (a) Distinct k-mer assembly spectrum (spectra-asm) plot of both TrioCanu Col and Cvi 
haplotype assemblies. This plot shows the unique (red and blue) and shared portion of k-mers (green). (b) Spectra-asm plot of the 
FALCON-Unzip assembly. The primary assembly has more unique (red) sequences compared to the alternate assembly (blue). (c) 
Spectra-asm plot of the Canu assembly which is a mixture of both haplotypes. A small fraction of 1-copy k-mers is found only in the 
reads (black peak around 12~30x), which represents heterozygous variants missing from the assembly. 

 
 
 
 

Haplotype-specific k-mers (hap-mers) from trios 
 

When parental genomes are available, we can use the haplotype-specific k-mers (hap-mers) 
to evaluate haplotype completeness of an assembly. Often, using parental-specific markers alone 
may be sufficient; however, we have found it useful to specifically consider the inherited markers, 
as only half of the parental specific k-mers are inherited and the non-inherited markers may match 
an erroneous k-mer in the assembly by chance. Thus, throughout the manuscript, we define hap-
mers as the inherited, haplotype specific markers (Fig. 3a). We have implemented efficient k-mer 
set operations (union, intersection, subtraction, etc.) within Meryl for computing hap-mers and 
other useful k-mer sets (Fig. 3b, Methods). For the A. thaliana F1 hybrid genome, we identified 
hap-mers directly from the genomes of the parental strains. K-mers were grouped based on their 
presence in the F1 reads alone, the maternal haplotype, the paternal haplotype, or both (Fig. 3c). 
Because of the high heterozygosity of the F1 (estimated at 0.99% by GenomeScope35), many of 
the F1’s k-mers are hap-mers. A human genome, in comparison, has many fewer hap-mers, with 
most of the k-mers shared between both haplotypes (Fig. 3d) 
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Fig. 3 | Merqury set operations for generating haplotype specific hap-mers and reliable k-mers. (a) Venn diagram of maternal, 
paternal, and child k-mer sets. Inherited hap-mers are obtained from parental-specific k-mers. Roughly half of the parental-specific k-
mers are inherited by a child. (b) Set operation examples used in Meryl to obtain the hap-mers and other k-mer sets. (c-d) Stacked k-
mer multiplicity of the child’s read set, colored by inheritance. K-mers are colored by maternal (red) paternal (blue) and shared between 
parents (green). K-mers only seen in the child’s reads (black) are mostly from low-copy sequencing errors or k-mers arising from de 
novo variants in the child. (c) Hap-mers in A. thaliana. (d) Hap-mers in NA12878. Reliable k-mer thresholds used for generating 
completeness scores for all k-mers (black) and hap-mers (red and blue) are marked by dashed lines. 
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Fig. 4 | Merqury hap-mer plots for evaluating haplotype phasing. (a) Example of phase blocks and switches. Blue and red bars 
are paternal or maternal hap-mers found in the assembly. A phase block is defined by at least two hap-mers (markers) from the same 
haplotype. Short-range switches are allowed in between markers, in defined ranges. Two consecutive red markers within a certain 
range are marked as short-range switches and counted for switch errors in block 1. As the red markers are consecutively found over 
a certain range, or in numbers above a certain threshold, a separate block is formed. Each switch between blocks is counted as a 
long-range switch. (b) Phase block statistics of the haploid assemblies with switch errors, allowing at most 100 switches within 20 kbp. 
(c) Hap-mer blob plot of the TrioCanu assembly. Red blobs represent Col haplotype contigs, while blue blobs are the Cvi haplotype. 
Blob size is proportional to contig size, and each blob/contig is plotted according to the number of contained Col (x values) and Cvi (y 
value) hap-mers. Col hap-mers are found in the Col assembly with almost no Cvi hap-mers, while Cvi hap-mers are found in the Cvi 
assembly with almost no Col hap-mers. (d-e) Blob plots for FALCON-Unzip and Canu assemblies show that most contigs are a mix 
of sequences from both haplotypes, with the exception of the FALCON-Unzip alts which are haplotype consistent. (f) Phase block 
NG* plots of the haplotype resolved Col (left) and Cvi (right) assembly, sorted by size. X-axis is the percentage of the genome size (*) 
covered by phase blocks of this size or larger (Y-axis). Blocks from the wrong haplotype are very small and almost entirely absent. 
(g-h) Phase block NG* plot of the (f) FALCON-Unzip and (h) Canu assemblies. Col and Cvi phase blocks are distributed evenly, as is 
typical for pseudo-haplotype assemblies. (i-k) Phase block and contig NG* plots show the relative continuity of (i) TrioCanu, (j) 
FALCON-Unzip, and (k) Canu assemblies. Phase block sizes are similar to the contig sizes in i. Phase blocks are much shorter than 
the contigs in k, because of the frequent haplotype switches in the contigs. 
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Evaluating phasing completeness with hap-mers 

 
Hap-mers are used to determine phase blocks in Merqury, where a block is defined to be a 

consistent set of markers originating from the same haplotype. To account for minor base-level 
errors in the assembly, we do allow some short-range switches to occur within a block, so long 
as the phase switches back shortly thereafter (Fig. 4a). A benefit of this k-mer approach is that 
Merqury does not need to rely on the phase blocks as identified by the assembler or a reference 
variant callset, and can quickly compute the blocks on each assembly directly using only the 
observed haplotype markers. Applying this method to the TrioCanu assembly reported NG50 
phase block sizes of 3.6 Mbp and 5.5 Mbp with 0.3% per-block switch rate when allowing at most 
100 consecutive switches within 20 kbp (Fig. 4b). The FALCON-Unzip assembly has slightly 
shorter phase block sizes of 3.1 Mbp and 2.5 Mbp with a similar switch error rate of 0.3%. The 
Canu assembly had more frequent long-range switches among haplotypes, resulting in NG50 
phase blocks of 100 kbp. 

 
Visualizing hap-mer presence in each haplotype assembly is also useful to detect overall 

phase consistency. When counting Col and Cvi hap-mers in contigs of the TrioCanu assembly 
(Fig. 4c), each contig was successfully separated by haplotype as expected. That is, the Col 
markers were observed in the Col haplotype assembly, with almost no contaminating Cvi markers, 
and vise versa. As such, a haplotype resolved assembly with almost no haplotype switches is 
expected to have a similar plot with each blob (contig) close to the corresponding plot axis. The 
FALCON-Unzip alternate contigs maintain haplotype consistency (Fig. 4d), but the primary 
pseudo-haplotype contigs are a mixture of both haplotypes. The Canu assembly appears to mix 
haplotypes in all but the smallest contigs (Fig. 4e), and does not partition the resulting assembly 
into primary and alternate contig sets with post-processing with Purge_dups. 

 
When plotting phase blocks sorted by size, the blocks originating from the wrong haplotype 

were very small and almost negligible in the TrioCanu assembly (Fig. 4f). In contrast, the phase 
blocks were highly mixed in the pseudo-haplotype assemblies, with the larger contigs being more 
likely to contain markers from both haplotypes (Fig. 2g-h). Plotting the contig and block sizes 
together shows that the trio-binned phase blocks are very similar in size to the trio-binned contigs 
(Fig. 4i). In comparison, the phase blocks were shorter than the contigs in the FALCON-Unzip 
assemblies (Fig. 4j), showing relatively good phasing performance. The phase blocks were much 
shorter in the Canu contigs, indicating frequent block switches between haplotypes (Fig. 4k) since 
Canu does not attempt to preserve long-range phasing. 

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992941


12 

 
Fig. 5 | Example k-mer and phasing tracks provided by Merqury. Hap-mer density is provided in tiled data format (.tdf) browsable 
with the Integrated Genomics Viewer (IGV)36,37. This figure shows a region where haplotype blocks are switching within one of the 
Canu contigs. Hap-mer tracks show haplotype switches from Cvi (blue) to Col (red), along with k-mers found only in the assembly 
(grey), which are likely caused by erroneous consensus bases. Phase blocks (black) are shown for both relaxed (100 consecutive 
switches allowed per 20 kbp) and strict (10 per 20 kbp) switching thresholds. 
 

Another useful feature in Merqury is that all hap-mers, erroneous k-mers, and phase blocks 
can be visualized as genome tracks along the assembly. Fig. 5 shows an example of a 60 kbp 
region in the mixed-haplotype Canu assembly, where haplotypes are observed switching from 
Cvi (blue) to Col (red), resulting in numerous base errors (grey). Two phase blocks (Cvi and Col) 
were found in this region using the default threshold of 100 consecutive hap-mer switches allowed 
per every 20 kbp. However, phase blocks can be more stringently measured by defining the short-
range switch allowance (e.g. 10 per 20 kbp, Fig. 5, bottom track), resulting in lower NG50 phase 
block size (100 kbp decreases to 33 kbp). In contrast, the per-block switch error rate decreased 
from 3.4% to 0.47%, making each block a more reliable haplotype. Note the per-block switch error 
rate is defined as the fraction of hap-mer markers within a block that are assigned to the other 
haplotype, thus accounting for all short-range marker switches in a block. 
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Benchmarking on a human genome (NA12878) 
 
To benchmark Merqury on a large genome, we applied it to the TrioCanu human (NA12878) 

assembly from Koren et al.10 and estimated the consensus quality as Q31 for each haplotype 
(Table 1). The alternative variant calling approach reported 2.1 million bases of errors, resulting 
in a QV estimate of 34.1. However, the mapping-based approach excluded 212.2 Mbp of 
assembled sequence because of too few (<3x) or too many (>600x) aligned reads. We argue that 
Merqury’s k-mer based approach is both more efficient and more accurate for evaluating 
consensus accuracy. 

 
Merqury required only 14.9 CPU h (9.1 h for k-mer counting, 4.7 h for merging, 1.1 h for 

statistics) to evaluate QVs for both haplotypes. In contrast, the mapping-based QV estimate took 
338.3 CPU h (2.2 h for indexing, 308 h for mapping, 12.6 h for merging, 12.8 h for variant calling, 
and 2.5 h for coverage calculation and QV estimates). By excluding low and high-coverage 
regions of the assembly, the mapping-based approach ignores regions of the assembly likely to 
be enriched for error. For example, low coverage regions can be caused by regions of high error 
rates that makes it difficult to map short reads. High coverage regions are typically caused by 
repeats that can be collapsed, and therefore incorrect, in the assembly. Thus, a substantial 
number of errors may be excluded from the accuracy statistics if one considers only the mappable 
portion of the assembly. This matches with our observation that the mapping-based estimates 
always overestimate QV compared to the k-mer based approach (Table 1). 

 
Exact k-mer counting is currently the most resource intensive step of Merqury, requiring a 

maximum 21 GB of memory using 25.5 GB of disk space on NA12878 (Table 2). While this step 
can be parallelized across multiple nodes and cores, QV statistics can be also estimated from 
subsampled k-mers with lower memory and disk requirements using Mash Screen38. In 
comparison to Meryl, Mash streams sequencing reads from disk and compares them against only 
a small subset of k-mers in the assembly. This avoids the need for a large table of k-mers, but at 
the same time ignores copy number information. As a result, we observed that Mash QV estimates 
were slightly lower than exact counting (Meryl) for each haplotype, and even lower when both 
haplotypes were combined (Table 1). This is because the shared k-mers between the two 
haplotype assemblies are considered only once by Mash, resulting in an underestimate of the QV 
score (e.g. if a 2-copy k-mer appears in just one haplotype, it is considered “correct” by Mash). 
The Mash approach also cannot investigate positional base errors (Figure 5) and many of the 
other analyses presented here, but is provided as an alternative to Meryl for QV estimation in 
cases where disk and memory resources are limited.  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992941


14 

Table 2. Merqury runtime, memory, and disk requirements for a human genome. 
 Count Union-sum QV (Meryl) QV (Mash) 
cpus x nodes 32 x 24 48 x 1 24 x 1 24 x 1 

wall clock time 6m 52s / node 7m 43s 14m 13s 3h 36m 17s 
cpu time 9.1 h 4.7 h 1.1 h 19.0 h 

memory 21.2 G 7.0 G 10.56 G 2.6 G 

storage 90 G (fastq.gz) N/A 48 G 90 G (fastq.gz) 
intermediates 1.8 G x 24 48 G 25.5 G 23.1 M 
All statistics are for the diploid human genome NA12878. QV Meryl reports the Merqury QV estimates generated on the full k-mer 
databases, whereas QV Mash reports the Merqury QV estimates generated only from the subsampled Mash sketches. Runtimes 
were measured on Intel(R) Xeon(R) Gold 6140 CPU, with 2.30GHz. Storage requirements represent gzipped FASTQ files for counting 
and QV (Mash), and a binary database for QV (Meryl). h, hours; m, minutes; s, seconds; G, Giga bytes. 

 
 
Next, we evaluated hap-mers on NA12878. The hap-mer spectrum of NA12878 revealed a 

higher fraction of shared k-mers in the 1-copy peak (Fig. 3d), indicating that some heterozygous 
variants in the child are shared by both parents. We do not see such a strong effect in A. thaliana, 
because the parents were heavily inbred and contained few heterozygous variants of their own. 
In contrast, the A. thaliana F1 hybrid was deliberately outbred, which is evident by the dramatically 
taller 1-copy peak versus NA12878 (0.99% vs. 0.12% heterozygosity). 

 
Hap-mers are convenient to obtain haplotype precision (PPV) and recall (completeness) 

statistics based on how many of the expected parental hap-mers are observed in the child’s 
haplotype-resolved diploid assembly (Fig. 6). To demonstrate, we built genomic k-mer databases 
for NA12878 and her parents, totalling 18.4 and 19.9 million inherited hap-mers for the paternal 
and maternal haplotypes, respectively. When comparing to the haplotype-resolved assemblies, 
the maternal haplotype assembly recovered 90.7% of the maternal hap-mers (Table 1 and Fig. 
6a), and the paternal assembly recovered 91.0% of the paternal hap-mers (Table 1 and Fig. 6b). 
Likewise, by considering the other haplotype’s markers as false positives (i.e. paternal hap-mers 
found in the maternal assembly), the precision of the maternal and paternal assemblies was 
99.1% and 98.8%, respectively, with only 160~200 markers appearing in the incorrect haplotype 
(Table 1, PPV values). This evaluation excludes all k-mers found only in the assembly (errors), 
which if considered false positives, would further lower the precision. 

 
To compare Merqury’s results with an alternative approach, we considered an Illumina-based 

platinum callset for NA1287826 that includes 3.4 million heterozygous SNPs in regions where both 
haplotype assemblies align to the reference (hg38). Calling SNPs directly from the haplotype 
assemblies against hg38 recovered 3.2 million variants, or 93.5% sensitivity, which is slightly 
higher than the Merqury based estimate of ~91%. This discrepancy is likely due to Merqury’s 
ability to measure complex regions of the assembly not easily measurable by a mapping-based 
analysis. In contrast, the SNP-based measurement of precision was only 86.1%, likely due to the 
low base accuracy (Q31) of the assemblies, where consensus errors are called as false-positive 
heterozygous SNPs. Thus, it is important to consider both the k-mer QV and precision estimates 
when evaluating the accuracy of a diploid assembly. 
 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992941


15 

 
Fig. 6 | Evaluating haplotype completeness for diploid assemblies using Merqury. Spectra-cn plots of the maternal and paternal 
assemblies of the TrioCanu NA12878 assembly are displayed as a confusion matrix. (a) Hap-mer spectra-cn plot of the maternal 
assembly. All maternal hap-mers are expected to be found in the maternal (top left), with no paternal hap-mers (top right). Any maternal 
hap-mers not found in this assembly are missing hap-mers (top left, black). Paternal hap-mers (top right, red) are false positive phasing 
errors. (b) Hap-mer spectra-cn plot of the paternal assembly. This time, no maternal hap-mers should be seen (bottom left), and only 
paternal markers are expected to be present (bottom right). TP, true positives; FN, false negatives; TN, true negatives; FP, false 
positives. 
 
Conclusion 
 

We have developed Merqury, a reference-free assembly evaluation toolkit based on efficient 
k-mer based methods. Merqury builds upon the k-mer spectra ideas of Mapleson et al17, and 
introduces novel methods and plots for measuring assembly quality (QV), completeness, and 
phasing. Using k-mer count spectra, Merqury can reveal copy-number errors in an assembly and 
accurately measure both assembly completeness and consensus quality. When parental k-mers 
are available, Merqury can also measure phasing accuracy and haplotype completeness. In 
addition to validation statistics, Merqury provides a number of graphs for interpreting assembly 
quality. In the process of developing Merqury, we have also extended Meryl with generalized k-
mer counting, querying, and set operations that will be useful for other k-mer based analyses (Fig. 
3b). 
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Merqury is able to evaluate assemblies from any sequencing technology, and works best 
when high-accuracy sequencing reads are available from the assembled individual and its 
parents. This read set serves as independent validation of the assembly, which is typically based 
on less-accurate, long-read sequencing. If high-accuracy reads are not available from the 
assembled individual, read sets from the parents can be used as a replacement for measuring 
quality values. This assumes all k-mers in the child are found in the parental genomes, ignoring 
the small fraction of k-mers from de novo mutations in the child. Although we currently recommend 
using Illumina data for the k-mer based validation, Merqury’s methods are general and would be 
compatible with any high-accuracy, high-throughput sequencing technology. 

 
Hap-mers are currently computed by a simple set operation, similar to trio-binning10. A higher 

portion of hap-mers are identifiable when the parents are divergent, with minimal shared ancestry. 
Our hap-mer spectrum plots (Fig. 3c-d) show the 1-copy haplotype markers that are unique to 
each parent, which may not be as prevalent for genomes of low heterozygosity, such as humans. 
Here we have used trios to identify haplotype-specific markers, but it may be possible to identify 
them using orthogonal datasets (e.g. Hi-C, Strand-seq). To support alternative k-mer classification 
methods, Merqury is designed to receive any pre-computed hap-mer set as input. 

 
We argue that Merqury’s hap-mer method provides better haplotype completeness estimates, 

because it does not rely on a reference genome. Mapping to a reference can be biased by mis-
mapping to repetitive or low-quality regions of the assembly. Moreover, k-mers naturally capture 
heterozygous insertion and deletion variants and are thus immune to the problems of calling these 
types of variants with a reference mapping approach. For example, consortiums such as the 
GA4GH exclude all variant calls within complex, repetitive regions of the genome25. In contrast, 
hap-mers inherently capture genetic context, regardless of the structural complexity surrounding 
them in the genome. Moreover, hap-mers are especially robust for evaluating sequences in highly 
diverged sequences, where mapping based approaches cannot map reads to call variants. 

 
Lastly, Merqury provides an efficient way of determining phase blocks in diploid assemblies. 

In the past, phase blocks were defined based on heterozygous SNPs, measured by aligning each 
haplotype to one another9 or by mapping to a reference genome8. These alignment-based 
approaches may not consider the full genome when the identity between the two haplotypes is 
lower than the alignment threshold, or the alignment is confused by genomic repeats. Moreover, 
a reference genome may not represent the entire haplotype of an assembled individual, thereby 
omitting haplotype-specific sequences from the analysis. The phase blocks measured by Merqury 
are generated regardless of the haplotype being assembled, and provide more reliable phasing 
information for allele-specific studies.  
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Methods 
 
Counting k-mers with Meryl 
 

Meryl is a tool for counting and working with sets of k-mers that was originally developed for 
use in the Celera Assembler39 and has since been adopted and maintained as part of Canu32. 
Here we have improved Meryl’s efficiency and extended it to support a variety of functions useful 
for k-mer-based assembly validation. A set of k-mers and their associated counts is termed a k-
mer database. The count is the number of times a k-mer occurs in some collection of sequences. 
The k-mer database is stored in sorted order, similar to words in a dictionary. Meryl comprises 
three modules: one for generating k-mer databases, one for filtering and combining databases, 
and one for searching databases. 
 

The counting module uses two different algorithms: one for k-mers up to size 16 and the other 
for k-mers up to size 64. For small k-mers, Meryl directly counts the number of times each k-mer 
occurs in the input sequences. An array of 4k 16-bit integers is allocated. Each k-mer is converted 
to an integer index into the array, and the cell for that k-mer is incremented. When any cell 
exceeds the maximum possible value that can be represented, the width of the array is extended 
by allocating a supplementary array of 4k bits. For large k-mers, Meryl generates lists of all the k-
mers present in the input sequences, sorts each list, then scans each to determine how many 
times a specific k-mer occurs. Each k-mer is split into a prefix and a suffix. The prefix is used to 
select a list, and only the suffix is added. A trade-off is made between a small prefix (which would 
result in a only a few lists, each storing many suffixes) and a large prefix (which would result in 
many lists). As we do not know how big each list will be, the lists must be able to grow as needed. 
Each list is therefore an array of memory blocks where each block can store a few thousand k-
mers. While counting, the memory usage of the lists is tracked, and if a user-supplied memory 
limit is reached, the lists are sorted, k-mers are counted, and output written to an intermediate 
database. After all k-mers are processed, the intermediate, sorted databases are efficiently 
merged into one. 
 

With one or more databases on disk, Meryl can filter or combine k-mers to create new 
databases. Each database is stored in 64 independent pieces, and each piece can be processed 
in parallel. Meryl can filter a database by count (e.g. less-than, greater-than or equal-to some user 
supplied constant), or by fraction of distinct k-mers in a database (e.g. the most common 5% of 
the k-mers). It can modify the count of every k-mer in a database by a constant (e.g., add 1, 
subtract 1, multiply by 2). Meryl can also output the union or intersection of multiple databases, 
setting the count of a k-mer to the minimum, maximum, sum of all copies of the k-mer or as the 
count of the first database. It can output the difference of databases (e.g. the k-mer occurs only 
in the first database) or the symmetric-difference (e.g. the k-mer occurs in exactly one database). 
Conveniently, any number of these operations can be combined into one command, using a 
reverse-polish-notation inspired format. The following example invocations are used in Merqury: 
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1. Write the k-mers that occur in both db1.meryl and db2.meryl to db3.meryl. Set the 
count of each output k-mer to the sum of the counts in the input k-mers: 
 
meryl union-sum db1.meryl db2.meryl output db3.meryl 
 

2. Output k-mers that occur in both db4.meryl and db5.meryl, additionally requiring the 
k-mer in db5.meryl to be unique. The count of the output k-kmer is set to the count of 
the k-mer in the first input to the intersect operation, namely db4.meryl: 
 
meryl output db6.meryl \ 
  intersect \ 
    db4.meryl \ 
    [ equal-to 1 db5.meryl ] 
 

3. For each k-mer in asm.fasta, output the (0-based) coordinate of the kmer in the 
sequence, the forward and reverse k-mer sequences, and the count of the k-mer in 
db7.meryl: 
 
meryl-lookup -dump -sequence asm.fasta -mers db7.meryl 

 
Meryl includes a C++ API to extend its functionality. For example, random lookups can be added 
using either the simple existence of a k-mer in a database, or the count associated with a k-mer. 
On the command line, lookups can return the number of k-mers a sequence shares with a 
database, a list of each k-mer in a sequence annotated with the count the k-mer has in a database, 
or a filtered list of input sequences based on the presence or absence of k-mers in the database. 
 
 
Evaluating assemblies with Merqury 
 
Copy number spectrum (spectra-cn plot) 
 

Given a genome size G and tolerable collision rate p, an appropriate k can be computed as k 
= log4 (G(1−p)/p)40. Using the obtained size of k, we count the canonical k-mers observed in the 
assembly and in the accurate, whole-genome read set. A typical k-mer spectrum consists of two 
primary peaks, one representing k-mers that are 1-copy in the diploid genome (heterozygous, on 
a single haplotype) and one representing those that are 2-copy in the diploid genome 
(homozygous, on both haplotypes or two copies on one haplotype) (Fig. 1a). The 2-copy k-mers 
appear with a frequency approximately equal to the average depth of sequencing coverage, 
where the 1-copy k-mers appear with frequency approximately equal to half the sequencing 
coverage. If a genome is entirely homozygous, only the 2-copy peak may appear, and if the 
genome is extremely heterozygous, only the 1-copy peak may appear. With sufficient sequencing 
coverage (to separate the peaks along the axis), and a proper choice of k, both peaks are visible 
for most genomes. Using the multiplicity of the k-mer counts, and modeling the k-mer survival rate 
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(i.e. how many k-mers are unaffected by sequencing error), it is possible to predict the size and 
repeat content of a genome from the k-mer spectrum alone35. 

 
The spectra-cn plot was introduced by Mapleson et al.17, which colors k-mers of the read set 

by their copy numbers in the assembly. In addition to the original stacked version of the spectra-
cn plot (Fig. 1b), we provide additional options to plot the unstacked copy number spectrum (Fig. 
1c). We have found this style more useful for visually detecting abnormal k-mer copy numbers 
and its distribution in an assembly. 
 
Assembly spectrum (spectra-asm plot) 
 

Similar to the spectra-cn analysis, we can color each k-mer in the read set by the assembly 
in which it is found. This becomes useful when two haploid assemblies are evaluated. This way, 
we can detect k-mers that are present only in one assembly, k-mers shared in both assemblies, 
and k-mers not present in the assembly and only found in the read set (Fig. 2). 
 
K-mer completeness 
 

We define a “reliable k-mer” as a k-mer that is truly in the genome and unlikely to be caused 
by sequencing error. With exact k-mer counts, it is easy to filter out low-copy k-mers that are likely 
to represent sequencing errors. We use the same strategy as Koren et al.10 to find the cutoff. In 
brief, we take the histogram of the k-mer counts and set the multiplicity (number of times we see 
the k-mer in the read set) as x and counts (number of k-mers with x multiplicity) as y. When 
differentiating the histogram, we compute the slopes and the first k-mer multiplicity with a positive 
slope defines the reliable k-mer threshold. Examples of these cutoffs are shown as dashed lines 
in Fig. 3c-d. The k-mer completeness is calculated as the fraction of reliable k-mers in the read 
set that are also found in the assembly.  
 
Consensus quality (QV) estimation 

 
We can also use k-mers to estimate the frequency of consensus errors in the assembly. We 

use a binomial model of k-mer survival, and assume all k-mers in the assembly should be found 
at least once in the read set. Here, we use the containment score from Mash Screen38 to estimate 
consensus accuracy. In brief, we estimate the probability P that a base in the assembly is correct 
as: 

 
 P = (Kshared / Ktotal)1/k 

 
Where the Ktotal is the total number of k-mers found in an assembly and Kshared are the number of 
shared k-mers between the assembly and the read set. If the read set is assumed to completely 
cover the genome, any k-mer found only in the assembly (Kasm = Ktotal - Kshared) likely reflects a 
base error in the assembly consensus. Hence, the error rate E can be defined as: 

 
E = 1 - P = 1 - (1 - Kasm / Ktotal)1/k 
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Using this formula, the widely used Phred41 quality score (often denoted as QV) can be computed 
by treating the E as base error probability: 
 

QV = -10 log10 E 
 
Positions of k-mers for mis-assembly detection 
 

Merqury reports the positions of the k-mers found only in an assembly for further investigation 
in .bed and .tdf formats that can be loaded into most genome browsers. In addition, the k-mers 
found in unexpected copy numbers (i.e. false duplications) are also provided as .bed and .tdf files. 
The format details are described at: 
https://genome.ucsc.edu/FAQ/FAQformat.html#format1 
https://github.com/igvteam/igv/wiki/TDF-Format 
 
Evaluating phasing completeness with parental genomes 
 
Haplotype specific markers (hap-mers) 
 

Parental haplotype markers can be obtained directly from the parental or ancestral 
genomes10. In brief, distinct k-mers found in only one parent are collected, and the erroneous low-
frequency k-mers are filtered out. This filtering strategy relies on the k-mer count histogram, where 
the cutoff for identifying reliable k-mers is computed as described above. When the child’s short-
read data is also available, the inherited haplotype-specific markers can be obtained by 
intersecting the child’s k-mers with the parental marker sets. This time, we keep the k-mer counts 
from the child’s reads for further ploidy estimation (Fig 3). 

 
Hap-mer blob plot 
 

To get a global visual representation of the phasing completeness on assembled sequences, 
we can count the total number of hap-mers found on each contig or scaffold (Fig 4c-d). Here, 
each axis becomes the number of hap-mers found in a sequence entry (contig or scaffold). Each 
circle (blob) represents a sequence, the size being relative to the length of the sequence. 
Sequence bubbles near the diagonal represent mixtures of markers from both haplotypes, while 
bubbles closer to a haplotype axis are predominately comprised of markers from a single 
haplotype. 
 
Phase block statistics and switch error 
 

Whenever a hap-mer switch occurs, Merqury can flag that position in the assembly and output 
a haplotype block report. This feature is useful for identifying phase blocks from a partially or 
completely phased assembly such as FALCON-Unzip9, FALCON-Phase12, or Supernova24. 
Merqury defines a phase block as a continuous sequence with at least two hap-mers originating 
from the same haplotype (Fig. 4a). Usually, short-range switches are caused by consensus, 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992941


21 

rather than phasing, errors. By default, Merqury allows at most 100 hap-mer switches per 20 kbp 
as short range switches within a phase block. Each unexpected hap-mer found will be counted 
as a switch error, but will not necessarily terminate the phase block. Ideally, when no switches 
are found, the phase block N50 will be the same as the scaffold N50 and the sum of the phase 
blocks will be identical to the assembled sequences. In reality, a scaffold often does not end with 
a haplotype specific sequence, so the total phase block length is shorter. Trio-binned or 
haplotype-resolved assemblies are a special case, where the entire haplotype assembly is 
essentially a single block. Still, in this case, hap-mers from the other haplotype can be counted 
as switch errors. Merqury also provides an option to restrict phase blocks to contigs and break 
the blocks at any gap. At the end, Merqury reports the number of switches and total hap-mers on 
each block along with the switch error rate in order to identify blocks with more frequent switch 
errors. 
 
Hap-mer copy number spectrum 
 

The total k-mer spectrum of the assembled individual is also useful for tracking the fates of 
hap-mers in a diploid assembly. Similar to the overall copy number analysis performed with 
spectra-cn plots, we can count k-mers in each haplotype assembly and estimate the 
completeness of haplotype-specific assembled bases compared to the hap-mer set. For example, 
by plotting separate density curves for hap-mers of different copy numbers in the assembly (Fig 
6), we can identify whether the assembly is artificially collapsing or duplicating sequence in each 
haplotype. If hap-mers appear over (or under) represented by the assembly relative to the read 
set, it is an indicator of artifactual duplication (or absence) of haplotype-specific sequence. When 
evaluating a pseudo-haplotype assembly, which is designed to collapse or pick one haplotype as 
much as possible, we can count the number of hap-mers present in the child’s read set but not 
present in the pseudo-haplotype assembly and use this to quantify the amount of under-
represented haplotype sequence. These missing hap-mers could then be used to identify a set of 
alternative haplotype reads that were incorrectly excluded from the assembly. 

 
Assemblies 
 

All TrioCanu assemblies were downloaded from Koren et al.10, available at 
https://obj.umiacs.umd.edu/marbl_publications/triobinning/index.html. The A. thaliana F1 
FALCON-Unzip assembly was obtained from Chin et al9. We generated a Canu assembly to show 
a typical example of an interim mixed-haplotype assembly that has not been polished or purged 
of haplotypic duplications. The same Pacific Bioscience reads was used for all three assemblies, 
obtained from Chin et al9. 

 
The Canu assembly was generated with Canu 1.9 release version using the following 

command: 
 
canu -p canu -d athalF1_notrio genomeSize=130m 'corOutCoverage=100' 
'batOptions=-dg 6 -db 6 -dr 1 -ca 500 -cp 50' 'batMemory=200' -pacbio-
raw *.fastq.gz 
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Haplotype specific k-mers (Hap-mers) for A. thaliana F1 and NA12878 
 

Appropriate size of k was obtained as k=18 for the A. thaliana F1 with 130~260 Mbp genome 
size and k=21 for NA12878 with 3.2~6.4 Gbp genome size using $MERQURY/best_k.sh. 

 
As parental Illumina sequencing was not available for this F1, the parental genome 

assemblies from Chin et al9. were used to obtain parental specific k-mers. Each assembly from 
the inbred Col-0 and Cvi-0 lines were downloaded from: 
https://downloads.pacbcloud.com/public/dataset/PhasedDiploidAsmPaperData/FUNZIP-
PhasedDiploidAssemblies.tgz. 

 
Meryl databases for the parental strains were built directly with meryl count k=18 output 

$hap.meryl $hap.fasta for each haplotype assembly. 
 
The parental Illumina whole-genome sequencing sets for NA12878 were downloaded from 

the high coverage dataset of the 1000 Genomes Project (NA12891 and NA12892) and combined 
with Illumina Platinum Genomes Project data from PRJEB3381. Illumina whole-genome 
sequencing of NA12878 was downloaded from PRJEB3381. 
 

All Meryl databases from sequencing read sets were built with 
$MERQURY/_submit_build.sh. Once the k-mer databases were built, inherited hap-mers 
were obtained with $MERQURY/trio/hapmers.sh. 
 
Merqury on all assemblies 
 

Merqury was run for the A. thaliana F1 and NA12878 with the following command line for 
diploid assemblies, where $hap1 and $hap2 are maternal (mat) and paternal (pat) for the 
TrioCanu assemblies, and primary (pri) and alternate (alt) for FALCON-Unzip assemblies. 

 
$MERQURY/_submit_merqury.sh $sample.k21.meryl mat.inherited.meryl 
pat.inherited.meryl $hap1.fasta $hap2.fasta $asm_name  

 
The A. thaliana F1 Canu assembly was run with: 
 

$MERQURY/_submit_merqury.sh $sample.k21.meryl mat.inherited.meryl 
pat.inherited.meryl canu.contigs.fasta Canu 
 
 
BUSCO 
 

BUSCO v3 was run on using embryophyta_odb9 for the A. thaliana Canu assembly and 
the combined Col and Cvi TrioCanu assembly with the following commands: 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992941


23 

 
python run_BUSCO.py -i asm.fasta -o SAMPLE -l embryophyta_odb9 -m 
genome -c 16 -sp arabidopsis 

 
For NA12878, BUSCO was run in the same way, using mammalia_odb9 for the combined 

TrioCanu maternal and paternal assembly. BUSCO scores for each haplotype of A. thaliana F1 
and NA12878 were obtained from Koren et al.10 Supplementary Table 2. 
 
QV estimates 
 

CPU Time, memory consumption, and disk usage was measured for generating QVs on each 
haploid assemblies and the combined diploid assembly. A Intel(R) Xeon(R) Gold 6140 CPU @ 
2.30GHz node was used allowing up to 24 CPUs. Detailed node information is available at 
https://hpc.nih.gov. 
 
Meryl-based QV 
 

Meryl-based QV estimation to benchmark computing resources was evaluated for the 
counting (count), merging (union-sum), and QV steps with the following command: 

 
$MERQURY/eval/qv.sh NA12878.k21.meryl mat.fasta pat.fasta meryl_qv 
 

This generates Meryl databases for mat.fasta and pat.fasta, does a union for the databases, 
and generates QV scores for all three combinations (maternal, paternal, and both). 
 
Mash-based QV 
 

Mash-based QV estimation was performed using sketch size of 1000000 with the same k-
mer size of 21: 
 
mash sketch -s 1000000 -k $k $asm 
mash screen -p $cpus $asm.msh `cat $input_fofn | tr '\n' ' '` > 
$name.msh.idy 
cat $name.msh.idy  | awk -v name=$name '{print name"\t"$2"\t"-
10*log(1-$1)/log(10)"\t"(1-$1)}' | tr '/' '\t' > $name.msh.qv 
 
Mapping-based QV estimates 
 

The Illumina WGS reads used to build the Meryl database were aligned to both mat.fasta and 
pat.fasta using BWA42. Base pair errors were called using FreeBayes43 v1.3.1 --skip-
coverage 600, skipping variant calling in regions with >600x read depth to help prevent 
unnecessary computing on high coverage regions that violate the diploid assumption. The exact 
commands used were: 
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# Add mat and pat at sequence names to prevent naming collisions in 
contigs 
sed ‘s/>/>mat_h_/g’ mom.fasta > mat.fasta 
sed ‘s/>/>pat_h_/g’ dad.fasta > pat.fasta 
 
# bwa indexing 
bwa index both.fasta 
 
# bwa alignment 
bwa mem -t 24 both.fasta F_1.fastq.gz F_2.fastq.gz > na12878.sam 
 
# Sorting and converting to bam 
samtools sort -@24 -O bam -o na12878.bam -T na12878.tmp na12878.sam 
 
# Freebayes variant calling 
freebayes --bam na12878.bam --skip-coverage 600 -f both.fasta | 
bcftools view --no-version -Ou > na12878.tmp.bcf 
bcftools index na12878.tmp.bcf 
 
# Normalize indels 
bcftools view -Ou -e'type="ref"' na12878.tmp.bcf | bcftools norm -Ob -
f both.fasta -o na12878.bcf --threads 24 
bcftools index na12878.bcf 
 
# Filter out low quality variant calls 
bcftools view -i 'QUAL>1 && (GT="AA" || GT="Aa")' -Oz --threads=24 
na12878.bcf > na12878.changes.vcf.gz 
bcftools index na12878.changes.vcf.gz 
 
# Get number of bases called as errors 
bcftools view -H -i 'QUAL>1 && (GT="AA" || GT="Aa")' -Ov 
na12878.changes.vcf.gz | awk -F "\t" '{print $4"\t"$5}' | awk 
'{lenA=length($1); lenB=length($2); if (lenA < lenB ) {sum+=lenB-lenA} 
else if ( lenA > lenB ) { sum+=lenA-lenB } else {sum+=lenA}} END 
{print sum}' > na12878.numvar 
 
# Get number of bases with alignment 
samtools view -F 0x100 -u na12878.bam | bedtools genomecov -ibam - -
split > aligned.genomecov 
awk -v l=3 -v h=600 '{if ($1=="genome" && $2>l && $2<h) {numbp += $3}} 
END {print numbp}' aligned.genomecov > na12878.numbp 
 
# QV calculation 
NUM_BP=`cat na12878.numbp` 
NUM_VAR=`cat na12878.numvar` 
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QV=`echo "$NUM_VAR $NUM_BP" | awk '{print (-10*log($1/$2)/log(10))}'` 
echo $QV 
 
 
This pipeline is used in the Vertebrate Genomes Project, and the code used is available from 
https://github.com/VGP/vgp-assembly/tree/master/pipeline/ under the “bwa”, “freebayes-polish”, 
and “qv” directories. 
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