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Abstract 

Over the last decades, several features of obesity have been identified at behavioral, 

physiological, endocrine and genomic levels, and they have revealed the complexity of the 

disease; obesity results from a combination of genetic predisposition, endocrine disorders, and 

dysregulation of both food intake and energy expenditure. This complexity makes the 

development of new therapeutic regimens challenging and bariatric surgery is still the treatment 

of choice for many obese patients. Given the need for noninvasive therapeutic intervention 

strategies, we sought to systematically study the biological manifestations of obesity in 

peripheral organs. We analyzed publicly available datasets of genes, genomic determinants, and 

levels of obesity-related hormones in the blood, using a combination of methodologies, including 

graph theory and dynamical modeling, that allow for the integration of different types of 

datasets. The analysis revealed tissue- and organ-specific metabolic impairments and potential 

new drug targets. All the data are organized into a tissue/organ-based subcellular-function atlas 

for human obesity. The data show that the complexity of the obesity arises due to the multiplicity 

of subcellular processes in different peripheral organs. 
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Introduction 

Over the past decade, the prevalence of obesity and severe obesity among adults has risen to 

almost 40% of the world population [1].  According to the World Health Organization (WHO), 

obesity is a health issue not only in high income, but also in low- and mid-income countries, and 

is a risk factor for many chronic diseases including diabetes, cardiovascular diseases and cancer 

[2]. Obesity has been extensively studied at the behavioral, physiological, endocrine, and, more 

recently, the genomic level [3-6]. All these different biological levels and the interactions among 

them play a role in both the etiology and the pathophysiology of obesity and contribute to its 

complexity. Obesity is physiologically defined as a body mass index (BMI) of over 30kg/m2; it 

manifests itself as a combination of genetic predisposition, dysregulation of food intake and 

energy expenditure, and as an endocrine disorder making it challenging to develop therapeutic 

approaches to maintain body weight in a healthy range [3, 4]. After many years of trying, several 

large pharmaceutical companies have discontinued programs for the development of anti-obesity 

drugs [7]. Although there have been recent studies of peripheral drug targets for the treatment of 

obesity (incidental data have shown that GLP-1 agonists can be effective in moderate weight loss 

[8]), most FDA-approved drugs have primary targets in the Central Nervous System (CNS) [7]. 

Currently, the most effective treatment for obesity is bariatric surgery [9]. Given the need for 

new therapeutics that can control obesity without surgery, we hypothesized that we could 

identify potential novel therapeutic targets by systematically studying biological expressions of 

obesity in peripheral organs. We decided to utilize publicly available data because an enormous 

amount of information exists that can be analyzed using multiple computational systems biology 

approaches allowing for the integration of diverse types of datasets and models.  
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In principle, it is straightforward to argue that changes in genes and genomic determinants lead 

to alterations in cell biological pathways, and these, in turn, affect tissue and organ function, and 

finally whole-body physiology. However, it has been difficult, in practice, to connect the 

genomic information to the dynamics of physiological functions [10]. A recent review 

demonstrates the utility of integrated analyses of genomic determinants such as Single 

Nucleotide Polymorphisms (SNPs) with biological and behavioral determinants in obesity [11]. 

We sought to determine the relationships between genomic and molecular determinants and 

the dynamics associated with lean and obese physiological states.  Data from patients after 

bariatric surgery provided a sample of subjects who had been obese but who had reduced their 

weight and BMI toward normal levels. As a measure of the physiological states, we used 

orexigenic and anorexigenic hormone levels in the blood and their changes after feeding. We 

hypothesized a) that genetic predisposition could be linked to endocrine impairment in energy 

homeostasis; b) that different tissues and organs could respond differently to genetic 

predisposition and endocrine impairment at the level of gene expression; c) that this variability 

could produce differences in catabolism and anabolism and confer distinct physiological profiles 

in lean, obese, and post-bariatric-surgery individuals. Because the effects of the same genetic and 

genomic determinants on cellular pathways may vary among different tissues and organs, we 

decided to map the genes and their associated cell biological processes to six peripheral 

tissues/organs that are known to be involved in nutrient processing and energy storage: stomach, 

intestine, pancreas, liver, adipose tissue, and skeletal muscle [12]. Upon performing this analysis, 

we organized the information as an atlas for human obesity, containing data from multiple 

biological levels.  
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The basic framework for the construction of the atlas is shown in Figure 1. The flow chart used 

for the analyses is shown in Supplementary Figure S1, and the databases used in the study are 

listed in Supplementary Table S1. The major goal of our mapping was to identify key genes 

and subcellular pathways by integrating the genomic and endocrine information using several 

computational methods. Genomic and genetic data were obtained from public databases [13-16] 

and then expanded utilizing the human interactome to take into consideration the role of possible 

intermediate genes. Because differences in endocrine regulation following food intake have been 

shown in lean, obese and post-bariatric surgery individuals [12], we determined whether such 

differences could be linked to genetic predisposition and how they would affect the genomic and 

genetic data. We used published data on changes in plasma levels of orexigenic and anorexigenic 

hormones to analyze physiological differences between lean and obese individuals and the 

effects of bariatric surgery on the plasma levels of hormones related to the regulation of food 

intake and obesity. We then developed a dynamical model that allowed us to identify those 

kinetic parameters that regulate the hormone levels in the systemic circulation and are more 

likely to be different in lean, obese, and post-bariatric surgery subjects. These findings allowed 

us to rank these kinetic parameters and the genes that are associated to them; the genes were then 

mapped onto the genomic and genetic network and weighted according to their significance in 

physiological functions; because we had three different physiological profiles, three endocrine-

weighted genetic and genomic networks were obtained. To organize the information in terms of 

anatomy and biological functions, we filtered the ranked networks according to organ level 

transcriptomic patterns in humans [17]. We then used a combination of the FDA Adverse Events 

Database (FAERS) and DrugBank data [18, 19] to identify targets of drugs that have side effects 

of either weight gain or weight loss and drugs used for weight control whose targets include 
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peripheral tissues and mapped these targets to the appropriate organs. The organ-selective gene 

lists were then used to identify relevant subcellular metabolic processes, leading to the creation 

of an atlas of obesity-related genes and subcellular processes in the stomach, pancreas, liver, 

adipose tissue, intestine, and muscle of the human body. The atlas illustrates how catabolic and 

anabolic subcellular processes differ at the tissue/organ level in lean, obese, and post-bariatric 

surgery individuals.  

Results 

Genetic and genomic datasets  

We searched the NCBI Gene database and the EBI GWAS catalog (Supplementary Table 

S1) [13-16] to identify genetic and genomic variability associated with BMI in humans. The 

NCBI Gene database contains genes that have been associated with specific traits in 

published studies (2006-2018). The GWAS catalog includes all the SNPs and mapped genes 

associated with diseases or traits in published studies from 2006 to 2018. The overall strategy 

for identifying relevant genes is shown in Supplementary Figure S2. As of April 2018, we 

identified 2527 genes associated with either “obesity”, “body mass index”, “overweight”, “free 

fatty mass”, or “leanness” from the NCBI Gene database (Supplementary Figure S2). The 

complete list of query terms and the number of associated genes is shown in Supplementary 

Table S2. The list of genes and associated publications are shown in Supplementary File 1. 

Genomic variability was incorporated as SNPs associated with obesity, leanness, and obesity-

related traits with a p-value ≤ 5*10-8 from the EBI GWAS catalog (Supplementary Figure 

S3). The SNPs were mapped to a total of 324 regions that were utilized for subsequent analysis 

(Supplementary Figure S3, Supplementary Table S3, Supplementary File 2). Common to 

both sets were 117 genes, yielding 2734 unique genes (Figure 2A) that are distributed among 
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all chromosomes except the sex chromosomes (Figure 2B). To further identify all the genes 

related to pathways involved in obesity, we built a protein-protein interaction (PPI) network, 

using proteins encoded by the 2734 unique genes from the two datasets as seed nodes. Using 

the nearest neighbor expansion method, we then identified proteins in the human interactome 

that were one intermediate node between seed nodes. This process resulted in a network of 

7268 gene products that, at this stage of the study, were considered to have equal statistical 

significance and constituted the main dataset for subsequent analyses (Figure 2C and 

Supplementary Figure S4). To identify the major biological processes that these genes 

participate in, we performed an enrichment analysis for biological processes utilizing the 

Molecular Biology of the Cell Ontology (MBCO) algorithm [20]. This algorithm allows for the 

identification of interactions between subcellular processes (SCPs) and classifies them into 

hierarchical levels according to their function. The analysis showed that the genes from the 

unfiltered PPI network dataset seemed to be significantly related to cellular communication, 

lipid metabolism, cellular response to stress, extracellular matrix homeostasis, metabolism, and 

transport of glucose and lipids (Figure 2D and Supplementary Figures S5, S6, and S7).  

Endocrine dynamics datasets 

Impairment in hormonal regulation of hunger and satiation is a pivotal physiological marker of 

obesity [12].  One reasonable explanation for the observed differences between lean, obese, and 

post-bariatric surgery states is that kinetic regulation of hormones could be different in these 

three physiological states. To assess this, we developed a dynamical model that describes the 

basal secretion, stimulus-evoked secretion, utilization, and degradation of 3 orexigenic and 8 

anorexigenic peripheral hormones in human subjects [8, 21-32]. Synthesis and storage of the 

hormones were not considered explicitly but were subsumed as part of the secretion rate. Our 
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goal in developing this dynamical model was to identify the kinetic parameters to which 

hormone levels were most sensitive. These kinetic parameters, in turn, can be associated with 

cellular pathways and genes related to obesity.  Our general strategy was to choose parameter 

values in the model by fitting model time courses to experimentally measured blood hormone 

levels, before and after a meal. As we do not know if these are the true biologically 

relevant parameters, we then conducted extensive parameter variations followed by multivariable 

regression analyses to identify the most sensitive kinetic parameters associated with the levels of 

each hormone. 

We collated plasma level concentrations at seven time points from published studies [8, 24-32] 

to include a fasting state (-120min-0min), a feeding point (at 0 min) and a post-prandial state (0-

120min). Four hours is the usual timeframe for blood sample collection in published studies, so 

we ran our simulations accordingly. The model reproduces the biological response to the 

ingestion of glucose as follows: glucose stimulates ghrelin (GHRL) secretion from the stomach. 

Absorption by the intestine stimulates the secretion of glucagon-like peptide-1 (GLP-1), 

cholecystokinin (CCK), oxyntomodulin (OXM), gastric inhibitor peptide (GIP), and peptide YY 

(PYY). Once absorbed, glucose delivery to the pancreas via the mesenteric circulation stimulates 

the secretion of insulin (INS), glucagon (GCG), and amylin (AMY), and delivery to adipocytes 

via the systemic circulation stimulates secretion of leptin (LEP) and adiponectin (ADIPOQ) 

(Figure 3A). According to the literature, in the lean subjects, orexigenic hormones (GHRL, 

ADIPOQ, and GCG) show higher fasting levels and lower post-prandial levels. The anorexigenic 

hormones (INS, GLP-1, CCK, OXM, GIP, PYY, and LEP) present lower fasting levels and 

higher postprandial levels. In obese subjects, hormone responsiveness to nutrients was reported 

to be totally (GHRL, ADIPOQ, GLP-1, PYY, OXM) or partially impaired (GCG, LEP, INS, 
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AMY, CCK, GIP). Plasma levels of some hormones in post-bariatric surgery patients lie between 

the lean-curves and the obese-curves (GHRL, GCG, LEP, AMY, GIP), while others appear 

higher than in either lean or obese individuals (INS, CCK, GLP-1, PYY, and OXM) (Figure 

3B). We ran simulated time courses for lean, obese and post-bariatric surgery subjects in a 

fasting and a postprandial state to estimate reliable initial values for the kinetic parameters such 

that the simulated curves closely resembled published experimental data [8, 25, 27, 28, 30-33] 

(Figure 3B  and Supplementary File 3).  

The magnitude of the endocrine response to nutrients can be assessed by the difference in plasma 

levels of the hormones before and after the meal. To quantify it, we chose to calculate the ratio 

between the 2-hour area under the curve (AUC) of the postprandial plasma concentration and the 

2-hour AUC of the fasting plasma concentration for each hormone (Figure 3C and 

Supplementary Figure S8). To identify which kinetic parameters are more likely to affect the 

endocrine response represented by the AUC, we performed a multivariable regression analysis 

(MRA) [34]. The logic of this analysis was to randomly vary the initial values of the set of 

kinetic parameters used in the model a number of times (Supplementary Figure S9), utilizing 

each new set of values to run a simulation that by varying each parameter affects the output and 

expresses it in terms of a numerical Partial Least Square Regression (PLSR) coefficient: the 

higher the coefficient, the more sensitive is the response to the parameter; the lower the 

coefficient, the more robust is the response to changes in the parameter. The kinetic parameters 

for lean, obese, and post-surgery populations were then ranked according to the coefficients. The 

methodology is schematically shown in Figure 3D and Supplementary Figure S10 and fully 

explained in online methods. 
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We focused on the top ten most sensitive kinetic parameters from simulations of lean, obese, 

and post-bariatric surgery subjects because they account for 90% of the total sensitivity 

(Figure 3E). This analysis can indicate both the processes that have the greatest effects on 

hormone levels and how their relative importance can be different between physiological 

states. For instance, most of the top-ranking parameters involved the degradation and 

utilization of anorexigenic hormones, except for ghrelin, which ranked highly in all three 

physiological states. In lean subjects specifically, oxyntomodulin and amylin also seem to play 

an important role, while insulin ranked lower. In obese subjects, leptin secretion scored the 

highest, but cholecystokinin and amylin were among the top five. Glucagon-like peptide 1 

seems to play a key role as well, providing an unbiased physiological reason for its therapeutic 

use for obesity [35]. In post-surgery subjects, utilization of hormones secreted by the intestine 

appeared to play a key role, and it could, in part, be related to the changes in the anatomy of the 

patients due to the surgery.  

Mapping of the physiological responses onto the genetic and genomic determinants 

We determined whether there were correlations between the genetic and genomic dataset 

(Figure 2C) and the physiological regulation results (Figure 3E). To identify genes that are 

associated in the literature with each kinetic parameter, we text-mined the PubMed database 

utilizing the MBCO algorithm [20]. For each parameter, we obtained a list of genes ranked by 

their association to it based on published data (Figure 4A). Each gene was then assigned an 

average rank defined as the mean of the MBCO rank and the MRA rank for the associated 

parameter (Figure 4A). Because the same gene can have a different average rank in lean, 

obese, and post-surgery subjects due to different MRA ranking of the parameter in the three 

populations, we obtained population-specific gene ranks that incorporated their predicted 
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endocrine sensitivity (Figure 4B).  The complete list of genes and parameters is in 

Supplementary File 4. 

We looked for the genes identified in the endocrine sensitivity analysis in the unfiltered genetic 

and genomic PPI network (Figure 4B) and weighted them using the average rank previously 

calculated. Because these rank values are population-dependent, we generated lean-, obese-, 

and post-surgery PPI networks (Figure 4B). The genes that are present in the endocrine dataset 

but not in the genomic and genetic dataset were weighted according to their distance from the 

ranked genes. This mapping allowed us to classify the genetic and the genomic dataset 

according to its connection with the endocrine ranked genes and to create population-specific 

networks: genes that are present in both datasets ranked at the top; genes that are present in the 

endocrine dataset but not in the genomic and genetic dataset ranked lower. 

Because the same gene products can differ in expression, regulation, and function in different 

tissues which have significant roles in weight control, we investigated which genes in the 3 PPI 

networks were expressed in peripheral tissues/organs of interest.  We obtained the tissue/organ-

specific mRNA expression data for each gene from the GTEX portal for adipose tissue, 

intestine, liver, skeletal muscle, pancreas, and stomach (Supplementary Figure S11). We 

divided the genes of the three subnetworks according to their expression in the 6 

tissues/organs. The analysis generated 18 PPI subnetworks, one for lean, obese, and post-

surgical subjects in each of the 6 tissues. 

While most weight-loss drugs that have been marketed have primary targets in the CNS, it may 

be advantageous to seek peripherally active therapeutic approaches. We determined whether 

any FDA-approved drugs that have a high risk of weight gain or weight loss as side effects 
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have as secondary targets, gene products in any of the subnetworks (Supplementary File 5). 

We selected drugs that have exclusively peripheral targets and drugs that have both peripheral 

and Central Nervous System (CNS) targets. Drugs with exclusively CNS targets, as lorcaserin 

and phentermine, were excluded. The respective targets for each drug were obtained from 

Drugbank [19] and DGIdb [36]. The top 10 drugs associated with weight gain and weight loss, 

and their targets are presented in Figure 6. We mapped the targets onto the tissue-specific 

subnetworks (Supplementary Figure S12 and S13). 8 weight gain-associated targets and 11 

weight loss-associated targets are distributed among the 6 tissues/organs of interest so that each 

contains at least one target (Figure 5). The implications of this result are two-fold: first, the 

presence of known secondary targets in the subnetworks generated by our analysis indicates 

that one reason behind the complex pathophysiology of obesity may be that determinants can 

be identified in several levels. Second, because the CNS-associated side effects of anti-obesity 

drugs are undesirable, it suggests the possibility that we can identify new peripheral targets to 

treat obesity.  

Catabolic and anabolic differences in lean, obese and post-surgery subjects 

To evaluate differences in catabolism and anabolism in our PPI models of lean, obese and post-

surgery subjects, we identified, utilizing the MBCO algorithm, the subcellular processes that 

the gene products in the 18 subnetworks participate in [20] (Supplementary Figure S14). We 

classified these metabolic processes as catabolic and anabolic processes, according to standard 

textbook criteria [37]. Ratios of catabolic and anabolic processes within the top 100 subcellular 

processes within each of the six tissues and organs of interest and each physiological condition 

were calculated. 
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Interestingly, lean and post-surgery subjects show a higher number of subcellular catabolic 

processes, while obese subjects have similar numbers of each (Figure 7). When the subcellular 

processes are analyzed at the organ level, results vary considerably, and the apparent similarity 

of lean and post-surgery subjects is lost. In lean subjects, catabolic processes seem to be 

favored in pancreas, intestine, and muscle, but with ratios close to 1 in liver, stomach and 

adipose tissue. In post-surgery subjects, catabolic processes predominate in liver, stomach, and 

muscle, ratios are close to 1 in the intestine and adipose tissue, and anabolic processes 

predominate in the pancreas. These differing profiles merit further study. In obese subjects, 

catabolic processes predominate only in the liver, anabolic in stomach, pancreas, and adipose 

tissue, and ratios approach 1 in muscle and intestine. The large change in the catabolic/anabolic 

ratio in the stomach in post-surgery versus obese or lean subjects could reflect changes in the 

gastrointestinal anatomy due to surgical removal of a portion of the stomach. Our results 

suggest that anabolic and catabolic processes in the pancreas, intestine, and muscle could be 

considered as potential peripheral targets for future combination therapeutic treatments, since 

in obese subjects the catabolic/anabolic ratio in these organs is less than 1 meaning the 

anabolism is dominant while in the lean subjects this ratio is higher than 1 in these organs 

meaning that catabolism is dominant. These organs can be targeted to change the ratio and 

balance between the catabolism and anabolism in obese subjects.  (Figure 7)  

Discussion 

This atlas, to the best of our knowledge, is among the first to contain most obesity-related 

genetic, genomic, transcriptomic and physiological data and to show their interactions focusing 

on non-CNS targets. Our aim in developing the atlas is to obtain new knowledge on the 

pathophysiology of obesity and to help catalyze new drug-based therapeutic approaches for 
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treating obesity. Most published atlases have focused on molecular data such as gene expression 

profiles [38, 39]  or relationships between gene expression and pathology [40, 41]. Typically, the 

physiology of obesity has been approached by analyzing one or a few hormones levels in the 

blood at a time [8, 21-29], not adequately taking into consideration the complexity of the 

disease. A key finding from our atlas is that multiple tissues/organs are likely to have 

significant involvement in obesity, and it may not be possible to rank them and the potential 

drug targets within them in a simple manner. 

Our bottom-up integrative analysis offers multiple insights of the biological organization 

combining genetic and genomic determinants with different types of physiological dynamics. 

Several features of our method illustrate how it can be transferable to the study of other 

systemic diseases. First, it utilizes publicly available knowledge and allows scaling the 

information by systematic statistical analysis. Second, it allows the integration of datasets: static 

and dynamic, unbiased, and specified. Third, it permits prediction for tissue/organ-selective new 

combinatorial drug targets that can be further experimentally tested. We took data from several 

biological levels, from molecular whole genomic data to cell-level transcriptomic data, to organ-

level endocrine data, in order to exhaustively characterize 3 different phenotypic states: lean, 

obese, and post-bariatric surgery. The integration achieved by connecting dynamical models to 

network models enables us to identify subcellular processes within the organs of interest. It 

should be noted that PPI networks allow for the identification of intermediate genes or gene 

products that could be potentially overlooked  [42]. The computational model of the hormone 

levels and the regression analysis allow for the study of a system from a dynamic perspective and 

for ranking cell-level information. The use of transcriptomic expression profiles for various 

organs (Figure 5) provides a facile approach to parse the physiological state-selective molecular 
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networks into tissue/organ-based physiological state-selective networks. Enrichment analysis of 

subcellular biological processes permits us to identify the interactions between the different 

datasets from a functional perspective. This ability to resolve the molecular networks provides 

insight into the different cellular pathways related to obesity that are operational in different 

tissues and organs. While the role of the central nervous system as a target for control of body 

weight [43] has been well studied in terms of hunger circuits [44], similar information regarding 

other tissues and organs have not been available until now. Our analysis unravels the complexity 

underlying obesity using a systems biology approach: genomic determinants widely distributed 

on all the non-sex chromosomes (Figure 2) and cellular pathways that are operational in many 

tissues and organs (Figure 7, Supplementary Figure S14). From the perspective of 

physiological states, our findings provide a clear representation of the divergence of the plasma 

level of several metabolic hormones and of the catabolic and anabolic subcellular processes 

among lean, obese and post-bariatric surgery patients in six tissues and organs. In this context, 

skeletal muscle, pancreas, intestine and adipose tissue emerged as the most perturbed 

(compared to the lean state) by the obese state. Stomach, liver, pancreas and skeletal muscle 

seem to be the most perturbed (compared to the lean state) in the post-bariatric surgery state. 

Thus, it appears that the post-bariatric state is different from the lean state in terms of organ 

function, although they are phenotypically similar. We believe this represents the first 

identification of the perturbation of pathways implicated in energy production and expenditure 

in obesity by data integration. Additionally, from the atlas, we can deduce by unbiased analysis 

that in lean people catabolic processes predominate while in obese people anabolic processes 

predominate. Although this conclusion is intuitively obvious, have it established by unbiased 

information and analysis of multiple datasets, our findings provide a clear representation of the 
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divergence of the level of several energy-regulating hormones and of the divergence in the 

catabolic and anabolic subcellular processes among lean, obese and post-bariatric surgery 

patients. According to our analysis, these alterations stem primarily from perturbed transport and 

mobilization of cholesterol and LDL, glycolysis, and glycogen synthesis (Supplementary 

Figure S14). Despite this relatively simple overall conclusion, the distribution of these 

anabolic and catabolic processes among multiple organs highlights the underlying complexity 

in going from physiological knowledge to drug development.  Adipose tissue, intestine and, 

rather unexpectedly, stomach seem to be the most promising organs for new potential drug 

targets (Table 2), although we cannot fully discount whether the use of data from bariatric 

surgery influences our ranking of the stomach. According to our results, PPARG (peroxisome 

proliferator-activated receptor gamma) seems to be significant in adipose tissue and intestine, 

and PPARA (peroxisome proliferator-activated receptor alpha) in muscle, intestine, and liver. 

This is consistent with their roles in glucose metabolism and fatty acid storage. ADBR2 (the 

beta-2-adrenergic receptor) which is known to participate in glycogenesis and gluconeogenesis 

in the liver and skeletal muscle, seems to play a role in adipose tissue as well. In the intestine, 

the presence of IL7R  (interleukin7 receptor) and PTGDR2  (prostaglandin DP2 receptor) 

could be an indication of inflammatory states, which have been shown to be correlated with 

obesity [3]. ALDH3A1 (aldehyde dehydrogenase 3 family member A1) is involved in lipid 

peroxidation and could represent an interesting target for further investigation.  While the 

presence of several genes of the cytochrome family is to be expected in the liver, our results 

suggest that APOF (apolipoprotein F) involved in the transport of cholesterol, could be 

considered for future therapeutic approaches.  
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 Overall, our analysis indicates that drug treatment of obesity aimed at non-CNS targets is most 

likely to be successful if it is pleiotropic in nature, affecting cellular regulation at multiple 

sites. 

Online Methods 

Human genetic dataset 

The human genetic dataset is composed of genes selected from the NCBI Gene Database by text 

mining. Using “trait + [orgn] homo sapiens” as a query term we retrieved genes that were 

associated with 12 terms related to obesity according to published literature as of May 2018: 

“obesity”, “obese”, “bariatric surgery”, “Body Mass Index OR BMI”, “fat”, “fat mass”, “fat free 

mass OR FFM”, “lean OR leanness”, “overweight”. A cut-off of at least 2 publications per gene 

was set. We retrieved 2734 overall unique genes. The trait-specific and complete list of genes 

can be consulted in the Supplementary File 1.  

Human genomic dataset 

To create this dataset we collected genomic data available in the Genome Wide Association 

Studies Catalog [3, 45] from the May 2017 version. The GWAS data are currently mapped to 

Genome Assembly GRCh38.p7 and dbSNP Build 147. From the list of selectable diseases and 

traits in the catalog we selected 11 terms of interest for our study with their respective list of 

SNPs and associated genes: adiposity, body fat percentage, body mass (lean), body mass index, 

fat body mass, obesity, visceral adipose tissue/subcutaneous adipose tissue ratio, waist 

circumference, waist-hip ratio, weight, weight loss (gastric bypass surgery). The respective 

numbers of SNPs, intergenic and intragenic regions are listed in Supplementary Table S3. The 

results were filtered to exclude studies that didn’t provide replication; only adult subject cohort 
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studies were considered; finally, only SNPs that were associated with traits with p-value ≤ 5*10-

8, the standard genomic statistical significance threshold, were selected. A total of 751 SNP-trait 

associations, 220 mapped genes, and 30 intergenic regions were found. To obtain a list of unique 

SNPs, if a SNP was reported in more than one study, only the most significant SNP-trait 

association score (smallest p-value) was considered. The GWAS catalog already provides 

genome mapping for the listed genes. Nevertheless, the mapping was further manually curated 

utilizing Genome Browser [15]  to assess any new potential mapping though ENCODE [14]. The 

final curated list of SNP-trait associations for each trait of interest is stored in Supplementary 

File 2.   

Protein-Protein interaction network analysis 

We utilized X2K software [46] to create a protein-protein interaction (PPI) network. X2K 

provides a large-scale protein-protein interaction network made from 18 sources that connect 

seed lists of genes/proteins. The user can map a list of seed genes to a human interactome. We 

utilized the 2631 genes in the genetic and genomic datasets as seeds to build a PPI network. A 

path length of 2 was chosen meaning that the path between two seed nodes requires two edges to 

connect the nodes, so there is only one intermediate protein between them, i.e., a protein that 

interacts with both seed nodes. BIND [47], HPRD [48], MINT [49], Biocarta [50], InnateDB 

[51], MIPS [52], SNAVI  [53], BioGRID [54], INTact [55], DIP [56], PDZbase [57], and KEGG 

[58] databases were selected to extrapolate the intermediate genes from the human interactome. 

4637 intermediates were identified.  

Multicompartmental dynamical model 
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We built multicompartmental dynamical models using coupled ordinary differential equations to 

describe the endocrinological response to glucose ingestion in a lean, obese, and post-bariatric 

surgery human subject by modeling the plasma levels of eleven hormones associated with the 

regulation of satiation and appetite. We built a model for each hormone and used the same 

glucose stimulus for each. Our model differs from the previously published ones [59, 60] 

because (a) it describes endogenous instead of exogenous plasma levels of the hormones; (b) it 

provides the kinetic behavior of eleven hormones; (c) it takes into account multiple 

compartments and organs; (d) it describes three different physiological states; (e) the aim of the 

model is to identify a set of kinetic parameters that best describe the temporal progression of the 

experimentally observed values.  These parameters would then allow us to determine statistically 

significant differences between lean, obese and post-bariatric surgery endocrinology.  These 

parameters can then be varied in an unbiased manner to identify the fragile and robust 

parameters of the system as whole. 

 

Collation of the experimental data of hormone plasma levels 

Data points for each individual time course were obtained from published data [8, 22-32]. 

Inclusion criteria for the published data were: a) The selected hormone must be associated to the 

regulation of appetite level and satiation level in human subjects; b) The plasma level of the 

hormones must be endogenous; c) Time points must cover at least one hour of a fasting state and 

two hours of a postprandial state; d) Subjects should not be affected by any comorbidity; d) Post-

surgery subjects must have undergone Roux Y Gastric Bypass and should preferably be one year 

post-surgery. 
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Data points for lean, obese and post-RYGB surgery were collected for 3 orexigenic hormones 

(ghrelin, adiponectin, and glucagon) and eight anorexigenic hormones (leptin, insulin, amylin, 

cholecystokinin, peptide YY, glucagon-like peptide 1, gastric inhibitory peptide-1, 

oxyntomodulin) (Supplementary Table 4). Each point in every time course is the mean ± 

S.E.M. of time points from different published data (A complete list of the time points is 

provided in Supplementary File 3). All the different units of concentration of hormones were 

converted to pmol/L utilizing the molecular weight of each hormone.  

 

Compartmental dynamic ordinary differential equation (ODE) model 

Our model describes the kinetics of eleven different hormones secreted by the different organs in 

the digestive system in response to meal ingestion. Glucose digestion, absorption, production, 

utilization and degradation and each hormone's secretion, first pass through the liver, utilization 

and degradation were considered. The model comprises seven explicit compartments (stomach, 

intestine, pancreas, adipocytes, plasma, muscle and liver) and one black-box compartment 

(degradation). A scheme of the interactions in the model is shown in Figure3A. Given the 

complexity of the system, and the availability of only plasma glucose and hormone 

concentrations to find the parameters,  the  parameter estimation methodologies were used to 

build a reliable model [61-64]. The model parameters were numerically identified by nonlinear 

least-squares as implemented in MATLAB 2018a. 

 

Glucose Kinetics. 

Endogenous Glucose Production (EGP):  
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The functional description of EGP in terms of glucose and insulin signals comprises a direct 

glucose signal and both delayed and anticipated insulin signals 

��� � ��� � ������	
������ � ������
	
���� � ������
����� 

����0� � ��������  

where ���	
������ is the concentration of the plasma glucose, ���
����� is the concentration of 

insulin in the portal vein, ���
	
���� [INS]delay is a delayed insulin signal realized with a chain 

of two compartments: 

 

������
�����1

��
� ������
��������� � ���
	
�������� 

������
�����2

��
� ������
	
������� � ���
	
�������� 

 

��� (mg/kg/min) is the basal rate of EGP at zero glucose and insulin, ��� (min-1) is the parameter 

for liver glucose effectiveness in reducing plasma glucose, ��� (mg/kg/min/(mol/l)) is the 

parameter governing amplitude of insulin action on the liver, ��� (mg/kg/min/(mol/kg))  is the 

parameter for amplitude of portal insulin action on the liver and ��  is the  parameter accounting 

for delay between the insulin signal and insulin action. EGP is also constrained to be non-

negative.  

Glucose Ingestion and Absorption: Glucose transits through the stomach and intestine by 

assuming the stomach to be represented by two compartments (one for solid, ���	
�������, and 

one for triturated phase, ���	
�������), while a single compartment is used to describe the 

intestine. Glucose concentration in the stomach as a function of time is given by: 
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Glucose concentration in the intestine is given by: 

����	
���
����
�� �  ���� � ���	
������� � ���� � ���	
���
����
 

Glucose Utilization:  

Hormone-independent utilization represents glucose uptake by the brain and erythrocytes 

�������. Peripheral tissue hormone-dependent utilization depends non-linearly on glucose in the 

tissues and it is described by a Michaelis–Menten kinetics: 

����_�����
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As we have 11 hormones: 

� � ��� !" #$
�����
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�

 

Total glucose utilization ����: 

������� �  ����������
��� � ������� 

Hormone Kinetics 

Glucose ingestion triggers the secretion of orexigenic and anorexigenic hormones from different 

peripheral organs and tissue. 

Hormone Secretion:   
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Hormone secretion into plasma by specific organs occurs if glucose concentration in that organ 

exceeds a certain threshold. Hormone-specific secretions are described below. 

Stomach Secretion of Ghrelin (GHRL): 

If %���� &���� �����	


!���
� �����' ( ��������  

then ghrelin secretion is triggered: 

���-./
#�

�� � �0���� � ���-./
#�

��� � 0���� � %��������	
����������

� ������
� 

otherwise 

���-./
#�

�� � �0���� � ��-./
#�

��� � 0���� � ����_$���� 

Where 0���� (min-1) is the delay between the glucose signal and ghrelin secretion, %���� 

(pmol/kg/min per mg/dL is the stomach “X/A cells” responsivity to glucose, and ����� (mg/dL) 

is the threshold level of glucose above which the “X/A cells” initiate to produce ghrelin ( has 

been set to the basal glucose concentration to guarantee system steady state in basal condition). 

 

Intestine Secretion of Glucagon-like Peptide 1 (GLP-1): 

If %��%������ ���������

!���
� ���%�� ( ��%�_$���� then GLP-1 secretion is triggered: 

���/�1
#�

�� � �0��%� � ���/�1
#�

��� � 0��%� � %��%�����	
���
����
����

� ���%��
� 

otherwise 

���/�1
#�

�� � �0��%� � ��/�1
#�

��� � 0��%� � ��%�_$���� 
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Where 0��%� (min-1) is the delay between glucose signal and GLP-1 secretion, %��%� 

(pmol/kg/min per mg/dL ) is the lower intestine L cells responsivity to glucose, and ���%� 

(mg/dL) is the threshold level of glucose above which the L cells begin to produce GLP1 ( has 

been set to the basal glucose concentration to guarantee system steady state in basal condition). 

Intestine Secretion of Peptide YY (PYY): 

If  %%&&����� ���������

!���
� �%&&� ( %&&_$����  then PYY secretion is triggered: 

���22
#�
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��� � 0%&& � %%&&����	
���
����
����

� �%&&�
� 

otherwise 

���22
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#�

��� � 0%&& � %&&_$���� 

Where 0%&&  (min-1) is the delay between glucose signal and PYY secretion, %%&& (pmol/kg/min 

per mg/dL ) is the lower intestine L cells responsivity to glucose, and �%&&  (mg/dL) is the 

threshold level of glucose above which the L cells begin to produce PYY ( has been set to the 

basal glucose concentration to guarantee system steady state in basal condition). 

Intestine Secretion of Gastric Inhibitor Peptide (GIP): 

If  %�'%����� ���������

!���
� ��'%� ( �'%_$����  then GIP secretion is triggered: 
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Where 0�'%  (min-1) is the delay between glucose signal and GIP secretion, %�'% (pmol/kg/min 

per mg/dL ) is the lower intestine L cells responsivity to glucose, and ��'%  (mg/dL) is the 

threshold level of glucose above which the L cells begin to produce GIP ( has been set to the 

basal glucose concentration to guarantee system steady state in basal condition). 

Intestine Secretion of Oxyntomodulin (OXM): 

If  %()*����� ���������

!���
� �()*� ( ()*_$����  then oxyntomodulin secretion is triggered: 

��3�4
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���
����
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otherwise 
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��� � 0()* � ()*_$���� 

Where 0()*  (min-1) is the delay between glucose signal and OXM secretion, %()* 

(pmol/kg/min per mg/dL ) is the lower intestine L cells responsivity to glucose, and �()*  

(mg/dL) is the threshold level of glucose above which the L cells begin to produce OXM ( has 

been set to the basal glucose concentration to guarantee system steady state in basal condition). 

Intestine Secretion of Cholecystokinin (CKK): 

If  %+,,����� ���������

!���
� �+,,� ( +,,_$����   then cholecystokinin secretion is triggered: 

��5��
#�

�� � �0+,, � ��5��
#�

��� � 0+,, � %+,,����	
���
����
����

� �+,,�
� 

otherwise 

��5��
#�

�� � �0+,, � �5��
#�

��� � 0+,, � +,,_$���� 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.16.993824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.16.993824


26 

 

Where 0+,, (min-1) is the delay between glucose signal and CKK secretion, %+,, (pmol/kg/min 

per mg/dL) is the lower intestine I cells responsivity to glucose, and �+,,  (mg/dL) is the 

threshold level of glucose above which the I cells begin to produce CKK ( has been set to the 

basal glucose concentration to guarantee system steady state in basal condition). 

Pancreatic secretion of insulin (INS). 

If  %'-.����� ���������

!���
� �'-.� ( '-._$����  then insulin secretion is triggered: 
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otherwise 
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Where 0'-. (min-1) is the delay between glucose signal and insulin secretion, %'-. (pmol/kg/min 

per mg/dL ) is the pancreatic β cells responsivity to glucose, and �'-. (mg/dL) is the threshold 

level of glucose above which the β cells begin to produce insulin (has been set to the basal 

glucose concentration to guarantee system steady state in basal condition). 

Pancreatic Secretion of Amylin (AMY): 

If  %/*&����� ���	����

!���
� �/*&� ( /*&_$����  then amylin secretion is triggered: 
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�� � �0/*& � �642
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��� � 0/*& � /*&_$����  

Where 0/*&  (min-1) is the delay between glucose signal and amylin secretion, βAMY 

(pmol/kg/min per mg/dL) is the pancreatic β cells responsivity to glucose, and �/*&  (mg/dL) is 

the threshold level of glucose above which the β cells begin to produce amylin ( has been set to 

the basal glucose concentration to guarantee system steady state in basal condition). 

Pancreatic Secretion of Glucagon (GCG): 

If  

%�+�����	
�����
������

� ��+�� ( �+�_$����  

Glucagon secretion is triggered: 
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Where 0�+� (min-1) is the delay between glucose signal and glucagon secretion, βGCG 

(pmol/kg/min per mg/dL) is the pancreatic α cells responsivity to glucose, and ��+�  (mg/dL) is 

the threshold level of glucose above which the α cells begin to produce glucagon (has been set to 

the basal glucose concentration to guarantee system steady state in basal condition). 

Adipose Tissue Secretion of Leptin (LEP): 

If  %�0%����� �����	����

!���
� ��0%� ( �0%_$���� then leptin secretion is triggered: 
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Where 0�0% (min-1) is the delay between glucose signal and leptin secretion, %�0% (pmol/kg/min 

per mg/dL) is the adipocytes responsivity to glucose, and ��0%  (mg/dL) is the threshold level of 

glucose above which the adipocytes begin to produce leptin (has been set to the basal glucose 

concentration to guarantee system steady state in basal condition). 

Adipose Tissue Secretion of Adiponectin (ADIPOQ): 

If  %/1'%(2����� �����	����

!���
� �/1'%(2� ( /1'%(2_$����  then adiponectin secretion is triggered: 
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Where ������ (min-1) is the delay between glucose signal and adiponectin secretion, ������ 

(pmol/kg/min per mg/dL) is the adipocytes responsivity to glucose, and ������ (mg/dL) is the 

threshold level of glucose above which the adipocytes initiate to produce adiponectin ( has been 

set to the basal glucose concentration to guarantee system steady state in basal condition). 

Degradation and Plasma Level of the Hormones: 

Degradation occurs both in the liver (first pass) and in the periphery and it follows the kinetics 

listed below. 
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Ghrelin Degradation and Plasma Level: 
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Which determines the temporal changes of the plasma level of GHRL: 
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 (min-1) are rate parameters. ������

 is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of ghrelin is described by:  
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where 7��������
  is the basal total degradation. 
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GLP-1 Degradation and Plasma Level: 
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Which determines the temporal change in the plasma level of GLP1: 
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�������� � ��"���%� � "���%�� � ��/�1
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��3
���� 
"���%�, "���%�, "�7��%� (min-1) are rate parameters. "���%� is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of ghrelin is described by:  

-���%���� � �"4��%� � ��%�_$���� � "5��%� 

"�����
��� � -���%� � "�_��%�1 � -���%����  

At basal steady state: 

"5��%� � "4��%� � ��%�����
� -���%�����

 

 

"�����
�0� � -���%�����

� "���%�1 � -���%�����

 

 

��%�����6
"���%��0� � ����
��3
������

� "���%� � ��/�1
%����������
� 7��%�����

 

 

where D GLP1basal is the basal total degradation. 
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"�����
� 9 ��%�������/�1
%����������

� "�����1 � -���%�����

: � 91 � -���%�����-���%�����

: 

 

"�����
� 0.4 � 9 ��%�������/�1
%����������

: � �1 � -���%�����
� 

 

PYY Degradation and Plasma Level: 

���22
��3
��� � ��"�%&& � "�%&&���� � ��22
��3
���� � "�%&& � ��22
��������� � %&&����
 

 

Which determines the temporal changes in the plasma level of PYY: 

 

���22
�������� � ��"�%&& � "�%&&� � ��22
��������� � "�%&&  � ��22
��3
���� 
 

"�%&& , "�%&&  and "�%&&  (min-1) are rate parameters. "�%&&  is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of PYY is described by:  

 

-�%&&��� � �"4%&& � %&&����
� "5%&&  

"����
��� � -�%&& � "�%&&1 � -�%&&���  

At basal steady state: 

"5%&& � "4%&& � %&&����
� -�%&&����

 

"����
�0� � -�%&&����

� "�%&&1 � -�%&&����

 

%&&����6
"�%&&�0� � ��22
��3
������

� "�%&& � ��22
%����������
� 7%&&����
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where 7%&&����   is the basal total degradation. 

"����
� 9 %&&������22
%����������

� "�%&&1 � -�%&&����

: � 1 � -�%&&����-�%&&����

 

"����
� 0.4 � 9 %&&������22
%����������

: � 1 � -�%&&����
 

GIP Degradation and Plasma Level: 

�����
��3
��� � ��"��'% � "��'%���� � ����
��3
���� � "��'%  � ����
��������� � �'% $����
 

Which determines the temporal changes in the plasma level of GIP: 

 

�����
�������� � ��"����
� "����

� � ����
��������� � "����
 � ����
��3
���� 

 

"��'% , "��'% , "��'%  (min-1) are rate parameters. "��'%  is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of GIP is described by:  

 

-��'%��� � �"4�'% � �'%_$���� � "5�'% 

"����
��� � -��'% � "��'%1 � -��'%���  

At basal steady state: 

"5�'% � "4�'% � �'%����
� -��'%����

 

"����
�0� � -��'%����

� "��'%1 � -��'%����

 

�'%����6
"��'%�0� � ����
��3
������

� "��'% � ����
%����������
� 7�'%����
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where 7�'%����  is the basal total degradation. 

"����
� 9 �'%��������
%����������

� "��'%1 � -��'%����

: � 1 � -��'%����-��'%����

 

 

"��'% � 0.4 � 9 �'%��������
%����������

: � 1 � -��'%����
 

 

OXM Degradation and Plasma Level: 

���������
	

��
 �����$% � ���$%���� � ��������
	��� � � �$% � ��������!"���� � ��$%#�!��

 

Which determines the temporal changes in the plasma level of OXM: 

��3�4
�������� � ��"�()* � "�()*� � �3�4
��������� � "�()*  � �3�4
��3
���� 
 

���$%, � �$%, ���$% (min-1) are rate parameters. ���$% is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of OXM is described by:  

-�()*��� � �"4()* � ()*����
� "5()*  

"�()*��� � -�()* � "�()*1 � -�()*���  

At basal steady state: 

"5()* � "4()* � ()*����
� -�()*����

 

"�()*�0� � -�()*����
� "�()*1 � -�()*����

 

()*����6
"�()*�0� � �3�4
��3
������

� "�()* � �3�4
%����������
� 7()*����

 

where 7()*����  is the basal total degradation. 
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"����
� 9 ()*�����3�4
%����������

� "�()*1 � -�()*����

: � 1 � -�()*����-�()*����

 

 

"�()* � 0.4 � 9 ()*�����3�4
%����������

: � 1 � -�()*����
 

CCK Degradation and Plasma Level: 

��55�
��3
��� � ��"�++, � "�++,���� � �55�
��3
���� � "�++, � �55�
��������� � ++,$����
 

Which determines the temporal changes of the plasma level of CCK: 

��55�
�������� � ��"�++, � "�++,� � �55�
��������� � "�++,  � �55�
��3
���� 

"�++,, "�++,, "�++, (min-1) are rate parameters. "�++, is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of CCK is described by:  

-�++,��� � �"4++, � ++,����
� "5++, 

"�++,��� � -�++, � "�++,1 � -�++,���  

At basal steady state: 

"5++, � "4++, � ++,����
� -�++,����

 

"����
�0� � -�++,����

� "�++,1 � -�++,����

 

++,����6
"����

�0� � �55�
��3
������
� "�++, � �55�
%����������

� 7++,����
 

 

where 7++,����
 is the basal total degradation. 
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"�++, � 9 +,,�����55�
%����������

� "�++,1 � -�+,,����

: � 91 � -�+,,����-�+,,����

: 

 

"�++, � 0.4 � 9 ++,�����55�
%����������

: � �1 � -�++,����
� 

Insulin Degradation and Plasma Level: 

 

����
��3
��� � ��"�'-. � "�'-.���� � ���
��3
���� � "�'-.  � ���
��������� � '-.$����
 

 

Which determines a plasma level of: 

 

����
�������� � ��"�'-. � "�'-.� � ���
��������� � "�'-.  � ���
��3
���� 
 

"�'-. , "�'-. ��	  "�'-. (min-1) are rate parameters. "�'-. is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of insulin is described by:  

 

-�'-.��� � �"4'-. � '-.����
� "5'-. 

 

"�� !
��� � -�'-. � "�'-.1 � -�'-.���  

 

At basal steady state: 

"5'-. � "4'-. � '-.����
� -�'-.����
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"�'-.�0� � -�'-.����
� "�'-.1 � -�'-.����

 

 

'-.����6
"�'-.�0� � ���
��3
������

� "�'-. � ���
%����������
� 7'-.����

 

 

where 7'-.����
  is the basal total degradation. 

"�� !
� 9 '-.�������
%����������

� "�'-.1 � -�'-.����

: � 91 � -�'-.����-�'-.����

: 

 

"�'-. � 0.4 � 9 '-.�������
%����������

: � �1 � -�'-.����
� 

Amylin Degradation and Plasma Level: 

���������
	

��
 �����%& � ���%&���� � ��������
	��� � � �%&  � ��������!"���� � ��%&#�!��

 

Which determines the temporal changes of the plasma level of amylin: 

 

��642
�������� � ��"�/*& � "�/*&� � �642
��������� � "�/*&  � �642
��3
���� 
 

���%&, � �%&  !"� ���%&  (min-1) are rate parameters. �'�%&  is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of amylin is described by:  

-�/*&��� � �"4/*& � /*&����
� "5/*&  

"�/*&��� � -�/*& � "�/*&1 � -�/*&���  
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At basal steady state: 

"5/*& � "4/*& � /*&����
� -�/*&����

 

"�/*&�0� � -�/*&����
� "�/*&1 � -�/*&����

 

 

/*&����6
"�/*&�0� � �642
��3
������

� "�/*& � �642
%����������
� 7/*&����

 

 

where 7/*&����
 is the basal total degradation. 

 

"�/*& � 9 /*&�����642
%����������

� "�/*&1 � -�/*&����

: � 91 � -�/*&����-�/*&����

: 

 

"�"��
� 0.4 � 9 /*&�����642
%����������

: � �1 � -�/*&����
� 

Glucagon Degradation and Plasma Level: 

���#�����
	

��
 �����(� � ���(����� � ��#�����
	��� � � �(� � ��#�����!"���� � ��(�#�!��

 

Which determines the temporal changes of the plasma level of glucagon: 

���5�
�������� � ��"2)*) � "4)*)� � ��5�
��������� � "1)*)  � ��5�
��3
���� 

���(�, � �(�  and ���(�(min-1) are rate parameters. �'�(�  is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of glucagon is described by:  

-��+���� � �"4�+� � �+�_$���� � "5�+� 

"����
��� � -��+� � "��+�1 � -��+����  
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At basal steady state: 

"5�+� � "4�+� � �+�����
� -��+�����

 

"��+��0� � -��+�����
� "��+�1 � -��+�����

 

 

�+�����6
"��+��0� � ��5�
��3
������

� "��+� � ��5�
%����������
� 7�+�����

 

 

where 7�+�����
 is the basal total degradation. 

"����
� 9 �+�������5�
%����������

� "��+�1 � -��+�����

: � 91 � -��+�����-��+�����

: 

"��+� � 0.4 � 9 �+�������5�
%����������

: � �1 � -��+�����
� 

Leptin Degradation and Plasma Level: 

 

��/��
��3
��� � ��"��0% � "��0%���� � �/��
��3
���� � "��0%  � �/��
��������� � �0%$����
 

 

Which determines the temporal changes of the plasma level of leptin: 

 

��/��
�������� � ��"��0% � "��0%� � �/��
��������� � "��0%  � �/��
��3
���� 

"��0% , "��0%  =#� "��0% (min-1) are rate parameters. "��0%  is peripheral degradation. Hepatic 

extraction (HE) that determines liver degradation of leptin is described by:  

-��0%��� � �"4�0% � �0%����
� "5�0%  
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"��0%��� � -��0% � "��0%1 � -��0%���  

At basal steady state: 

"5�0% � "4�0% � �0%����
� -��0%����

 

"��0%�0� � -��0%����
� "��0%1 � -��0%����

 

�0%����6
"��0%�0� � �/��
��3
������

� "��0% � �/��
%����������
� 7�0%����

 

 

where 7�0%����
 is the basal total degradation. 

"��0% � 9 �0%�����/��
%����������

� "��0%1 � -��0%����

: � 91 � -��0%����-��0%����

: 

 

"��0% � 0.4 � 9 �0%�����/��
%����������

: � �1 � -��0%����
� 

Adiponectin Degradation and Plasma Level: 

 

���	�
������
	

��
 

��������� � ����������� � ��	�
������
	��� � � �����  � ��	�
������!"���� � ������������  

 

Which determines the temporal changes of the plasma level of adiponectin: 

��������������

��
	 
���������  ��������� � ����������������  ��������  � ���������������� 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.16.993824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.16.993824


40 

 

�������, � ����� and ������� (min-1) are rate parameters. �'����� is peripheral 

degradation. Hepatic extraction (HE) that determines liver degradation of adiponectin is 

described by:  

 

-�/1'%(2��� � �"4/1'%(2 � �,-./01
�����

� "5/1'%(2 

"3,-./01��� � -�/1'%(2 � "1,-./011 � -�/1'%(2���  

At basal steady state: 

"5/1'%(2 � "4/1'%(2 � �,-./01
�����

� -�1,-./01
�����

 

"�"#���$
�0� � -�,-./01

�����
� "�/1'%(2

1 � -�1,-./01
�����

 

�����������3��������0� � ��	�
������
		���� � �'����� � ��	�
������!"�	����
 	����������

 

 

where 	����������
  is the basal total degradation. 

 

"2,-./01 � 9 /1'%(2�����67��38
%����������

� "�,-./011 � -�/1'%(2����

: � 1 � -�/1'%(2����-�/1'%(2����

 

 

"�,-./01 � 0.4 � 9 /1'%(2�����67��38
%����������

: � 1 � -�/1'%(2����
 

Hormone Concentration in Muscle and Interstitial Fluid: 

���-./
�����
�� �  �>���� � ��-./
�����
 � >���� � ���-./
�����
��� � ��-./
������ 
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���/�1
�����
�� �  �>��%� � ��/�1
�����
 � >��%� � ���/�1
�����
��� � ��/�1
������ 

���22
�����
�� �  �>%&& � ��22
�����
 � >%&& � ���22
�����
��� � ��22
������ 

�����
�����
�� �  �>�'% � ����
�����
 � >�'% � �����
�����
��� � ����
������ 

��3�4
�����
�� �  �>()* � �3�4
�����
 � >()* � ��3�4
�����
��� � �3�4
������ 

��55�
�����
�� �  �>++, � �55�
�����
 � >++, � ��55�
�����
��� � �55�
������ 

����
�����
�� �  �>'-. � ���
�����
 � >'-. � ����
�����
��� � ���
������ 

��642
�����
�� �  �>/*& � �642
�����
 � >/*& � ��642
�����
��� � �642
������ 

���5�
�����
�� �  �>�+� � ��5�
�����
 � >�+� � ���5�
�����
��� � ��5�
������ 

��/��
�����
�� �  �>�0% � �/��
�����
 � >�0% � ��/��
�����
��� � �/��
������ 

��67��38
�����
�� �  �>/1'%(2 � �67��38
�����
 � >/1'%(2 � ��67��38
�����
��� 

��67��38
������ 

>����, >��%�1, >%&& , >�'% , >()* , >++,, >'-., >/*& , >�+�, >�0%, >/1'%(2  are the rate constants of 

the action on peripheral glucose utilization by ghrelin, GLP-1, PYY, GIP, oxyntomodulin, 

cholecystokinin, insulin, amylin, glucagon, leptin, adiponectin, respectively.  

Quantitative output of the model 

The ratio of the Area Under the Curve (AUC) between postprandial state and fasting state was 

calculated for each hormone in the lean, obese and post-surgery state using MATLAB2018a 
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trapezoidal function. (Fig 3B). These quantities utilized as outputs in the following parameter 

sensitivity analysis.  

Parameter sensitivity analysis (PSA) utilizing multivariable regression (MRA) 

In order to assess the sensitivity of the kinetic parameters that regulate endocrinology in lean, 

obese and post-surgery subjects, we performed multivariable regression analysis [18]. 

The logic of the analysis is to randomly vary a set of inputs n times (trials), utilize the new set of 

inputs to generate an output according to the function in study and then perform a regression 

analysis to assess how much the variance in the parameter affects the output.  

In our case, the kinetic parameters of the dynamical model were utilized as inputs. We varied the 

141 parameters utilizing random scale factors from a log-normal distribution with a median 

value of 1. The distribution parameter σ, specifying the standard deviation of the distribution of 

log-transformed variables, controlled the extent to which parameters varied. We generated a total 

of 300 parameter sets that were stored in the input matrix, I(300x141). Each new set of 

parameters was utilized to simulate the dynamical model and the output (AUC ratios for each 

hormone) were stored in the output matrix, O (300x11).   

Values in input and output matrices were mean-centered and normalized by standard deviations 

for each column. Since random-scale factors obeyed a log-normal distribution, most values in the 

input matrices were log-transformed before computing the standard deviation.  

The PLS regression, performed on matrices I and O using the NIPALS algorithm [65, 66], 

produced a matrix of regression coefficients, BPLS(141x11). For each set of inputs, this matrix 

can be used to predict the resulting outputs. The regression determines BPLS such that Opredicted 

= I x BPLSis close to the original output matrix O.   
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To test the susceptibility of our results to the number of trials, we performed the analysis for an 

increasing number of trials (500, 1000, 3000, 10000). PLS regression was performed using 

routines and methods from [67]. All computations were performed in MATLAB 2018a. 

Ranking of the kinetic parameters from PSA 

The kinetic parameters were ranked according to their respective PLS coefficients [0-1]. 

The top ten most sensitive kinetic parameters for lean, obese and post-surgery subjects are 

shown in Figure 4.  

Association of kinetic parameters to their respective genes (MBCO) 

To scale the previous results to a molecular level, the Molecular Biology of the Cell Ontology 

(MCBO) algorithm was used. Each parameter was used as a query in PubMed to retrieve the 

genes associated with it. To be able to identify these terms in our PubMed article sets, a 

dictionary that associates biological entities with key terms that might be used by authors when 

writing about the biological entity was generated. The MCBO algorithm screens the PubMed 

titles and abstracts of each SCP-specific article set and counts how many articles mentioned a 

certain gene at least once [20]. A minimum number of abstracts within an SCP specific abstract 

that is needed to mention a gene (level-1 SCPs: at least 4 abstracts, level-2 SCPs at least 3 

abstracts, level-3 SCPs at least 2 abstracts, level-4 SCPs at least 1 abstract) is defined. Genes that 

were not mentioned in the specified number of abstracts were removed. These article counts for 

each gene-SCP association were subjected to statistical enrichment analysis to calculate the 

selectivity of each gene-SCP association, i.e. how selective is that particular gene for that 

particular SCP. Fisher's exact test was used to calculate two different p-values, one with the 

genes of all SCPs of the same level (same level p-values), and one with the genes of all SCPs 
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that have the same parent and therefore belong to the same children set (same children set p-

values) as a background set.  

Average ranking of the genes utilizing PLS and MCBO score 

The MCBO score assigned to each identified gene and the sensitivity rank of each kinetic 

parameter were utilized to calculate the average ranking for each identified gene. 
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2  

The MCBO score describes the significance of the association of a gene i to a specific parameter 

j. The PLS rank assesses the degree of sensitivity of that parameter and it is used to assess 

sensitivity variability between lean, obese and post-surgery subjects. The average ranking allows 

one to rank each gene according to its relevance in both the endocrinological control system and 

cellular processes.  

Weighting the unfiltered PPI network by nearest neighbor distance to an average ranked 

gene 

The unfiltered PPI network created in the first step of the study was weighted according to the 

distance of each of its genes to the average ranked genes in lean, obese and post-surgery subjects. 

A nearest-neighbor algorithm was utilized to calculate the distances. The distance values (0, 

1,…n) were utilized to weight the edges of the PPI network. This generated 3 physiologically 

specific PPI networks for lean, obese and post-surgery subjects, respectively. 

 

Peripheral tissue specific mRNA expression levels  
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The tissue expression of mRNAs of the genes in the lean, obese, and post-surgery subnetworks 

was retrieved from the GTEx Portal [19]. The GTEx_Analysis_v6p_RNA-seq_RNA-

SeQCv1.1.8_gene_median_rpkm database (May 2017) was downloaded.  The 75th percentile 

was used as a cut-off for high expression. Data for subcutaneous adipose tissue, visceral adipose 

tissue, stomach, pancreas, liver, intestine, and muscle were selected. The expression values used 

for adipose tissue were the means for subcutaneous and visceral tissues. Heatmaps of the 

expression levels for each physiologically- specific subnetwork are represented in Figure 4B. 

Tissue-specific PPI subnetworks for lean, obese and post-surgery subjects.  

Tissue-specific genes were utilized as seed genes to generate tissue-specific subnetworks for 

lean, obese and post-surgery subjects. We utilized the X2K software [5] to create a protein-

protein interaction (PPI) network. A path length of 2 was used, the other settings of the software 

are screenshot in (Supplementary Figure S12 and S13).  

Validation of tissue selective networks using drug targets from the FAERS database 

We identified FDA-approved drugs that were reported in the FAERS database (June 2017) for 

inducing weight gain and weight loss [20]. A p-value <10-5 and number of reports>1000 were 

used as a cut-off. The top 100 drugs causing weight gain and the top 100 drugs causing weight 

loss were so identified. Their respective targets were identified combining multiple databases: 

Drugbank [19],  The Druggable Genome [68, 69], and Therapeutic Targets Database [70]. 

Targets that are exclusively expressed in the central nervous system were excluded. Targets 

which are expressed in adipose tissue, intestine, liver, muscle, pancreas, stomach but drugs 

acting on them do not cross the brain blood barrier were selected for the validation step.  
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The number of tissue specific targets that were identifiable in the tissue-specific PPI subnetworks 

was used as validation of the reliability of the previous steps of the study.  

Catabolic and anabolic subcellular processes 

From the previous analysis, we calculated the number of significant catabolic and anabolic 

 processes and the ratio of significant catabolic and anabolic processes in lean, obese, and  

post-surgery subjects (Figure 6A).  The tissue specific ratio of significant catabolic and anabolic 

processes in lean, obese, and post-surgery is shown in (Figure 6B).  
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Figure Legends: 

Figure 1. Schematic of the multi-model approach for mapping of genes and subcellular 

processes to different tissues and organs in the peripheral tissue atlas of metabolism. 

The atlas is generated through multiple types of data that are assembled in steps.  Step 1: 

Integration of unweighted data sets. The genetic dataset (NCBI gene database) contains genes 

that are associated with leanness, obesity, overweight, body mass index, and fat mass. The 

genomic dataset (EBI GWAS) contains SNPs associated with obesity or with obesity-related 

traits with a p-value ≤ 5*10-8 according to published data. Step 2: Creation of unfiltered PPI 

network: The two datasets were statistically integrated by generating a genetic & genomic 

interaction network of the encoded proteins. Step 3: Generation of endocrinology data from 

modeling. The endocrinology dataset contains the genes associated with kinetic parameters for 

hormones that control satiety and hunger and that ranked differently in statistical significance in 

lean, obese, and post-bariatric surgery human subjects. These parameters were determined from 

an ODE-based multicompartmental dynamical model of the plasma concentrations of three 

orexigenic and eight anorexigenic hormones in lean, obese, and post-bariatric surgery human 

subjects. Step 4: Application of the physiology filter. The statistical significance ranking of 

genes in step 3 was used to weight each protein in the genetic & genomic network of step 2. 

Since the same gene can rank differently in lean, obese and post-surgery subjects, three 

subnetworks, one each for the lean, obese, and post-surgery phenotypes, were obtained. Step 5: 

Application of the tissue expression filter. The genes encoding each protein in each subnetwork 

were localized according to transcript abundance (GTEx database) in 6 organs/tissues: liver, 

pancreas, intestine, stomach, adipose tissue, and muscle. Step 6: Identification of known drug 

targets in the organ/tissue-specific subnetworks: A dataset extracted from FAERS database of 
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molecular targets of drugs affecting body weight was used to support the analysis from the 

previous steps. Step 7: Application of the subcellular processes filter. We conducted enrichment 

analysis using Molecular Biology of the Cell Ontology (MBCO) to identify the subcellular 

processes that are significantly associated with a lean, obese, and post-surgery phenotype in each 

organ/tissue. Step 8: Generation of the peripheral obesity atlas. Integration of these data enable 

the application of statistical models to generate graphical representations of differences in genes 

associated with different organs/tissues in the lean, obese, and post-surgical condition, which 

could be displayed on a peripheral obesity atlas. 
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Figure 2. Survey of genes and genomic variants associated with human obesity and weight -

related traits. 

A) Flowchart of the information process. We identified 2527 genes associated with “obesity” 

(BMI ≥ 30kg/m2), “body mass index,” “overweight,” “free fatty mass,” or “leanness” (BMI ≤ 25 

kg/m2), in at least two publications from the NCBI Gene database 

(https://www.ncbi.nlm.nih.gov/gene). Genomic variability was incorporated as SNPs associated 

with obesity or obesity-related traits with a p-value ≤ 5*10-8 from the EBI GWAS catalog 

(http://www.ebi.ac.uk/gwas/). Mapping the SNPs to obesity and obesity-related traits identified 

324 genes, 207 of which were not in the original NCBI set. The two datasets were integrated 

through construction of a PPI, using the nearest neighbor expansion method with the proteins 

encoded by the genes as seeds and identifying intermediate proteins (and their encoding genes) 

from the human interactome up to two path lengths of distance. This process resulted in a 

network of 7268 proteins (and encoding genes); seed genes that lacked connection to the network 

were not used for further analysis. 

B) Mapping the PPI network onto chromosomes.  The outermost layer contains the gene 

symbols (blue text) of genes associated with obesity and/or obesity-related traits according to the 

NCBI Gene database. The next layer shows the chromosome bands (colored rectangles) of 22 

human chromosomes. Chromosome 23 and the Y chromosome do not contain genes of interest 

and were omitted. The next layer lists the SNPs associated with obesity (Blue). The final 

innermost layer lists the SNPs associated with obesity-related traits. SNPs were assigned 

according to the GWAS catalog.  
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C) Unfiltered PPI network. Representation of the unfiltered PPI network: Seed nodes from the 

GWAS and NCBI datasets are in yellow, intermediate genes are in light blue.  

D) Enrichment analysis of the unfiltered PPI network for subcellular processes. The MBCO 

algorithm was used to identify which subcellular processes the gene products in the unfiltered 

network belong to. The algorithm screens the PubMed titles and abstracts of each SCP-specific 

article set and counts articles mentioning a given gene at least once. The number of abstracts 

needed to associate a gene with a process varies with the level of the SCP. A minimum of 4 

abstracts is required for a level-1 SCP, 3 abstracts for a level-2 SCP, 2 for a level-3 SCP and 1 

for a level-4 SCP. Fisher's exact test is used to calculate p-values.    
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Figure 3. Dynamical modeling of temporal patterns of plasma concentrations of hormones 

associated with food intake in lean, obese and post-bariatric surgery patients. 

A) Compartmental model of the plasma levels of selected peripheral hormones in human 

subjects. Glucose-responsive peripheral hormones that control food intake are modeled with the 

kinetic parameters of secretion, utilization, and degradation. Ingestion of glucose stimulates 

ghrelin (GHRL) secretion from the stomach. Absorption by the intestine stimulates the secretion 

of glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), oxyntomodulin (OXM), gastric 

inhibitor peptide (GIP), and peptide YY (PYY). Through mesenteric blood circulation, glucose 

delivery to the pancreas stimulates the secretion of insulin (INS), glucagon (GCG), and amylin 

(AMY) and delivery to adipocytes stimulates secretion of leptin (LEP) and adiponectin 

(ADIPOQ). All the hormones, except for leptin and adiponectin are subjected to first pass 

through the liver, and then they are delivered by the circulation to the muscles for utilization, or 

they undergo degradation. (No data was available of measuring ADIPOQ in the post-bariatric 

surgery subjects) 

B) Simulated time courses of the plasma concentrations of the hormones. Simulated time 

courses for lean (black with gray circles), obese (red) and post-bariatric surgery (blue) subjects 

are shown. Simulations were conducted using parameters chosen so that the curves closely 

resembled experimental data (in dotted lines) from different studies (Supplementary File 3). 

Subjects are in a fasting state from -120 to +0 min. At 0 minutes, administration of glucose 

initiates the postprandial state, which is monitored for 120 min.  
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C) Quantitative output of the simulation of the dynamical model. Ratio of the area under the 

curve (AUC) of the postprandial plasma hormone concentration (2 hours) divided by the AUC of 

the fasting plasma concentration (2 hours for each hormone was chosen as the quantitative output 

of the simulation for use in the multivariable regression analysis (MRA). 

D) Multivariable regression analysis (MRA) of simulated data identifies kinetic parameters 

whose variation produces the greatest changes in glucose-evoked hormone release in lean, 

obese, and post-bariatric surgery subjects. To account for the variation in the kinetic 

regulation of hormone physiology in a population, and to compensate for the lack of extensive 

clinical data, we generated 3 simulated sets of human subjects (lean, obese, post-surgery) by 

randomly varying each of the 141 kinetic parameters of the model, with the mean centered on the 

parameter value and the standard deviation set to ± 1. We used partial least square regression 

(PLSR) to identify which kinetic parameters are more likely to induce a significant perturbation 

of the output of the dynamical model (AUC ratio). MRA was repeated with progressively larger 

populations (representing 300, 500, 1,000, 3,000, 10,000 individuals). The MRA for the obese 

population of 10,000 is represented here: We generated a total of 10,000 parameter sets that were 

stored in the input matrix, I(10,000x141). Each new set of parameters was then utilized to 

simulate the dynamical model, and the output (AUC ratios for each hormone) was stored in the 

output matrix, O (10,000x11). The PLSR, performed on matrices I and O, produced a matrix of 

regression coefficients, BPLS (141x11), that can be used to predict the resulting outputs such 

that Opredicted = I x BPLS is close to the original output matrix O.   

 

E) MRA ranking in each subject population. The top 10 most sensitive kinetic parameters 

from simulations of lean (grey), obese (red), and post-bariatric surgery (blue) subjects, according 
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to PLSR coefficients determined through multivariable regression analysis of the ratio between 

the area under the curve (AUC) of the postprandial plasma hormone concentration and the AUC 

of the fasting plasma hormone concentration. The resulting PLSR coefficients were then used to 

rank the parameters. 
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Figure 4.  Integration of the PPI network and the dynamical model data to obtain 

physiologically weighted tissue-specific PPI networks for lean, obese, and post-bariatric 

surgery subjects  

A) Average ranking of genes associated with the most sensitive kinetic parameters in lean, 

obese, and post-surgery subjects. Top left.  The genes associated with each of the sensitive 

parameters were obtained utilizing the Molecular Biology of the Cell Ontology (MBCO) 

algorithm and were ranked according to their relative MBCO score. Top right. The most 

sensitive kinetic parameters in lean, obese, and post-surgery subjects were ranked according to 

their PLSR rank obtained from the MRA. Top center. The average ranking score for each gene 

was calculated as the mean of the MBCO rank and the MRA rank.  

B) Weighting of the encoding genes in the unweighted PPI network using the results from 

dynamical modeling analysis and MBCO classification. Bottom left: The average rank score 

for each gene (left) was used to weight each corresponding node in the unfiltered genetic & 

genomic PPI network (center). Since the same gene can rank differently in lean, obese, and post-

surgery subjects, the analysis is performed separately for each condition. The remaining nodes 

encoding proteins within the lean-, obese-, and post-surgery PPI networks were assigned a rank 

according to their distances from each of the average ranked genes (edge thickness). Distances 

are calculated from 1 to n and generate a physiologically weighted PPI network for each 

physiological condition (lean, obese, post-surgery) (right).  
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Figure 5. Organ/tissue-specific gene expression patterns in the physiologically weighted PPI 

networks. The physiologically weighted PPIs for lean, obese, and post-surgery conditions were 

divided according to the expression of each gene in the indicated tissues/organs, resulting in the 

generation of a PPI subnetwork for each site.   
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Figure 6:  The 10 FDA-approved drugs that have the highest FAERS risk for weight gain 

and the 10 with the highest risk for weight loss as side effects, and their respective targets. 

Targets are listed by protein name and were obtained from multiple databases: DrugBank, The 

Druggable Genome, and Therapeutic Targets Database. See Supplementary File 5 for the 

complete list of all the drugs and their respective targets that have weight gain or weight loss as 

side effects 

Organ/tissue distribution of protein targets of weight gain- & weight loss-inducing drugs. 

Those targets of the 20 FDA-approved drugs listed in table 1 which are expressed in the 6 

peripheral organs/tissues of interest are listed according to their expression retrieved from the 

GTEx database.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.16.993824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.16.993824


58 

 

Figure 7. An initial human obesity atlas reveals organ- and tissue-specific metabolic 

differences in lean, obese, and post-bariatric surgery conditions. 

A) Statistically significant catabolic and anabolic processes in lean, obese, and post-surgery 

subjects. (Top) The number of catabolic and anabolic processes within the top 100 biological 

subcellular processes was identified by the MCBO algorithm for the whole body for each 

physiological condition. (Bottom) Ratio of catabolic to anabolic processes for lean, obese and 

post-bariatric surgery patients.   

B) Mapping the ratio of catabolic to anabolic processes onto individual tissues/organs in 

lean, obese, and post- bariatric surgery subjects. Using the obesity atlas, differences in overall 

metabolism can be mapped to individual tissues and organs in persons with different 

physiological phenotypes.  
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Top 10 drugs for weight loss by  FAERS risk
Drug Targets
EXENATIDE GLP1R

LOMITAPIDE MTTP MT1B MTNR1A ANK2 MTNR1B

PAMIDRONIC ACID FDPS CLTC BCR

FLUTAMIDE AR AHR NR1I2

PRAMLINTIDE CALCR RAMP1 RAMP2 RAMP3 ACLS ACHE

OCTREOTIDE SSTR2 AQP2 SHROOM2 SSTR1 SSTR5

ROFLUMILAST PDE4D PDE4A PDE4B PDE4C COL11A1

NATEGLINIDE ABCC8 PPARG HCN2 CYP3A5 CYP3A4 KCNJ11 KCNJ1

FULVESTRANT ESR1 ESR2 EREG ALDH3B1 CPD

PIOGLITAZONE CCND1 ATP4A PPARG PPARA

Top 10 drugs for weight gain by  FAERS risk
Drug Targets
FLUOXETINE PTGFR C1QBP CD9 SLC6A4 HTR2A BRCA2

BREXPIPRAZOLE HTR1A DRD2 HTR2A ADRA2C ADRA1B DDX6 HTR7

PHENELZINE MAOA GNA11 MAOB SLC6A3 SLC6A2 CD9

OLANZAPINE GABRA1 ADRB1 ALDH2 LEP RGS4 CYP2D6 ADRB3 GNB3 KCNH2 SLC1A1 CYP1A2 FAAH MC4R

ZIPRASIDONE BRCA1 DRD2 DNMT3A CD9 HTR1A HTR2A CHRNA7 CCND1 ADRA1A ADRB1 AKT1 HTR1E ALK A2MP1

HALOPERIDOL HTR2A DRD2 BRCA1 ALK DRD1 ADAM9 A2MP1 BRCA2 SERPINA3 ALDH2 ALDH3A1 DNMT3A BAAT DDX6

TRIFLUOPERAZIN
E DRD2 ADRA1A CALY BRCA1 DDX6 ALDH2 DNMT3A CCND1

CORTICOTROPIN MC2R CRH APAF1 MC1R ANGPT1 ADRB1 MC5R NUDT2

GEMTUZUMAB BRAF DDX6 DNMT3A HTR6 PPARG CCND1 CDK4 ANKK1 GIPR

TIOTIXENE CCND1 ADRA1A ADRB1 AKT1 HTR1E ALK A2MP1

Adipose Muscle Intestine Stomach Pancreas Liver
PPARG CACNA1S EPHB2 PPARG CYP3A5 CPS1
ADRB2 PPARA CPS1 CYP3A5 GABRE NR1I2
ANGPT1 PPARG JAK2 CYP21A2
JAK2 NR1I2 PTGS1 CYP3A5
PTGS1 IL7R CYP2C9 CYP3A4
AR CYP3A5 PTGDR2 ADRA1A

GABRE CYP3A4 ALDH3A1 BAAT
JAK2 CYP2C19
PTGS1 CYP2C9
CYP2C19 APOF
CYP2C9 CYP1A2
PTGDR2 DHODH
SLC6A4 CYP2A6
PPARA PPARA
OTC OTC
GABRE AR
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Top 10 drugs for weight loss by risk
Drug FAERS Risk Targets
LOMITAPIDE 9.857 MTTP MT1B MTNR1A ANK2 MTNR1B
EXENATIDE 16.654 GLP1R
PAMIDRONIC ACID 8.343 FDPS CLTC BCR
FLUTAMIDE 7.816 AR AHR NR1I2
PRAMLINTIDE 6.923 CALCR RAMP1 RAMP2 RAMP3 ACLS ACHE
OCTREOTIDE 6.133 SSTR2 AQP2 SHROOM2 SSTR1 SSTR5
ROFLUMILAST 5.594 PDE4D PDE4A PDE4B PDE4C COL11A1
NATEGLINIDE 5.564 ABCC8 PPARG HCN2 CYP3A5 CYP3A4 KCNJ11 KCNJ1
FULVESTRANT 5.507 ESR1 ESR2 EREG ALDH3B1 CPD
PIOGLITAZONE 5.486 CCND1 ATP4A PPARG PPARA

Top 10 drugs for weight gain by risk
Drug FAERS Risk Targets
FLUOXETINE 12.540 PTGFR C1QBP CD9 SLC6A4 HTR2A BRCA2
BREXPIPRAZOLE 7.980 HTR1A DRD2 HTR2A ADRA2C ADRA1B DDX6 HTR7
PHENELZINE 7.536 MAOA GNA11 MAOB SLC6A3 SLC6A2 CD9
OLANZAPINE 7.182 GABRA1 ADRB1 ALDH2 LEP RGS4 CYP2D6 ADRB3 GNB3 KCNH2 SLC1A1 CYP1A2 FAAH MC4R
ZIPRASIDONE 6.827 BRCA1 DRD2 DNMT3A CD9 HTR1A HTR2A CHRNA7 CCND1 ADRA1A ADRB1 AKT1 HTR1E ALK A2MP1
HALOPERIDOL 5.923 HTR2A DRD2 BRCA1 ALK DRD1 ADAM9 A2MP1 BRCA2 SERPINA3 ALDH2 ALDH3A1 DNMT3A BAAT DDX6
TRIFLUOPERAZINE 5.887 DRD2 ADRA1A CALY BRCA1 DDX6 ALDH2 DNMT3A CCND1
CORTICOTROPIN 5.767 MC2R CRH APAF1 MC1R ANGPT1 ADRB1 MC5R NUDT2
GEMTUZUMAB 5.703 BRAF DDX6 DNMT3A HTR6 PPARG CCND1 CDK4 ANKK1 GIPR
TIOTIXENE 5.614 CCND1 ADRA1A ADRB1 AKT1 HTR1E ALK A2MP1

Table 1
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Adipose Muscle Intestine Stomach Pancreas Liver

PPARG CACNA1S EPHB2 PPARG CYP3A5 CPS1

ADRB2 PPARA CPS1 CYP3A5 GABRE NR1I2

ANGPT1 PPARG JAK2 CYP21A2

JAK2 NR1I2 PTGS1 CYP3A5

PTGS1 IL7R CYP2C9 CYP3A4

AR CYP3A5 PTGDR2 ADRA1A

GABRE CYP3A4 ALDH3A1 BAAT

JAK2 CYP2C19

PTGS1 CYP2C9

CYP2C19 APOF

CYP2C9 CYP1A2

PTGDR2 DHODH

SLC6A4 CYP2A6

PPARA PPARA

OTC OTC

GABRE AR

Table 2
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