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Abstract 

Lipidomics is one of the fastest-growing areas of molecular profiling in medicine. While increasing amounts of 

lipidomics data are generated, tools for analyzing and interpreting these data are not equally widely available. 

We present the lipidomeR -- a tool specifically designed for systematic interpretation of large lipidome-wide 

studies. The lipidomeR binds together statistical analysis and high-dimensional visualization, providing a 

reproducible pipeline for rapid interpretation of the lipidome via integrative publication-ready figures. The 

lipidomeR package is available through the Comprehensive R Archive (CRAN). 

We demonstrate the lipidomeR with three studies from the Metabolomics Workbench repository, ranging from 

the human plasma reference material to breast tumor tissue and to the progression of non-alcoholic liver 

disease (NAFLD) in the liver. In these studies, lipidomeR reveals a diversity of lipidomic patterns, both, within 

and between the lipid classes as well as over the stages of progression of the diseases.  

1 Introduction 

The development of mass-spectrometry and other omics technologies have made lipids an increasingly 

accessible target to measure and study. In relative terms, lipidomics is currently the fastest-growing field 

among the omics technologies. 
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Lipids have very diverse chemical structures but a large number of lipid molecules have one to three 

hydrophobic fatty acid chains attached to a hydrophilic head group. These lipids, which share the fatty acid 

chain structure, are classified by the type of the head group. For instance, triacylglycerols (TGs), which 

colloquially are known as triglycerides, have three fatty acid chains attached to a glycerol head group. 

While lipids of the same class share the same structure type, individual species differentiate by the length of 

the fatty acid chains and by the level of saturation. The length of fatty acid chains is quantified by the number 

of carbon atoms and the inverse level of saturation is quantified by the number of unsaturated double bonds in 

the fatty acid chains. Lipid species differing by these characteristics can be identified with mass spectrometry. 

There is growing evidence that the length and saturation of a lipid is associated with function. The structural 

relationship of lipid species in one class gives an opportunity to not only group the lipids by the class but also 

organize them based on the two characteristic properties of length and saturation. In this paper, we present a 

tool for presenting lipids in an organized map, where lipids are grouped by the class and organized on two-

dimensional maps based on the length and saturation.  

Two-dimensional presentations of lipids within one class have already been manually created and used for 

reporting lipidomics data, successfully providing new insights on lipid activity in health and disease (see, e.g., 

Hyysalo, et al., 20141). Here, we provide a tool for visualizing the lipidome in this systematic manner. Further, 

we tap the visualization tool directly to the output of a high-throughput statistics inference engine2, making the 

analysis, visualization and interpretation of complex lipidomics data a seamless, fast and reproducible process. 

The growth of lipidomics and its adoption in translational medical research and has led to an increasing 

demand in the tools for processing, analyzing, interpreting and integrating the data. To this date, the tools for 

interpreting the lipidome have to a large extent been limited to the following approaches or their variants: (1) 

the identification of individual markers based on univariate or regression model-based testing, as outlined 
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previously, combined with a contextual interpretation based on a literature search of the identified markers 

(see, e.g., Rauschert, et al., 20163); (2) the analysis of lipid class-specific total amounts or average levels (see, 

e.g., Stegemann, et al., 20114); (3) the analysis of average levels in groups or clusters of correlated lipids (see, 

e.g., Huopaniemi, et al., 20105); (4) the lipid class-specific regression analysis between the saturation of lipids to 

and their concentration (see, e.g., Rhee, et al. 20116), (5) the interpretation of the lipid levels in the context of 

broader pathways derived from literature or other omics technologies, such as transcriptomics or proteomics 

(see, e.g., Tonks, et al., 20167). 

In this manuscript, we present a toolbox that gives a means to interpreting lipidomics data in a way that can be 

viewed as a combination of the categories 1, 2, and 4 from the above listing. Further, the package includes 

additional capabilities that can be useful for the categories 3 and 5. The toolbox leverages on established R 

packages and provides a pipeline for the generation of rich data analyses that present the lipidome in relation 

to explanatory variables of the study and present the lipidome in the context of structural information on the 

lipid class, size and level of saturation. We argue that these are the three key descriptors for understanding 

underlying mechanisms in the lipidome. On the other hand, understanding the influence of competing factors 

and their relative contributions is essential for understanding the extent and importance of an association, 

which is made possible with side-by-side visualizations of independent variables from the model. 

2 Results 

2.1. The lipidomeR Package 

The lipidomeR is written in R8 (version 3.6.2) and is available through the Comprehensive R Archive Network 

(CRAN), which is the major R package repository provided by the R-project. The package is available for 

installation with the command ‘install.packages( “lipidomeR” )’ for R versions 3.5.0 or newer. Key back-end 
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dependencies of the lipidomeR are the limma package2 for statistical inference, the ggplot2 package9 for the 

visualization and the stringr package10 for parsing and enumerating the lipid names into mappable values. 

The workflow of a lipidomeR analysis is outlined in Figure 1. Briefly, it consists of (1) loading the data into R, (2) 

defining the list of lipid names, (3) enumerating the lipid names into mappable values of fatty acid chain length 

and saturation, (4) computing the regression models to explain the lipid observations based on the experiment 

design, and (5) creating the lipidomeR heatmap that integrates the model statistics over the measured 

lipidome. The enumeration of the lipid names (Step 3) is done using the ‘map_lipid_names()’ function of the 

lipidomeR package, The regression models (Step 4) are fitted using the ‘compute_models_with_limma()’ 

function, and, finally, the results of the models are visualized (Step 5) using the 

‘heatmap_lipidome_with_limma()’ function. This most typical route of analysis is shown with bold lines from 

top to bottom in the middle-part of Figure 1 (see Section 2.3 for an example). 

(Figure_1_here) 

Two special cases of the workflow are the visualization of associations to a categorical explanatory variable and 

the visualization of observations that do not come from a regression model. The first case is analyzed with the 

analysis of covariance (ANCOVA)11 and consecutive pairwise post-hoc comparisons. The ANCOVA workflow can 

be computed using the ‘compute_F_test_with_limma()’ and ‘compute_post_hoc_tests_with_limma()’ 

functions as middle-steps between Steps 4 and 5 of the main workflow (Figure 1, right; see Section 2.4 for an 

example). The second case is visualized by, after Step 3, directly supplying the observations to the 

‘heatmap_lipidome()’ function, which creates a lipidomeR heatmap of the supplied values. Typical use cases for 

the ‘heatmap_lipidome()’ function are the visualization of original measurements (see Section 2.2 for an 

example), or the visualization of quality control measures. 
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Next, we test the lipidomeR with data from three publicly-available lipidomics studies. In these analyses, we 

give a demonstration of how to use the lipidomeR and how to interpret the results figures that the package 

creates. For each study, we provide a fully reproducible pipeline for obtaining these results, starting from 

acquiring the data and ending with final edits to the results figures. 

2.2 The Human Lipidome 

In the first experiment, we visualize the data from the 2010 hallmark study of human plasma standard 

reference material12 that, for the first time, reported the average concentrations of 535 lipids in human plasma. 

Out of the lipids that were provided in the deposited data, 403 lipids were presented with an enumeration of 

the number of acyl-chain carbon atoms and double bonds, which is a pre-requisite for a lipidomeR heatmap. 

These lipids belong to 23 classes with most species in ceramides (Cers, N = 43), hexocyl-ceramides (HexCers, 

N=43) and sphingomyelins (SMs, N = 40). 

The lipid concentrations from the human plasma standard reference are shown in Figure 2. Highest 

concentrations are found in cholesterol esters (CEs), phosphatidylcholines (PCs) and triacylglycerols (TGs), 

which emerge in red color in the respective heatmaps (see the “CE”, “PC” and “TG” panels in Figure 2). In all 

these three classes, mid-sized mid-unsaturated species, shown in the middle-section of the respective 

heatmaps, are in highest concentration. CE(18:2) is the highest-concentrated lipid, as indicated by the deepest 

red color in the coordinates x = 18 and y = 2 of the CE panel. 

(Figure_2_here) 

2.3 Breast Cancer Tissue 

Next, we analyzed lipidomic differences between tissue from breast cancer and benign breast tumor, allowing 

us to test also lipidomeR’s statistical inference functionality and the integration of statistics results over the 
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visualization of the lipidome. In this study13, a total of 118 tissue samples were available from 48 benign 

tumors, 66 malign (i.e., cancerous) tumors and 4 metastases. Out of the 773 measured lipids, 409 were unique 

and possible to map onto a lipidomeR heatmap in a meaningful way. These lipids belong to 13 classes. The 

largest lipid classes are the triacylglycerols (TGs), phosphatidylcohlines (PCs) and phosphatidylethanolamines 

(PEs) with 89, 67 and 54 species, respectively. 

The vast majority of the lipids turn out to differ between the malign and benign tumors (Figure 3): Most 

consistent differences are in cholesterol-esters (CEs), lyso-phosphatidylcholines (lysoPCs) and phosphatidyl-

inositols (PIs), where the lipid level is higher in cancer in all of the statistically significant differences (see panels 

CE, lysoPC and PI in Figure 3). Other very consistently-differing lipid classes are the diacyl-glycero-

phosphoglycerols (PGs; elevated in cancer), plasmenyl-phosphatidylcholines (plasmenyl-PCs; elevated) and 

plasmenyl-phosphatidylethanolamines (plasmenyl-PEs; reduced). In these classes, only one of the species with 

a significant difference is inconsistent with the class-wide pattern. 

(Figure_3_here) 

Arguably the most interesting pattern is observed in the TGs, where compounds with 59 or fewer carbon atoms 

in the fatty acid chains are consistently reduced in cancer while the largest compounds with 60 or more 

carbons were elevated (see the TG panel of Figure 3 at y ≤ 59 and y > 59, respectively). Interesting patterns are 

also observed in PCs, diacylglycerols (DGs) and phosphatidyl-serines (PSs): Although the majority of PCs are 

elevated in cancer, a cluster of large compounds are reduced (see the top-left corner of the PC panel in Figure 

3). On the other hand, DGs are mainly reduced in cancer but, specifically, 38-carbon DGs break this rule with a 

consistent elevation (see the DG panel of Figure 3 at y = 38). This elevation also extends to few poly-

unsaturated DGs with 40 or 42 carbon atoms (see the DG panel at y = 40 and 42). In phosphatidyl-serines (PSs), 

a cluster of mid-sized poly-unsaturated compounds are elevated while the smaller compounds are reduced 
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(see the PS panel of Figure 3). The remaining lipid classes, namely, cardiolipins (CLs) and phosphatidyl-

ethanolamines (PEs) are mixed with elevated and reduced lipids with no apparent pattern related to size or 

saturation. 

In this demonstration, we reported differences between cancerous and benign tumor samples. The small group 

of metastatis samples differed with similar but somewhat stronger patterns as the cancer tumor samples, 

when compared to the benign tumor samples. These additional results are shown in Supplementary Material, 

p.5. 

2.4 The Spectrum of Nonalcoholic Fatty Liver Disease 

Finally, we investigate a large study14 on non-alcoholic fatty liver disease (NAFLD), allowing us to demonstrate 

more complex statistical analysis and interpretation of the results. The data from the study include lipidomics 

of liver, plasma and urine samples from 88 participants with NAFLD ranging between healthy (N=31), steatosis 

(N=17), hepatosis (N=20) and cirrhosis (N=20). Out of the 542 measured lipids in the liver, 383 are unique and 

possible to map onto a lipidomeR heatmap in a meaningful way. These lipids belong to 31 classes. The largest 

lipid classes are the triacylglycerols (TGs), 1,2-diacylglycerols (DGs) and free fatty acids (FAs) with 90, 4 and 25 

species, respectively. 

In liver tissue, 144 lipids have a difference between the NAFLD categories in the analysis of covariance 

(ANCOVA; p < 0.05; Supplementary Material, p.8). In post-hoc comparisons, which we next describe as the 

main result of this experiment, it becomes clear that steatosis and hepatosis exhibit largely similar lipidomic 

patterns while cirrhosis is markedly different (Figure 4). 

(Figure_4_here) 
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Steatosis – the first stage of NAFLD – is defined by an accumulation of triacylglycerols (TGs) in the liver. This is 

also observed in the data as virtually every measured unsaturated TG species is elevated (see the bottom-left 

panel the “DiagnosisSteatosis” column and in the TG row of Figure 4, where rectangles at location x > 0 appear 

red with an asterisk or cross, indicating statistical significance). In most of the saturated TGs, though the 

elevation is not significant (see the rectangles at location x = 0). The most marked increase appears in mid-sized 

unsaturated TGs (see the rectangles at location y = 50 and x = 3 as well as at y = 53 and y = 3, in corresponding 

to TGs 50:3 and 53:3, appear in most intense red, indicating a strong elevation in steatosis). 

Beyond the TGs, steatosis is characterized by elevated 1,2-diacylglycerols (1,2-DGs), cholesterol-esters (CEs) 

and lyso-phosphatidyl-ethanolamines (LPEs), as indicated by the red color in the panels at the “1,2-DG”, “CE” 

and “LPE” rows of at the “DiagnosisSteatosis” column. In CEs and LPEs, the elevation appears throughout the 

board, albeit in LPEs the elevation appears as somewhat stronger in non-saturated lipids (see rectangles in the 

LPE-Steatosis panel with x > 0. In 1,2-DGs, the elevations are weaker with only two 34-carbon 1,2-DGs at p < 

0.05 (see the rectangles in the 1,2-DG panel with y = 34). In other lipid classes, only minor or inconsistent 

changes are observed in steatosis. 

The second disease stage – the non-alcoholic steatohepatitis (NASH) – is also defined by an accumulation of 

TGs in the liver. However, the elevation profile is different from steatosis: The most elevated TGs in NASH are 

the saturated TG(57:0), and the smaller TGs 46:1, 49:1 and 51:1 (see the NASH-TG panel of Figure 4 at locations 

x = 57 and y = 0 as well as x = 1 and y = 46, 49 and 51). In contrast, many large or mid-sized and unsaturated 

TGs are only mildly elevated (p > 0.05). Beyond the TGs, the same pattern of elevated CEs and LPEs is not seen 

as in steatosis. 

The terminal stage of liver disease – the cirrhosis – is completely different from NASH and steatosis. 

Remarkably, there is no difference in the profile of TGs between a cirrhotic and a healthy liver (see the panel in 
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the DiagnosisCirrhosis column and in the TG row). Instead, a cirrhotic liver is characterized by a decrease in 

saturated ceramides (Cers; p < 0.01; see the DiagnosisCirrhosis-Cer panel at x = 0). Indicative but considerably 

weaker decrease is observed in saturated 1,2-DGs (see the DiagnosisCirrhosis-1,2-DG panel of Figure 4). Finally, 

the most unsaturated PEs and phosphatidyl-serines (PSs) are reduced in cirrhosis (see the panels at the PE and 

PS rows and at the DiagnosisCirrhosis column at x = 6 in the middle-right of Figure 4). In smaller and more 

saturated PEs and PSs, the aberration is opposite with an elevation in cirrhosis (see the same panels at x = 

1…3). 

Beyond these consistent changes during the progression of NAFLD, changes in other lipid classes, such as 

sphingomyelins (SMs), are observed (Supplementary Material, p.10). While these patterns also vary across the 

disease stages, all the lipid classes that were not presented in Figure 4 had fewer than four changes in all the 

stages combined, indicating a lower consistency of the aberrations than observed in 1,2-DGs, CEs, Cers, LPEs, 

PEs, PSs and TGs. 

3 Discussion 

The NIDKK/NIST reference data consisted of only one concentration value per lipid. Thus, inter-individual 

variation cannot be assessed based on these data. Despite this limitation, the data provide insight into, which 

lipids classes are abundant in human plasma, and how much the levels of individual lipid species within a class 

differ. In this paper, we provided a systematic visualization of the human lipidome. We argue that this 

visualization created additional value to the published data by uncovering detailed lipid concentration patterns 

in human plasma. 

Investigation of breast tumors revealed a lipidome-wide dysregulation in the cells’ lipid balance in cancer. The 

lipidomeR heatmap visualization helped uncover a size-and-saturation-dependent pattern in DGs, PCs and, 

particularly, in TGs: The largest TGs were elevated in cancer although the bulk of TGs were clearly reduced. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.16.994061doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.16.994061


 

 

Analysis of the non-alcoholic fatty liver (NAFLD) study revealed distinct lipidomic patterns of the disease stages. 

While the major differences were reported in the original publication of the study14, we argue that the analysis 

presented here delivered a significantly new interpretation of the data and presented the data in a systematic 

manner that allows the audience to understand the big picture in these complex data. Particularly, the 

ANCOVA-post-hoc procedure coupled with interpretable heatmaps allowed for the description of disease-

stage-specific patterns, which could have clinical application. 

We believe that the lipidomeR can improve the interpretability and reproducibility of lipidomics research. It is 

our aim to demonstrate more use cases of this tool in new translational studies in medical research, as already 

has been done in Tofte, et al., 201915 and Al-Sari, et al., 202016. We aim to make additional functionalities 

available to the lipidomeR by extending the portfolio of suppoted data analyses to a broad set of analysis cases 

in clinical and biomedical research. Some of these planned additions have already been developed, including 

the integrated computation and visualization of other regression models, such as mixed-effect models (see 

Ahonen, et al., 201917) and time-to-event models (see Tofte, et al., 2019), and novel integrative visualizations, 

such as bipartite graphs (see Tofte, et al., 2019b18) and partial correlation networks (see Trost, et al., 202019). 

Finally, by providing reproducible examples directly in the package, we aim to making the tool accessible to a 

broad set of users with diverse academic backgrounds, which is a typical feature of metabolomics research. 

4 Methods 

Publicly available datasets from the Metabolomics Workbench were analysed and visualized to demonstrate 

the method. 

Data were downloaded from the Metabolomics Workbench in the mzTab format. Consecutive work was done 

in R. First, a dataset-specific function to load and prepare the data was written to extract observations and 

experiment design from the mzTab data. 
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4.1 The lipidomeR Package 

Once loaded into a compatible format, the data were analysed and visualized with the R-package lipidomeR, 

which can be installed in R (R>3.5.0) with the command ‘install.packages( “lipidomeR” )’. The package can also 

be found at https://cran.r-project.org/web/packages/lipidomeR/ . 

The steps from ready data to result are as follows: (1) Define the list of lipid names in the data. (2) Parse the 

lipid names into mappable values describing the lipid class, the number of carbon atoms in the fatty acid chain 

(i.e., the size of the lipid) and the number of double-bonds in the fatty acid chain (i.e., the degree of 

unsaturation). This step is done by calling the ‘map_lipid_names()’ function. (3) If applicable, compute lipid-

wise regression models to describe the data in terms of the experimental covariates. This step is done by 

calling the ‘compute_linear_models_with_limma()’ function. (4) Finally, visualize the fitted regression model 

coefficients on a heatmap that shows the measured lipidome, grouped by the lipid class and experimental 

covariate, and organized according to the size and the level of unsaturation of the lipids. This step is done by 

calling the ‘heatmap_lipidome_from_limma()’ function. 

4.2 The Human Lipidome 

The data for this study were downloaded from the project ST000004 at the Metabolomics Workbench 

(http://dx.doi.org/10.21228/M8MW26 ). The script for preparing the data is available at 

https://github.com/tommi-s/lipidomeR/blob/master/scripts/prepare_humanlipidome.md . 

The data set contains only one concentration value per lipid. That is, there are no replicate measurements 

reported but the values are from a single measurement of the reference material, which itself is a pooled 

composite of plasma from an order of hundred healthy individuals. Due to the N=1 nature of the study, 

statistical models were not fitted to these data, meaning that the Step 3 in the lipidomeR workflow (described 
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in Section 4.1) was not applied. Instead, the lipid concentration values from the data were directly used in the 

lipidomeR heatmap visualization at Step 4. 

The prepared data set is available in the lipidomeR package under the name ‘humanlipidome’. The results 

reported in this paper can be reproduced by running the example in the documentation of the 

‘humanlipidome’ data set. The example can also be viewed on browser at https://lipidomer.org . 

4.3 Breast Cancer Tissue 

The data for this study were downloaded from the project ST001111 at the Metabolomics Workbench 

(http://dx.doi.org/10.21228/M8RX01 ). The script for preparing the data is available at 

https://github.com/tommi-s/lipidomeR/blob/master/scripts/prepare_cancerlipidome.md . 

In the interest of clarity for this experiment, we focused on the comparison between malignant tumor (cancer) 

samples and benign tumor samples. The association between the tumor diagnosis and lipid levels was analysed 

with lipid-specific linear regression models, where the diagnosis category entered the model as categorical 

independent variable and one lipid feature at a time as a dependent variable. 

The inferred model coefficients were visualized in a lipidomeR heatmap. Particularly, a heatmap to visualize the 

difference between the malignant and benign tumor samples was created. To improve readability of the figure 

by making the number of sub-panels fit a 3-by-3 grid, the lipid class of glycerophosphates (PAs) was omitted 

from the figure. Among the lipid classes, PAs were chosen on the ground that the class is rather highly 

scattered in terms of the individual species size and saturation, indicating a low coverage of the entire PA class. 

Figures including also the PAs were also produced for Supplementary Material. 
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The prepared data set is available in the lipidomeR package under the name ‘cancerlipidome’. The results 

reported in this paper can be reproduced by running the example in the documentation of the ‘cancerlipidome’ 

data set. The example can also be viewed on browser at https://lipidomer.org . 

4.4 The Spectrum of Nonalcoholic Fatty Liver Disease 

The data for this study were downloaded from the study ST000915 of the project PR000633 at the 

Metabolomics Workbench ( http://dx.doi.org/10.21228/M8V961 ). In the interest of clarity of demonstration 

for this experiment, we focused on lipidomic data from the liver samples. The script for preparing the data is 

available at https://github.com/tommi-s/lipidomeR/blob/master/scripts/prepare_liverlipidome.md . 

Each lipid species was tested for any difference between the NAFLD categories with analysis of covariance 

(ANCOVA) by using lipidomeR. The lipids passing the ANCOVA with a significant difference were further 

investigated with post-hoc tests comparing the healthy group to the other NAFLD groups. The post-hoc 

comparisons between the disease stages of steatosis, non-alcoholic steatohepatitis (NASH) and cirrhosis 

against healthy control were visualized as lipidomeR heatmaps. Lipid classes with five or more aberrations with 

statistical significance (p < 0.05) were shown in the heatmap in Figure 4 while a heatmap with all lipids were 

also produced for supplementary material (Supplementary Figure N). 

The prepared data set is available in the lipidomeR package under the name ‘liverlipidome’. The results 

reported in this paper can be reproduced by running the example in the documentation of the ‘liverlipidome’ 

data set. The example can also be viewed on browser at https://lipidomer.org . 

Data Availability 

All data presented in this paper are available as part of the lipidomeR package. Also the code to reproduce the 

results are available as examples in the lipidomeR package as well as in the Supplementary Material and at 
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https://lipidomer.org . The original data sets are available at the Metabolomics Workbench repository. Scripts 

for preparing the data from the original data sets are available at https://github.com/tommi-

s/lipidomeR/tree/master/scripts . See the Methods Section for details. 
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Figures 

 

 

Figure 1: Workflow of a lipidomeR analysis from top (data) to bottom (result). The input (data) is shown as 

circle, the output (i.e., the result figures) are shown as diamonds and the functions of the lipidomeR package 

are shown as rectangles. The main route with an ordinary linear regression model is shown in bold in the 

middle. Alternative route with an analysis of covariance (ANCOVA) and pairwise post-hoc comparisons of 

significant lipids is shown on the right, and the alternative of visualizing original data or, for instance, quality 

control measures, is shown on the left. The three studies reported in this paper, the “humanlipidome”, the 

“cancerlipidome”, and the “liverlipidome”, respectly, are analysed by following the routes on the left, middle 

and right. 
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Figure 2: Concentrations of 403 lipids in the human plasma standard reference material. In the heatmap, each 

lipid is shown as a rectangle, where the color shows the respective concentration (µmol/mL in log10-scale; 

blue: low; white: median; red: high). The lipids are grouped into lipid classes, which are shown in distinct panels 

and titled according to the abbreviation of the respective lipid class. Within each lipid class, the individual lipid 
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species are organized according to the size (x-axis) and the level of unsaturation (y-axis) of the lipid. Gray areas 

in the heatmap represent combinations of size and unsaturation, where no lipid was detected. For instance, 

the cholesterol-ester CE(18:2) is shown in the CE-titled panel at coordinates x=18 and y=2 and it is colored in 

deep red, since it is the highest-concentrated lipid in the data. 
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Figure 3: Lipidomic differences between malignant breast tumor (i.e., cancer) and benign breast tumor. In the 

heatmap, each lipid species is shown as a rectangle, where the color shows the difference (red: higher in 

cancer; white: no difference; blue: lower in cancer). The lipids are grouped by lipid class as panels, where the 

abbreviation of the lipid class is shown in the title of the panel. Within each class, the individual lipid species 
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are organized according to the size (y-axis) and the level of unsaturation (x-axis) of the lipid. Lipids with 

statistically significant difference between cancer and benign tumor are highlighted with a character. For 

instance, diacyl-glycero-phosphoglycerol PG(40:6) is shown in the “PG” panel in the coordinates x = 6 and y = 

40. This species is the most highly-elevated lipid among the measured lipidome in breast cancer (p < 0.01), as 

indicated by a deep red color and the asterisk character. 
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Figure 4: Lipidomic differences between three stages of non-alcoholic fatty liver disease (NAFLD) and healthy 

control. In the heatmap, each lipid species is shown as a rectangle, where the color shows the difference (red: 

lower in healthy control; white: no difference; blue: higher in healthy control). The lipids are grouped by 

disease stage (panel columns) and lipid class (panel rows). The lipid class abbreviation is shown in the row 
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panel title (right) and the disease stage is named in the column panel title (top). Within each panel, 

representing a pair of lipid class and disease stage, the individual lipid species are organized according to the 

size (y-axis) and the level of unsaturation (x-axis) of the lipid. Lipids with statistically significant difference are 

highlighted with a character. For instance, the cholesterol-ester CE(18:12) is shown in the row “CE” in the 

coordinates x = 2 and y = 18. The lipid is highly elevated in steatosis (p < 0.01), as indicated by a deep red color 

and the asterisk character in the “DiagnosisSteatosis” column. The same lipid is still elevated in NASH (p < 

0.05), as indicated by a red color and the cross character in the “DiagnosisNASH” column. Finally, CE(18:2) is no 

longer elevated in cirrhosis but rather is slightly in lower level than in the control group (not significant), as 

indicated by a mild blue color in the “DiagnosisCirrhosis” column. 
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