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ABSTRACT 

Background:  In vitro evolution and whole genome analysis has proven to be a powerful method 

for studying the mechanism of action of small molecules in many haploid microbes but has 

generally not been applied to human cell lines in part because their diploid state complicates the 

identification of variants that confer drug resistance.   To determine if haploid human cell could 

be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, 

gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then 

analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that 

involved filtering for  high frequency alleles predicted to change protein sequence, or alleles which 

appeared in the same gene for multiple independent selections with the same compound.  Applying 

the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly 

enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, 

SLCO3A1).  In addition, some lines carried structural variants that encompassed additional known 

resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout 

experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls 

and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can 

be evolved, discovered and studied in an isogenic background.  
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INTRODUCTION 

In human cells, methods for discovering genes that play a role in drug resistance or which 

encode drug targets, especially for poorly characterized compounds, such as natural products, are 

limited.  Genome-wide CRISPR-Cas9 knockdown experiments[1-3] in the presence of a drug are 

useful to broadly implicate relevant genes, but cannot readily reveal critical gain-of-function, 

single nucleotide alleles, such as imatinib-resistance conferring mutations in BCR-Abl.  

Discovering common alleles in whole genome sequences of tumors from cohorts of patients that 

have relapsed after drug treatment requires very large datasets and is complicated by patient 

heterogeneity.  Furthermore, such studies also cannot be used on experimental therapies.   

 Work in other organisms has shown that in vitro evolution and whole genome analysis 

(IVIEWGA) is a powerful method to discover both a comprehensive set of drug resistance alleles, 

as well as the targets of compounds with unknown mechanisms of action[4, 5]. In this method, 

clonal or near clonal organisms are isolated and then clones are subjected to increasing levels of a 

drug that inhibits growth. After selection, the organism is cloned again. The genomes of resistant 

clones are then compared to the sensitive parent clone using next generation sequencing (NGS) 

methods. In organisms such as Saccharomyces cerevisiae[6], Plasmodium falciparum[4, 5], 

Mycobacteria[7], Trypanosomes[6], and Acinetobacter baumannii[8] this method has been used 

to comprehensively discover resistance conferring variants. Surprisingly, the data shows that 

typically only a small number of de novo variants are detected after evolution. If multiple selections 

are performed on independent clones, the same resistance gene will appear repeatedly, although 

often appearing with different alleles, providing a high level of statistical confidence that the allele 

has not arisen by chance.  

 Many of the organisms on which IVIEWGA has been used with success have both haploid 

and diploid phases of their lifecycle, which means that selections can be performed in a haploid 

stage. Selecting for resistant clones in a haploid organism greatly simplifies analysis as a driver 

resistance allele will approach 100% frequency. In addition, for loss of function alleles, only one 

mutation is needed (versus both copies). Although metazoans are all diploid, haploid human cells 

lines are nevertheless available: HAP1, is a human chronic mylogenous leukemia (CML)-derived 

cell line that is completely haploid except for a 30 megabase fragment of chromosome 15 [9]. 
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HAP1 has been used for genetic studies because mutated phenotypes are immediately exposed[10-

15]. 

 Using five different anticancer drugs (Doxorubicin, Gemcitabine, Etoposide, Topotecan, 

and Paclitaxel) as examples, we show that in vitro evolution in HAP1 cells can be used to identify 

the molecular basis of drug resistance in human-derived cells.  Through our unbiased analysis of 

evolved clones, we detect a limited number of genes that acquire SNVs or CNVs after prolonged, 

sublethal exposure to our selected xenobiotics. We further demonstrate the power of the approach 

by using shRNAs and CRISPR-Cas9 to downregulate or reintroduce selected alleles and 

demonstrate that this confers resistance or sensitivity to the drug which elicited the evolved 

genomic change. Our work has implications for clinical intervention strategies to prevent the 

emergence of drug resistance and tumor recurrence through gene mutations acquired through DNA 

damage from chemotherapeutics or natural variants which exist and persist from the heterogenous 

tumor cell environment. 

RESULTS 

Selection of compounds for resistance studies 

 To identify xenobiotics with the best efficacy against HAP1 cells we first measured ATP 

levels (CellTiterGlo) treating HAP1 cells with serial dilutions of 16 different drug for 48 hours. 

Five drugs showed EC50 values between 5 to 340 nM (Fig. 1A-B, Table S1). These included 

doxorubicin (DOX, EC50 = 46.05 ± 4.6 nM), also known as adriamycin, an anthracycline antibiotic 

that works by inhibiting topoisomerase II alpha (TOP2A)[16, 17]; gemcitabine (GEM, EC50 = 8.7 

± 0.7 nM), a synthetic pyrimidine nucleoside prodrug that is used against a variety of 

hematopoietic malignancies[18-20]; etoposide (ETP, EC50 = 338.6 ± 39.7 nM), a semisynthetic 

derivative of podophyllotoxin that also targets TOP2A and prevents re-ligation of the double-

stranded DNA[21]; paclitaxel (PTX, EC50 = 17.5 ± 4.0 nM) also known as taxol, an effective 

anticancer agent that targets tubulin, perturbing the cytoskeleton and causing M phase cell-cycle 

arrest[22], and topotecan (TPT, EC50 = 5.6 ± 0.1 nM), a semisynthetic water-soluble derivative of 

camptothecin that inhibits topoisomerase I (TOP1)[23].  Our HAP1 EC50 values were similar to 

those previously reported for other CML cell lines (www.cancerrxgene.org [24, 25]) with the  with 

the exception of etoposide, which appeared more effective in HAP1 cells (EC50 = 338.6 ± 39.7 
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nM) relative to other CML cell lines (> 1 µM in BV-173, KU812, EM-2, MEG-01, JURL-MK1, 

KCL-22, RPMI-8866, LAMA-84, K-562).  

Evolution of resistance is readily achieved for all compounds. 

Our next objective was to create drug resistant lines. Although we have had difficulty 

creating resistant lines for some drugs in some species (“irresistibles”[26]), there is precedent for 

resistance to the drugs included here[27-29]. To reduce the possibility of selecting mutations that 

were present in a nonhomogenous population of HAP1 cells and to facilitate later genomic 

analysis, we first cloned the cells. This was accomplished by diluting cells to an average density 

of ~0.5 cells per well in a poly-L-lysine treated 96-well plate (Fig. 1C) and then picking clones 

from wells that contained single colonies. Selections were initiated with different parent clones for 

the different drug-specific replicates (Fig.1C, Fig. S1).   

To create drug resistant clones, cells were grown in tissue culture dishes (reaching 60-80% 

semi-confluence) in the presence of sublethal concentrations of each drug using one of two 

different methods. Most cell lines (DOX, GEM, TPT and PTX resistant clones) were subjected to 

a lethal concentration (~3-5 × EC50 value), killing more than 95% of the cells. Then, treatment was 

removed until cells reached semi-confluence again (doubling every 22 hours[30]) whereupon drug 

at ~ the EC95 value was reapplied. Alternatively, for ETP-resistant clones a step-wise selection 

method was used whereby cells were repeatedly exposed to a concentration that killed around 50% 

of the cell population. Drug concentration was increased by 5-10% every 5 days while keeping the 

growth rate at 50% of untreated culture. Although others have used mutagenesis [31], we have 

found that this can increase the rate of background mutations, which would complicate an already 

difficult analysis.  Because mutations will arise randomly during long term cell culture, we 

attempted at least three independent selections for each drug, in each case starting with an identical 

parental isolate (Fig. 1C). In a few cases, independent selections could not be achieved and 

dependent clones with a shared lineage (DOX-R4a and DOX-R4b; PTX-R2a and PTX-R2b; TPT-

R4a, TPT-R4b and TPT-R4c) were collected. Resistance emerged after several months depending 

on the drug and the method used (7-30 weeks approximately, 49-210 generations) (Fig. S1).  

Once resistance was observed in the batch culture, we isolated clones from batch drug-

selected cultures and the drug sensitivity of the clone was measured and compared to the isogenic 

parent clones (Fig. 1D). We observed an EC50 fold shift between 3.3 and 411.7 (Table S2) in 
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paired comparisons. To demonstrate that the drug resistance phenotype was stable, drug pressure 

was removed for 8 weeks (approximately 56 generations) and clones were retested for sensitivity. 

We observed no changes in the EC50 values, indicating that resistance phenotypes were not due to 

transient adaptation.  

Identification of putative resistance variants using next-generation sequencing  

We next performed whole genome and exome paired-end read sequencing on the 35 cell 

lines (both drug-resistant clones and their matched drug-sensitive parent clones). Our IVIEWGA 

studies in Plasmodium[5], have shown that stable drug resistance is typically conferred by SNVs 

in coding regions and thus exome sequencing was an efficient mechanism to find causal variants. 

However, gene amplifications, which contribute to 1/3 of drug resistance events in Plasmodium[5], 

are more accurately detected with WGS because exact chromosomal recombination sites, which 

may fall in intergenic regions, can be reconstructed from WGS data. Because of falling costs over 

the course of the project, more samples (N=21) were ultimately whole genome sequenced than 

whole exome sequenced (N=14).   

Sequencing quality was high for all samples: alignment showed that, on average, 99.9% of 

700 million WGS (40 million WES) reads mapped to the hg19 reference genome with 86% of the 

bases covered by 20 or more reads (Table S3). By comparing sequences of evolved clones to their 

respective parental clones, we discovered a total of 41,259 SNVs (Table S4), of which 26,625 

were unique (Table S5, Methods). The majority of variants in all cell lines was non-coding (Table 

S4, S5) and were evenly distributed with respect to chromosome length (Fig. S2). Of the 26,625 

mutations almost all (26,468) were present at allele frequencies (AF) of less than 85% relative to 

their parent clone and would thus not be expected to be driver mutations, given that the parents 

were cloned (to the best of our ability) before selections were initiated.  The five drugs varied in 

the number of mutations, with TPT having the highest overall numbers (Table 1). 

 We next developed a pipeline (Fig. S3A, Methods) to filter the 26,625 “called” mutations 

(Table S6) to a final list of potential variants conferring drug resistance (Table 1). Our previous 

analyses in other species suggested that variants presented in coding regions are more likely to 

contribute to drug resistance even though this could exclude the variants associated with certain 

transcription factor (TF) binding sites. Therefore, our strategy focused on mutations that were in 
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exonic regions and were drug-specific (Fig. S3A). We further considered only mutations likely to 

have a functional impact at the protein level (missense, nonsense, frameshift, start or stop gain or 

loss) which further reduced the number to an average of 35 and 23 nonsynonymous mutations for 

WGS and WES, respectively (Fig. S3A). Reasoning that resistance driver mutations (e.g. those 

actually causing resistance) would be present in 100% of the haploid cells in the sequenced culture, 

we selected only the variants with high allele frequency (AF > 0.85, as determined by sequencing 

read count). The top 2.5% of highest AF mutations corresponded to an AF > 0.85 (Fig S3B). At 

this cutoff, the majority of cell lines harbored a candidate resistance mutation. While selecting a 

cutoff represents a tradeoff with potentially missed relevant mutations, the full list of mutations is 

provided in the supplement (Table S6).  We did not note any strong correlation between read depth 

and allelic fraction in our study (R2 = 0.06; Fig. S3C) and all of the final mutations selected for 

further analysis had a read depth > 10 reads, with the majority supported by over 20 (Fig. S3D). 

Although some with AF <0.85 could confer a beneficial advantage to the cell, most are likely to 

be random mutations that arose during long term culture. Finally, based on our experience with 

microbes whereupon genes with multiple, predicted independent amino acid changes (not expected 

by chance (4 genes, STARD9, CYP1B1, SLCO3A1 and DCK)) are often found for the same drug, 

we added these genes to our final list of 21 candidates (Table S7).   

Somatic Copy number variations (CNVs) 

We next searched for CNVs (both amplifications and deletions) in our WGS and WES data 

using Control-FreeC[32]. Overall patterns of broad and focal alterations across the drugs and 

conditions varied (Fig. S4A, Table S8). Using a corrected p-value of less than 0.05, we identified 

93 total amplification and 108 deletion events, with most appearing in the TPT-resistant samples 

(123) (Table S8). The CNVs had an average size of 8.5 Mbp (stdev 19 Mbp), ranged from 15,000 

bp to 152 Mbp (Fig. S4A) and covered ~3% of the genome, on average. More CNVs were called 

in WES samples because of sequencing gaps—even for WGS samples, some CNVs were separated 

by short distances and were nearly contiguous (Fig. S4A). It is likely that some CNVs were also 

missed in the WES data. The number of events was proportional to chromosome size, with the 

exception of the Y chromosome, for which there were ~4 × more events (47) per unit length. Some 

CNV calls were supported by paired end red data, for example, the one near WWOX (Fig. S4B, 

C).  
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Doxorubicin resistance is associated with mutations in TOP2A and a solute carrier 

transporter 

To evaluate the approach, we next considered the set of SNVs and CNVs for each drug.  

For DOX, we had six available selections from two different starting clones (WT-1 (WGS) and 

WT-5 (WES)) that were analyzed by WGS (DOX-R1, DOX-R2, DOX-R3) and by WES (DOX-

R4a, DOX-R4b and DOX-R5) (Fig. 2A). High allele frequency missense mutations were found in 

only 11 genes (Table S7).  Of note, DOX-R2 and DOX-R3 carried mutations in TOP2A at 

frequencies of 0.89 and 0.87, respectively. This is the known target of DOX[21, 33] and is known 

to play a role in drug resistance[33-35]. The amino acid mutation, Pro803Thr (Fig. S5), sits within 

the principal DNA-binding locus, the DNA-gate, a region conserved in type II topoisomerases 

(TOP2A and TOP2B). It is also adjacent to the catalytic tyrosine (Tyr805), responsible for 

nucleophilic attack on DNA[36]. While one explanation is that Pro803Thr creates steric hindrance 

and blocks DOX access to the site, a more likely explanation is that the mutation is a loss-of-

function mutation, especially as knockdown of TOP2A activity has previously been shown to 

confer DOX resistance in a Eμ-Myc mouse lymphoma system[37]. To reproduce these results in 

our HAP1 human cells, TOP2A was downregulated using a shRNA pool containing constructs 

encoding target-specific shRNA hairpins for TOP2A. Western blots further showed the expected 

down regulation of protein levels (Fig. 2B) and an EC50 analysis of the wildtype and the 

knockdown line revealed a 4.25-fold increase in DOX resistance compared to the isogenic parent 

(Fig. 2C, D).  

We also found missense mutations present in 100% of the reads for several other attractive 

but less well characterized genes; SLC13A4 (Gln165His, DOX-R4b), and SPG7 (Lys593Asn, 

DOX-R5), as well as one uncharacterized gene (AC091801.1, His13Asn, DOX-R4a) in the three 

different clones that were subjected to WES and were derived from WT-5. SLC13A4 is a solute 

carrier transport family member and members of this general solute carrier family have appeared 

in selections conducted in microbes (e.g. the UDP-galactose transporter and the AcetylCoA 

transporter[38]) and are also associated with cancer drug resistance[39].  The Gln165His mutation 

is located in the disordered region of the protein. To validate SLC13A4 we performed a gene 

knockdown using a shRNA pool that targeted SLC13A4, containing three expression constructs 

each encoding target-specific 19-25 nucleotide shRNA hairpins. Protein expression levels of the 
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knockdown line were measured by western blot followed by a dose-response assay to compare its 

EC50 value with the wildtype line (Fig. 2E). The 4 × increase in resistance suggests that SLC13A4 

contributes to resistance, although it may not account completely for the level of resistance of the 

sequenced clones, which ranged from 4 to 11 × (Fig. 2F, G).  

Gemcitabine resistance is conferred by changes in DCK and RRM1 activity 

Six selections were performed with GEM (starting from two different isogenic parents; 

WT-2 (WGS) and WT-3 (WES)). Among those, three GEM-resistant clones subjected to WGS 

(GEM-R1, GEM-R2 and GEM-R3) showed an average EC50 shift of 300 to 400-fold (Fig. 3A, 

Table S2), and the clones showed no change in HAP1 sensitivity to other drugs (Fig. 3B). As there 

were no candidate alleles with AF > 0.85, we looked for genes that acquired mutations in multiple 

selections, identifying deoxycytidine kinase (DCK) as likely important for resistance. 

Interestingly, across cell lines several distinct mutations were found in DCK, with varying effects 

(missense and frameshift) across several different positions (Table 2). In particular, the missense 

substitution Ser129Tyr, present in GEM-R1 and GEM-R3, not only alters the amino-acid size and 

charge also falls at the end of exon 3, within the ATP-binding pocket of a phosphorylation site, 

making it a strong causal candidate for GEM drug resistance (Fig. S6). GEM only becomes 

pharmacologically active if it is phosphorylated and the first phosphorylation is catalyzed by DCK. 

A shRNA knockdown of DCK was performed and confirmed by western blot analysis (Fig. 3C). 

Downregulation of the gene resulted in a 36.5-fold increase in the EC50 value compared to both 

the isogenic parent line and the shRNA negative control (Fig. 3D, E; Table 2).  

The three WT-3 derived GEM-resistant clones (GEM-R4, GEM-R5 and GEM-R6) 

subjected to WES were not as resistant as those used in WGS (~6 × versus ~400 ×, Fig. 3F, Table 

S2). Our work in other species with well characterized compounds suggests this is not surprising 

and that even single nucleotide changes in the same gene can yield different levels of resistance.  

For example, repeated selections with dihydroorotate dehydrogenase (DHOD) inhibitors in a 

mouse model and in vitro culture gave rise to 13 different point mutations in parasite DHODH 

with levels of resistance ranging from 2- to ~400-fold [40].  No high AF SNVs were evident in 

these lines and DCK exons were not mutated. On the other hand, the three WES clones contained 

20 CNVs that could play a role in drug resistance. Most CNVs were not shared between lines but 

GEM-R4, GEM-R5 and GEM-R6 all bore overlapping CNVs of varying sizes on chromosome 11, 
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with all three lines bearing 3-4 copies (p value = 1.38e-37 to 2.05e-142) (Fig. S4). The 

chromosome 11 CNV was only found in GEM resistant lines and not in any of the other evolved 

lines (in contrast to CNVs on chromosome 1 or 16, for example). While it is difficult to determine 

which of the 140 genes in the smallest interval contribute to resistance, a known resistance 

mediator or target of GEM, ribonucleotide reductase (RRM1), was found within the amplified 

region. RRM1 is the largest catalytic subunit of ribonucleotide reductase, a key enzyme catalyzing 

the transformation of ribonucleotide diphosphates to deoxyribonucleoside diphosphates that are 

required for DNA synthesis and repair, and GEM is known to inhibit DNA polymerase by 

inhibiting RRM1[41]. Furthermore, overexpression of RRM1 is associated with poorer prognosis 

after gemcitabine treatment in non-small cell lung cancer[42] and in bladder cancer[43].  

Western blot analysis of the evolved lines showed that the amplification was indeed 

associated with increased protein levels (Fig. 3G). As an additional validation, we performed a 

single shRNA knockdown of RRM1 to reduce protein expression (Fig. 3H), followed by a dose-

response assay comparing EC50 values of both wildtype HAP1 and RRM1 knockdown lines, which 

showed that downregulation of RRM1 made HAP1 cells 31-fold more sensitive to GEM than their 

isogenic parent (Fig. 3I, J). As expected RRM1 downregulation had no effect on HAP1 sensitivity 

to other drugs (Fig. S7).  

Etoposide resistance is modulated by levels of WDR33  

We created three independent ETP resistant clones, all of which were subjected to WES, 

and compared them to one isogenic parent clone (WT-3) (23, 13 and 9-fold increased resistance 

respectively (Fig. S8A, Table S2). A single gene, WDR33 (ETP-R3), carried a SNV (Pro622Thr) 

with a 100% allele frequency. This gene encodes for a member of the WD repeat protein family 

and is one of the six subunits of a multiprotein complex called CPSF (cleavage and 

polyadenylation specific factor)[44] involved in cell cycle progression, signal transduction, 

apoptosis and gene regulation. Disruption of WDR33 can lead to slowed DNA replication 

forks[45], which could potentially explain why its disruption protects against topoisomerase 

inhibitors that block DNA unwinding. Lines in which WDR33 was knocked down via shRNA 

acquired an EC50 value 3.4 times greater than its parental line or the scrambled control (Fig. S8B-

D; Table 2), despite an incomplete disruption of the gene by shRNA silencing. 
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No clear candidate SNVs were evident for ETP-R1 and ETP-R2, which did not carry the 

WDR33 mutation (Table S6, Table S7). All ETP lines carried multiple CNVs, however, including 

a large shared amplification on chromosome 15 (ETP-R1 and R3). Approximately 120 protein 

coding genes are found in this region, including BUB1B, the BUB1 mitotic checkpoint 

serine/threonine kinase B, BMF, a BCL-modifying factor, as well as the RAD51 recombinase, 

whose overexpression has been previously shown to confer ETP resistance[46].  Overexpression 

of RAD51 activity sensitizes cells to a variety of cancer drugs, including etoposide, doxorubicin 

and topotecan[47]. Notably, all ETP resistant lines were also cross-resistant to PTX, TPT and 

DOX, providing support for this general mechanism of resistance.  

Paclitaxel resistance is mediated by transporters SLCO3A1 and ABCB1  

Seven different paclitaxel lines were created with different resistance levels (PTX-R1, R2a, 

R2b and R3, ~10 × to PTX-R4, R5, R6, 50X) (Table S2). The first four (Fig. 4A) were subjected 

to WGS and the latter three to WES. SNV analysis yielded no candidate genes (frameshift, indels, 

and missense mutations with an allele frequency >0.85). From genes with an allele frequency of 

less than 0.85, SLCO3A1, encoding another solute carrier transporter, was notable in that multiple 

missense alleles were identified (Ile587Asn, Ala263Thr). This class of transporter is known to play 

a role in the import of drugs as well as hormones such as prostaglandin[48]. Gene knockdown 

experiments showed that clones with loss of SLCO3A1 (Fig. 4B) resulted in HAP1 cells that were 

~8 times more resistant than their isogenic parents to PTX (Fig. 4C, D).  

Despite the lack of obvious coding SNVs, PTX-R1, R2a, R2b and R3 had a combined 

number of 47 CNVs, while PTX-R4, R5 and R6 had 10 (the fact that more CNVs were found in 

WGS samples may reflect the ease with which CNVs are called with WGS versus WES data). 

Potentially significant genes with CNVs were ABCB1 (MDR1) and ABCB4 (MDR3) (Fig. 4E) on 

chromosome 7 (PTX-R2a, R2b). ABCB1 amplifications are associated with clinical resistance to 

PTX[49]. PTX-R4 and R5 showed structural variants on chromosome 1, and PTX-R4 show an 

amplification event on chromosome 17 that encompassed a variety of ABC transporters (ABCA5, 

6, 8, 9, 10). No compelling candidate genes were found in CNVs for PTX-R6. On the other hand, 

inspection with IGV showed that read coverage was poor and that CNVs might not have been 

detected with WES data.  
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To confirm the importance of ABC transporters in PTX resistance, clones were treated with 

both PTX and verapamil, a calcium channel-blocker which can reverse ABC-transporter mediated 

resistance [50, 51]. We observed a complete reversal of resistance in PTX lines (Fig. 4F). In 

contrast, we observed no reversal of resistance in GEM lines (Fig. 4G), suggesting the resistance 

role of ABC-transporters is PTX-specific.  

Topotecan resistance is associated with complex alterations in TOP1, deletion of WWOX and 

SNVs in cytochrome p450s (CYP1B1). 

The six TPT samples were derived from four independent selection events (TPT-R4a-c are 

clones from the same selection with levels of resistance ranging from 10-20 ×; Table S2) and all 

six clones were subjected to WGS together with their parent clones (WT-6 and WT-7)   

For TPT-R4a-c lines (Fig. 5A), 268 alleles were present with AF > 0.85, but of these, only 

six were coding mutations and the rest were intergenic. Three of the six coding mutations were 

frameshift mutations (His81) with AF = 1 in TOP1 (Fig. 5B, S6A), the known target of 

topotecan[23]. The His81 frameshift mutation, which introduces a premature stop codon, was 

confirmed by examining the read alignments (Fig. S9A) and by the absence of the full-length 

protein using N-terminal antibodies (Fig. 5C). Because there were also complex structural variants 

in the region (Fig 5D, S9B) we also sequenced the 5’ cDNA through the His81 frameshift for all 

three lines and as well as the parent line and confirmed the two-base deletion in the mutant as well 

as homozygosity in TPT-R4a-c evolved lines. We also observed a decrease in mRNA expression 

with TPT-R4a-b showing a statistically significant decrease in TOP1 mRNA expression, relative 

to TPT-WT (Fig. S10).  It has been previously shown that a targeted RNAi suppression of Top1 

produces resistance to camptothecin, a close analog of topotecan[37].  Interestingly, of the 22 

TOP1 frameshift or nonsense mutations in the COSMIC tumor database, 6 were located within a 

30 amino acid span (of 765 total) that includes His81 (exon 4), suggesting likely clinical 

relevance[52].  The probability of this distribution by chance is 9.65 ×10-5. 

No clear coding SNVs with a high allele frequency were obvious in TPT-R1, R2 and R3 

but we noted multiple SNVs (Asp217Glu from TPT-R4a,b,c and Val432Leu from TPT-R1) in 

CYP1B1, which encodes a cytochrome p450 isoform. Overexpression of CYP1B1 has previously 

been associated with TPT resistance[50]. TPT resistant lines (TPT-R1, R2 and R3 (Fig. 5E) also 

showed large chromosomal abnormalities at WWOX (Fig. 5F) with a clear deletion of the WWOX 
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gene region (chr16:78,569,166-78,792,736, exon7 and 8). WWOX bears a well-known fragile site 

(FRA16D) and encodes a putative oxidoreductase. The complete absence of WWOX protein was 

confirmed by Western in TPT-R1, 2 and 3 (Fig. 5G).  Interestingly, lower levels of WWOX were 

also observed in TPT-R4a-c, which could be a consequence of other cis or trans variants in this 

cell line and might also contribute to this level of resistance. Knockdown of WWOX by shRNA 

resulted in marked resistance to TPT (Fig. 5H, I). WWOX acts as a tumor suppressor and plays a 

role in apoptosis.  Its disruption may prevent TPT-induced apoptosis, promoting cell survival in 

the presence of TPT[53].  WWOX disruption also resulted in resistance to PTX (Fig. 5J), and as 

reported by others who examined WWOX-transfected epithelial ovarian cancer cells [54]. 

Some evolved mutations are associated with more drug resistance in human cancer cell lines 

We further evaluated the association of mutations in our identified genes with drug 

resistance in cancer cell lines, reasoning that if resistance genes were already mutated before drug 

exposure, the cell lines would be more resistant. The set of genes we identified had mutations in 

multiple cancer cell lines [55, 56]. Considering only matched alteration types, we identified cell 

lines with mutations in the same set of resistance genes (Table S9). We grouped cell lines 

according to whether or not they had a drug-specific resistance mutation of matched type (SNV or 

CNV) in any resistance gene found in the HAP1 study and compared areas under the dose-response 

curve (AUC) between groups [24] (Fig. S11A). All five drugs trended toward higher dose response 

AUCs when resistance genes were already mutated indicating that they are more resistant, with 

differences in doxorubicin, gemcitabine and paclitaxel all showing significance after multiple test 

correction. This comparison is complicated by the fact that not all missense mutations are 

necessarily functional, thus some cell lines may be included in the mutated category that do not 

actually have altered protein function. Additionally, mutations and karyotypic abnormalities 

affecting other genes could also contribute to resistance in each cell line, thus cell lines lacking 

mutations in certain genes can still be resistant. We therefore attempted to further compare cell 

lines carrying mutations based on the predicted functional consequences of mutations in the 

context of specific gene-drug pairs. For some individual pairs, predicted loss of function (LOF) 

variants tended to have higher dose-response AUCs than variants predicted to have weaker effects 

on protein activity, in particular, SPG7 and SLC13A4 for doxorubicin, WDR33 for etoposide, and 
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CYP1B1 for topotecan (Fig. S11B). Only CYP1B1 met statistical significance at a 0.1 Type 1 

error rate.  

DISCUSSION and CONCLUSIONS 

Here, we show for the first time that in vitro evolution and whole genome analysis 

(IVIEWGA) can readily lead to the identification of drug resistance mechanisms in human cells. 

Our results show in vitro resistance acquisition and provide a framework for the determination of 

chemotherapy resistance alleles that may arise in patients. 

Our work using IVIEWGA in pathogens (see [55] for a review) guided our pipeline 

development: We focused on protein coding alterations that arose in association with a single 

treatment condition, that were nonsynonymous, occurring repeatedly and were high allele 

frequency. We also removed alleles for genes that are known to mutate frequently, like odorant 

receptors.  Overall, our results are similar to what we have observed in eukaryotic pathogens with 

a mix of CNVs and single nucleotide variants giving rise to resistance.  

Because of the substantially greater costs associated with WGS, here we did evaluate both 

WES and WGS sequencing methods.  Despite a higher likelihood of discovering all changes by 

WGS, the disadvantage of WGS is cost and computational time.  While human WES data can be 

analyzed on a laptop, human WGS data files are large and difficult to handle, computationally.    It 

has been estimated, considering computational time, that a human genome costs upwards of 

$25,000 to fully sequence [56].  

The biggest disadvantage of using WES is that CNVs will be harder to call.  This is partly 

for statistical reasons with many reads that support CNV calls located outside of coding regions in 

WGS samples.  In addition, if one sequences over the exact location of the recombination event 

(or the start or end of the deletion) one can obtain additional support for location calls via split 

read analysis of paired-end libraries.  In addition, one can extract the sequence of the short read 

and reconstruct the exact recombination breakpoint, as shown in Fig. S3.  This would not be 

feasible with whole exome sequencing.    Recently it was shown that CNV detection tools perform 

poorly on WES cancer genome samples.  Comparative analysis showed a low consensus in CNV 

calling tools with moderate sensitivity (~50% - ~80%), fair specificity (~70% - ~94%) and poor 

FDRs (~27% - ~60%). Also, using simulated data these authors observed that increasing the 
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coverage more than 10× in exonic regions did not improve the detection power [57].  Of course, 

detecting CNVs is likely to be more challenging in diploid genomes, than haploid genomes.  In 

support of this, we were able to identify and validate the RRM1 amplification event in GEM-R4, 

5 and 6, which were only subjected to WES.  In addition, in yeast, it appears CNVs are much less 

important than SNVs in driving drug resistance as well:  In a more comprehensive in vitro 

evolution study in yeast with 80 different and 355 whole genome sequences we observed only 24 

CNVs, including apparent aneuploidy (11 times, occurring in 10 clones) and small, 

intrachromosomal amplifications (13 times, occurring in 13 clones) in our set of 355 whole 

genome sequences [58].   

A lesser disadvantage of WES, is the rare possibility that resistance is conferred by an 

intergenic mutation, which would be missed by WES data.  Our work in other organisms has shown 

that almost all resistance conferring SNVs or small indels are nonsynonymous changes that would 

be detected by both WES and WGS.  In the aforementioned yeast study, 271 mutations of the 1405 

detected mutations in the 355 evolved lines were intergenic. Of these, only five were directly 

upstream or downstream of one of the 137 genes that were repeated identified in the study,  In 

contrast to coding mutations, most intergenic mutations lacked any statistical support suggesting 

relevance and were likely to be background mutations [58]. Despite the lower probability that 

intergenic or other noncoding mutations may have functional effect, we recognize that there are 

examples from the literature where intergenic mutations have contributed to drug resistance. Non-

coding RNAs such as EGRF-AS1 and activating cis elements such as enhancers have previously 

been implicated in evasion of drug response[59-61]. The intergenic mutations with high allele 

frequency are present in our provided datasets and provide opportunity for reanalysis or for 

querying by those interested in a specific noncoding RNA or enhancer. It is feasible that even 

synonymous mutations could confer resistance if they altered the rate of protein folding.  

A limitation of our HAP1 study, as presented, and is contrast to our work in other species, 

is that despite some level of repetition, we seldom achieved strong statistical confidence by just 

performing selections and sequencing.  This may not be unexpected.  Evolution is, unfortunately, 

a relatively stochastic process even when working with the exact same starting clone.  In the yeast 

study [58]  we only obtained the same allelic change in the same critical drug resistance gene a 

few times despite >3 repetitions per each of the 80 compounds.  For example, two independent 
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selections with hectochlorin both yielded an Arg116Lys in ACT1, the target of hectochlorin [58].   

Similarly, a Leu671Phe change in YRM1 was observed 5 times for 4 different compounds.   

 Another disadvantage of using human cells is the challenge of validation of SNVs; we were 

not able to engineer any SNVs into HAP1 cells to demonstrate their importance. On the other hand, 

with the statistical confidence that comes from identifying the same gene repeatedly, CRISPR-

Cas9 validation becomes less important. In the same yeast study described above, YRM1, a gene 

encoding a transcription factor involved in drug resistance in yeast was independently identified 

52 times with 27 different alleles.  The likelihood of 355 selections yielding the same gene by 

chance is roughly 3.53 × 10-116.  This enrichment analysis becomes an attractive method for teasing 

apart driver and passenger mutations and may become possible with more repetitions despite the 

larger genome size of HAP1 cells.  However, performing enough repetitions to achieve statistical 

confidence would require substantial resources with WGS. even with a thousand-dollar human 

genome.  WES is thus likely to be more useful.   

While HAP1 cells may not be considered a perfect model for human cancer biology, for 

the purposes of target identification, they are likely very useful.  As with pathogens, our use of 

well-studied drugs, largely uncovered genes that were mostly already well known to confer 

resistance such as RRM1 [62], [41], DCK [63, 64], TOP2A [37].  and TOP1[37] in a variety of 

different cancer cell lines.  Although it was initially argued that the in vitro evolution system might 

be artificial, in malaria parasites it has been used to discover or rediscover most, if not all (to our 

knowledge), clinically relevant drug resistance genes including the chloroquine resistance 

transporter[5], the artemisinin resistance gene, Pfkelch13[65], and well-known ABC 

transporters[5]. 

Despite questions about how much they mimic human cells, the value of using haploid cell 

lines is evident from our allele frequency data.  If our lines had been diploid and we would have 

needed to consider allele frequency data of up to 0.4.  There are 205 missense mutations with an 

AF of >0.4, making pinpointing the causative allele much more difficult without candidate genes 

or without many repetitions. Although in vitro evolution has been used repeatedly for discovering 

the mechanism of action of completely uncharacterized compound in malaria parasites (reviewed 

in [55]), there are fewer examples of in vitro evolution being used for de novo target discovery in 

diploid eukaryotic pathogens.  Although there are some examples in trypanosomes [66-68], some 

hypothesis about the mechanism of action was already present before evolution studies were 
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attempted. Despite this, low allele frequency data should not necessarily be discarded.  There have 

been examples from haploid Plasmodium where a resistance-conferring allele was located within 

an amplification region and thus showed an AF < 0.5.  

 Although the HAP1 cells could be considered unnatural, it is likely that similar evolution 

experiments in other types of human cells will largely give the same genes.  This is because 

conservation of drug targets and drug resistance mechanisms across phyla is often observed, 

although a given compound or inhibitor may show differences in selectivity and specificity.  

Resistance to topotecan/camptothecan in yeast is also provided by mutations in Top1[69]. Recent  

IVIEWGA studies in yeast also identified Top1 as the target in yeast [58]. Evolution studies with 

cladosporin in yeast and plasmodium both give the same resistance mechanism for cladosporin, 

lysyl tRNA synthetase [70]. 

Our studies were not meant to study the process of evolution.  Within the field of 

laboratory-based evolution, there are two broad areas of study.  The first are those that fall under 

the heading of “experimental evolution” and which try to mimic evolution in natural conditions. 

Here, growth rates are often recorded and experimental conditions may be varied in a controlled 

manner (carbon sources, temperature, etc).   Such studies include long term studies of E. coli or 

other bacteria(reviewed in [71]) and have also been performed with small molecules [8],[72, 73], 

primarily with known mechanism of action.   Alternatively, there are also studies in which 

evolution has been used as a tool to discover targets and resistance genes for therapeutic purposes 

[7, 74] [55].  In many cases [74, 75], although not in all cases the term “in vitro evolution” is used 

instead of “experimental evolution.”   Based on our results here, resistance readily emerges in 

HAP1 cells but more work will need to be done to determine if this is because of the compounds 

that were used.  Here we used in vitro evolution (versus experimental evolution) to select for 

mutant lines that could withstand treatment with the selected drugs.  Although it may be possible 

to use HAP1 cells for experimental evolution, at present sequencing costs are so high that whole 

genome studies with whole genome analysis are not practical but this may change in the future.  

Questions that might be investigated include the fitness of different mutations, reproducibility of 

the process, impact of the starting clone, carbon sources or growth rate and whether one resistance 

mechanism predominates or if a variety are found.      
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Finally, it is important to keep in mind that the compounds examined here are not modern 

cancer therapies and while still used clinically, they are imperfect.  Newer molecules include 

bortezomib, a small molecule proteasome inhibitor, imatinib, a small molecule tyrosine kinase 

inhibitor or seliciclib, small molecule cyclin-dependent kinase inhibitor or even small molecule 

cancer immunotherapies.  We anticipate mutations in the drug’s targets will be identified 

sometimes, as is observed in microbes. In fact, unbiased IVIEWGA studies with bortezomid in P. 

falciparum have demonstrated mutations in the proteosome subunit, Pf20S β5, [76] confer 

resistance, and similar resistance-conferring mutations have been discovered after using in vitro 

evolution in human cells, although whole genome sequencing was not performed and the 

mutations were identified using a candidate gene approach [77].  On the other hand, targeted 

therapies are less likely to work against HAP1 cells, as shown here for imatinib (Fig. S1), most 

likely because HAP1 cells do not harbor the appropriate sensitizing mutations (e.g. the BRC-Abl 

for imatinib or BRAF/EGFR mutations for vemurafenib, gefitinib or erlotinib, respectively [78]).  

Alternatively, the HAP1 cells may be intrinsically resistant because they harbor other resistance 

conferring mutations.  Nevertheless, if they can be used or engineered to sensitivity, predicting 

resistance mechanisms for new drugs in clinical development, as well as for new drug 

combinations and may lead to better classes of drugs for chemotherapy. 

MATERIALS AND METHODS 

Compounds 

All chemotherapeutic agents used in this study were obtained from Sigma-Aldrich, 

dissolved in DMSO at 10mM concentration and stored at -20°C.  

Cell cultures 

The human chronic myelogenous leukemia cell line, HAP1, was purchased as 

authenticated at passage 7 from Horizon Discovery and cultured in tissue culture dishes (Genesee 

Scientific, Cat# 25-202) as a monolayer at 37°C in a humidified atmosphere with 5% CO2 using 

Iscove’s Modified Dulbecco’s Medium (IMDM) (Life Technologies, CA) supplemented with 10% 

fetal bovine serum (FBS), 0.29mg/mL L-glutamine, 25mM HEPES, 100U/mL Penicillin and 

100µg/mL Streptomycin (1% pencillin/streptomycin). Monoclonal and polyclonal stocks were 

made and stored in IMDM + 10% DMSO in liquid nitrogen. 
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In vitro evolution of resistant HAP1 clones. 

Prior to selection, an aliquot of the parental line was stocked as a reference for subsequent 

whole genome sequencing analysis. Three independent clones of HAP1 cells were cultured in 

tissue culture dishes exposed to increasing sublethal concentrations of each chemotherapeutic 

agent at a starting concentration previously determined by the EC50 value for around 7-30 weeks 

depending on the drug, its speed of action and the method used as two methods were considered: 

high-pressure intermittent selection method and a step-wise selection method. For high pressure 

selection, cells were treated at a concentration 3-10 × EC50 value until more than 95% of the cells 

died. Then treatment was removed and cells were allowed to recover. After reaching around 60% 

semi-confluence, treatment was reinstalled and EC50 value monitored. For step-wise selection 

method, drug concentration used was at the EC50 which implied reduced growth rate of 

approximately 50% and drug pressure was increased in intervals of around 5-10% keeping growth 

inhibition around 50%. Once the EC50 values of the resistant lines were at least 5 times greater 

than the one used as control, cells were again cloned by limiting dilution and further reconfirmed 

for drug resistance and subsequent DNA extraction for whole genome sequencing analysis. 

Dose-response assay by EC50 determination and bioluminescence quantification 

Drug sensitivity and cell viability were assessed by a bioluminescence measurement as 

follows: twenty-four hours prior to addition of the drugs, 2 ×104 cells/well for every replicate were 

seeded in a 96-well plate. Once attached, media was removed and 10 different concentrations of 

drug were added in serial dilutions 1:3 with a starting concentration of 10µM or one of which the 

EC50 value of the replicates fell within an intermediate drug concentration. When drug-resistant 

lines were co-treated in combination with verapamil, a fixed concentration of verapamil (10µM) 

was added to every concentration of the drug. After a 48-hour incubation period at 37°C and 5% 

CO2 with the drug, cells were treated with CellTiterGlo (Promega) reagent (diluted 1:2 with 

deionized water) for quantification of HAP1 cell viability. Immediately after addition of the 

luminescence reagent, luminescence was measured using the Synergy HT Microplate Reader 

Siafrtd (BioTek). The data was normalized to 100% cell survival and 100% cell death and EC50 

values were obtained using the average normalized luminescence intensity of 8 wells per 

concentration and a non-linear variable slope four-parameter regression curve fitting model in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2020.03.17.982181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.982181
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 
 

 

Prism 8 (GraphPad Software Inc.).  Unless otherwise noted, dose response experiments consisted 

of 4-8 technical replicates and 3 biological replicates. 

Isolation of total DNA from drug resistant lines 

Genomic DNA (gDNA) was extracted from drug-specific resistant cell lines together with 

their isogenic parental lines using the DNeasy® Blood & Tissue Kit (Qiagen) following the 

manufacturer’s instructions. Samples were assessed for quantity with the Qubit™ dsDNA BR 

Assay Kit (Life Technologies, Carlsbad, CA, USA). All samples (>2.0µg, >50ng/µL, >20µL) were 

prepared for quality control by testing gDNA degradation or potential contamination using agarose 

gel electrophoresis (1% Agarose, TAE, ~100 Voltage). Then gDNA concentration was again 

measured using the Qubit® DNA Assay Kit with the Qubit® 2.0 Fluorometer (Life Technologies). 

Finally, fragment distribution of the gDNA library was measured using the DNA 1000 Assay Kit 

with the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). DNA 

libraries were sequenced with 150 base pair (bp) paired single end reads on an Illumina HiSeq 

4000 (PE150). 

Genome Sequencing and Data Analysis  

The quality of the raw FASTQ files was checked with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Whole genome sequencing (WGS) 

reads were mapped to GRCh37 (hg19) using BWA (v.0.7.17), specifically with the hs37d5 

reference genome from 1000 Genomes project (Phase II). Whole exome sequencing (WES) 

samples were captured using Agilent SureSelect Human All Exon V6 (58 M), and the reads were 

also mapped to GRCh37 using BWA (v.0.7.17) with the same reference genome as WGS. 

Duplicate reads were removed using Picard (v.1.94); paired resistant and parent (WT) BAM files 

were used as input for The Genome Analysis Toolkit (GATK, v3.8-1). Local realignment and base 

quality recalibration were performed using default parameters. Somatic single nucleotide variants 

(SNVs) and small insertion and deletion (indels) were called using GATK MuTect2 following the 

state-of-the-art GATK Best Practices pipeline 

(https://ccbr.github.io/Pipeliner/Tools/MuTect2.html). In this project, the input to MuTect2 

consisted of alignments for the parent and resistant clone in order. to call mutations with 

statistically significant differences in read support in the setting of resistance. Only the variants 

with PASS status, suggesting confident somatic mutations, were considered for further analysis. 
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Variant allelic fraction was determined as the fraction of reads supporting the variant allele relative 

to total read depth at the variant position. Minimum callable depth was set to 10 and base quality 

score threshold was set to 18, following the default from MuTect2. All sequences have been 

deposited in SRA BioProject PRJNA603390. 

Small-Variant Annotation for SNVs and Indels 

Somatic variants were annotated using snpEff (v 4.3q)[79]. The annotation was performed 

with parameters including (1) canonical transcripts and (2) protein coding to enable identification 

of different functional classes of variant and their impact on protein coding genes (Table 1 showing 

finalized and consolidated annotations; Table S4 shows the raw annotation from snpEff and 

consolidated classification used in Table 1; Table S7 shows all the SNVs with their raw 

annotations). The snpEff sequence ontology designation was used in the filtering steps to classify 

variants generally as noncoding or coding (Table S4). 

Identification of Drug Specific Genes 

First, we excluded all variants in non-coding regions. Second, we excluded all non-

functional variants, retaining only variants with a snpEff definition of HIGH or MODERATE 

impact (missense, stop lost, stop gain, and structural interaction variants). Finally, we selected only 

the variants with high allele frequency (AF > 0.85) and genes with multiple independent amino 

acid changes found in the same drug as the final list of candidates. The potential candidate variants 

were evaluated through Integrative Genomics Viewer (IGV)[80] to ensure coverage and allele 

fractions of the mutation positions. The top genes for each drug were included in Table 2 and Table 

S8.  

Somatic Copy Number Variations (CNVs) Analysis 

Copy number regions for WGS and WES were called by ControlFreeC47 using the default 

settings for WGS and WES data. Background parental clone samples for each drug served as the 

control. Recurrent CNV regions were defined as regions observed in more than 1 sample, but not 

in all of clones from the tested drugs (as these are more likely to indicate potential sequencing 

artifacts).  

Gene knockdowns 
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shRNAs targeting TOP2A (Cat# sc-36695-V), DCK (Cat# sc-60509-V), SLCO3A1 (Cat# 

sc-62713-V), SLC13A4 (Cat# sc-89760-V), KLF-1 (Cat# sc-37831-V), WWOX (Cat# sc-44193-

V), WDR33 (Cat# sc-94735-V) and the non-coding control (Cat# sc-108080) were obtained in 

pLKO.1-Puro from Santa Cruz Biotechnology. RRM1 (clone ID NM_001033.2-476s1c1) and 

CYP1B1 (clone ID NM_000104.2-1176s1c1) were obtained in pLKO.1-Puro-CMV-tGFP from 

Sigma Aldrich. 

Gene expression was knocked down using either a shRNA pool (Santa Cruz 

Biotechnology) containing between three and five expression constructs each encoding target-

specific 19-25 shRNAs or a single shRNA (Sigma Aldrich). HAP1 cells were plated at 120,000 

cells per well (~40% confluency) in a 24-well plate 24 hours prior to viral transduction. On the 

day of transduction, complete media was replaced with serum-free media and 7µg/mL Polybrene® 

(Cat# sc-134220) and virus was added to the cells at a multiplicity of infection of 0.5 and cells 

were incubated overnight at 37°C. The following day, media was replaced with complete media 

without Polybrene and cells were incubated at 37°C overnight. Cells were then split 1:3 and 

incubated for 24 hours more and finally stable clones expressing the shRNA were selected using 

complete media with 2µg/mL puromycin. After 7 days of selection with puromycin, knockdown 

efficiency was confirmed by western blot. Cells transduced with shRNAs containing fluorescent 

tags, were trypsinized (TrypLE™ Express; Cat# 12605-010, Gibco) after puromycin selection, 

washed twice with DPBS (1X) (Gibco) and sorted by flow cytometry. 

Knockout of USP47 

USP47 was knocked out (Cat# HSPD0000092816) using a single plasmid CRISPR-Cas9 

system, using as lentivirus backbone the LV01 U6-gRNA:ef1a-puro-2A-Cas9-2A-tGFP targeting 

USP47 (Sigma Aldrich). The target sequence (5’-3’) was CAATGGGGCTTCTACTAGG. 

Transduction was as described above. HAP1 cells were plated at 120,000 cells per well (~40% 

confluency) in a 24-well plate 24 hours prior to viral transduction. On the day of transduction, 

complete media was replaced with serum-free media and 7µg/mL Polybrene® (Cat# sc-134220), 

virus was added to the cells at a multiplicity of infection of 0.5 and cells were incubated overnight 

at 37°C. The following day, media was replaced with complete media without Polybrene and cells 

were incubated at 37°C overnight. Cells were then split 1:3 for 24 hours more and stable clones 

expressing the CRISPR-Cas9 sequence were selected using complete media with 2µg/mL 
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puromycin. After 14 days of selection with puromycin and propagation as required, cells were 

trypsinized (TrypLE™ Express; Cat# 12605-010, Gibco), washed twice with DPBS (1X) (Gibco) 

and sorted by flow cytometry using the GFP fluorochrome which is expressed with Cas9. GFP 

positive cells were plated at an average density of 0.5 cells per well in a 96-well plate (previously 

treated with poly-L-Lysine (Sigma #P4707-50ml) to improve cell adhesion) in presence of 2µg/mL 

puromycin (limiting dilution cloning). Cell growth was monitored via microscopy during 25 days 

to select those wells which were observed to contain single colonies and USP47 knockout was 

confirmed in those monoclonal HAP1 cell lines first via PCR and then reconfirmed by western 

blot using the USP47 rabbit polyclonal antibody (Abcam, Cat# ab97835). 

Immunoblotting 

HAP1 cells (at least 5 ×106) were trypsinized, washed twice with cold 1 × DPBS and then 

lysed in 500µL Pierce™ RIPA Buffer (Thermo Scientific) containing 1:100 protease inhibitor 

(Halt™ Protease & Phosphatase Inhibitor Cocktail, Thermo Scientific) and 1:100 0.5M EDTA 

Solution (Thermo Scientific). Total protein concentration was measured using the DC Protein 

Assay (Bio-Rad). Equal amounts of proteins were resolved by SDS-PAGE and transferred to 

nitrocellulose membranes (Bio-Rad #1704271), blocked in PBS with 5% (w/v) Blotting-Grade 

Blocker (Bio-Rad #170-6404) and 0.1% (v/v) Tween20 for 1h and probed. As secondary 

antibodies, HRP-linked anti-mouse or anti-rabbit (Cell Signaling Technology) were used and the 

HRP signal was visualized with SuperSignal®West Pico Chemiluminescent Substrate (Thermo 

Scientific #34080) using Syngene G-Box imager. Protein enrichment was calculated relative to 

vinculin, γ-tubulin or β-actin. Primary antibodies are listed below.  Full size western blots are 

shown in Fig. S12.  

Antibodies  

TOP2A (Sigma #SAB4502997), USP47 (Abcam #ab97835), WDR33 (Abcam #ab72115), 

DCK (Abcam #ab151966), β-actin (Cell Signaling #3700S), γ-tubulin (Cell Signaling #4285S), 

Vinculin (Invitrogen #700062), SLC13A4/SUT-1 (Abcam #ab236619), WWOX (Abcam 

#ab137726), EKLF/KLF-1 (Abcam #175372), SLCO3A1/OATP-A (Santa Cruz #sc-365007), 

TOP1 (Proteintech #20705-1-AP), CRISPR-Cas9 (Sigma #SAB4200701), RRM1 (Abcam 

#ab133690), CYP1B1 (Abcam #ab137562), SPG7 (Sigma #SAB1406470 and Abcam #ab96213), 

goat anti-mouse (Invitrogen #G21040), goat anti-rabbit (Invitrogen #G21234). 
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RNA isolation, RT-PCR analysis and sequencing of TOP1 (His81) 

TPT-resistant cells and TPT-WT (1 ×106 cells) were dissociated from plates by the addition 

of 2mL of TrypLE (Cat #12605-010, Gibco), washed and total RNA was isolated and purified 

using a Qiagen RNeasy® Mini Kit (Cat #74104, Qiagen) according to manufacturer’s instructions. 

cDNA was synthesized from 1µg of total RNA using the Superscript™ First-Strand Synthesis 

System for RT-PCR Kit (Invitrogen #11904-018) and random hexamers. The primers used to 

amplify the region containing His81 were FWD: GATCGAGAACACCGGCAC and REV: 

TCAGCATCATCCTCATCTCGAG. DNA from PCR product was extracted, using the 

QIAquick® Gel Extraction Kit (Qiagen #28706) following the manufacturer’s instruction, 

measured using the Qubit® DNA Assay Kit with the Qubit® 2.0 Fluorometer (Life Technologies), 

and sequenced. The cDNA was sent to Eton Biosciences for Sanger sequencing.      Quantification 

of TOP1 expression was performed using PerfeCTa® Sybr Green Fast Mix (Quanta #95072-250) 

the following primers: FWD: CGAATCATGCCCGAGGATATAA; REV: 

CCAGGAAACCAGCCAAGTAA, following the manufacturer’s instruction.  

GDSC analysis methods 

Mutations and copy number data for cancer cell lines were obtained from the DepMap 

2021 quarter 1 release via the DepMap portal (https://depmap.org/portal/download/) on 

02/01/2021. Copy number alterations in genes were determined by filtering for a log2(copy number 

+ 1) greater in absolute value than 1.5. Cell lines were first grouped according to whether they had 

a mutation or copy number alteration that matched any of those found in Table 2. EC50 and dose-

response area under the curve (AUC) data were obtained from the GDSC 8.3 Release (June 2020). 

Dose-response AUC distributions for doxorubicin, etoposide, gemcitabine, paclitaxel, and 

topotecan were compared between the cell lines with or without a mutation using the Mann-

Whitney U test (Fig. S11A). P-values were corrected for multiple testing using the Benjamini-

Hochberg (BH) method[81]. All cell lines with SNVs in the genes listed in Table 2 were then 

grouped based on functional predictions by the Variant Effect Scoring Tool (VEST4.0)[82]. Cell 

lines with a mutation that had a VEST score > 0.8 were labeled as “Likely LOF” cell lines, whereas 

cell lines with mutations that scored <= 0.8 or that were silent were labeled as “No Likely LOF 

Mutation” cell lines. As most predicted functional mutations result in loss of function, we assumed 

this was the likely consequence, though it is possible that some high scoring mutations could in 
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fact be gain of function. Dose-response AUC distributions for these groups were then compared 

for each gene using the Mann-Whitney U test (Fig. S11B) and p-values corrected by the BH 

procedure. 
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Fig. 1. Experimental workflow. A. Chemotherapy drug evaluation. EC50 dose response assays 
were performed on 15 different chemotherapeutic agents (Table S1). Only drugs to which HAP1 
cells were sensitive (EC50 value below 1µM) were considered for IVIEWGA. B. Chemical 
structures of the chemotherapy agents ultimately used for IVIEWGA. EC50 values are presented 
as the mean ± s.e.m., for n=3 biological replicates and n=8 with technical replicates per 
concentration point. C. Clone selection. To ensure a homogenous genetic background limiting 
dilution cloning was used to isolate individual cells prior to drug selection. For each drug three 
independent selections were performed.  Resistance was confirmed using dose-response assays D. 
Drug resistance was achieved in 7 to 30 weeks approximately (49 and 210 generations). The 
parental cell line and the drug resistant lines were then sequenced. 
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Fig. 2. A. DOX EC50 curves for DOX evolved clones using 8 technical replicates for each 
concentration B. Western blot confirming that shRNA gene depletion downregulates TOP2A 
protein level. C. EC50 curves of the WT and shRNA (shRNA #1) knockdown cell lines for TOP2A. 
D. Barplot of the WT and shRNA knockdown cell line (shRNA#1) for TOP2A. E. Western blot 
confirming protein downregulation of SLC13A4 by shRNA. F. EC50 curves of the WT and shRNA 
knockdown cell lines for SLC13A4. G. Barplot of the WT and shRNA knockdown cell lines for 
SLC13A4. Data is represented by mean ± s.e.m. with n=2 biological replicates and n=8 technical 
replicates (TOP2A) or n=3 biological replicates and n=4 technical replicates (SLC13A4) for every 
concentration point. * = p value < 0.05, ** = p < 0.01. p values determined by two-tailed t test. 
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Fig. 3. A. GEM EC50 for curves first set of GEM evolved lines using n=8 technical replicates per 
concentration point B. EC50 ratio matrix showing absence of multidrug resistance pathways of 
GEM resistant lines. C. Western blot confirming that shRNA gene depletion downregulates 
protein levels for DCK. D. EC50 curves of the WT and shRNA knockdown cell lines for DCK. n=8 
with individual technical replicates overlaid for every concentration point. E. Barplot of the WT 
and shRNA knockdown cell lines for DCK. F. GEM EC50 curves for second set of GEM evolved 
lines. G. Western blot for RRM1 across all GEM samples showing overexpression pattern of RRM1 
in GEM-R4-6 resistant clones. γ-tubulin is used as a loading control. H. Western blot confirming 
that shRNA gene depletion downregulates protein levels for RRM1. β-actin is used as a loading 
control. I. EC50 curves of the WT and shRNA knockdown cell lines for RRM1. n=4 with individual 
technical replicates overlaid for every concentration point. J. Barplot of the WT and shRNA 
knockdown cell lines for RRM1. All data is represented by mean ± s.e.m. with n=3 with individual 
biological replicates overlaid. ** = p value < 0.01. p values determined by two-tailed t test. 
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Fig. 4. A. PTX EC50 curves for evolved lines with n=8 technical replicates (values are in Table 
S2) B. Western blot confirming shRNAs downregulate protein levels for SLCO3A1. C. EC50 
curves of the WT and shRNA knock-down cell lines. D. Barplot of the WT and shRNA knockdown 
cell lines for SLCO3A1. E. Raw copy number profile for the amplification event containing protein 
coding genes including ABC transporters (ABCB1/ABCB4) PTX cell lines. The amplification 
region (chr7:84,500,000-87,300,000) had a higher number of raw reads (labeled with blue dash 
lines) with default window size of 50K bp. Genes associated with the CNV event are depicted by 
black boxes underneath according to their position and sizes. ABCB1 is highlighted with red 
outline. F. Barplot of EC50 of the PTX treated cell lines with and without verapamil and verapamil 
alone showing sensitization in presence of verapamil as ABC inhibitor (n=4 technical replicates). 
G. Barplot of EC50 of the GEM cell lines ± verapamil showing no EC50 shift for GEM cell lines 
when co-treated with verapamil. Unless otherwise noted, all data is represented by mean ± s.e.m. 
with n=3 with individual biological replicates overlaid. ** = p value < 0.01. p values determined 
by two-tailed t test. 
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Fig. 5. A. TPT EC50 curves for TOP-R4a,b and c. B. Transcript sequence (cDNA) and protein 
sequence for TOP1 transcript for normal (top) and TOP 4a, b and c. The figure shows only part of 
the cDNA (position 469-504) and protein sequence (position 75-86) for TOP1 at the affected exon 
(Exon 4, ENSE00001037776). The frameshift deletion of nucleotides ‘CAT’ to ‘C’ observed in 
TPT samples (TPT-R4a, R4b, and R4c) is predicted to give a frameshift at amino acid 81 (His, red 
highlight in normal). Amino acids affected by the frameshift deletion are highlighted in red. C. 
Western blot TOP1 protein depletion in evolved lines. D. Schematic showing complex read depth 
patterns around TOP1. E.  TPT EC50 curves for evolved TOP-R1, R2 and R3. I. Schematic of 
chr16 reads around WWOX for TPT-R1, R2, and R3 compared to the WT chromosome 16 parental 
cell line. Blue arch represents a deleted region.  WWOX below shows the exonic (black lines) and 
intronic (white box) regions of the gene. The start of the deletion event is also close to a known 
fragile site (orange dashed line). G. Western blot showing WWOX protein levels in TPT resistant 
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clones. H. Western blot shows downregulation of protein levels for WWOX in shRNA samples 
compared to WT and scrambled control. Barplot of the WT and shRNA knockdown cell lines for 
WWOX showing EC50 values for TPT (I) and PTX (J). Data is represented by mean ± s.e.m. with 
n=3 biological replicates and 4-8 technical replicates. ** = p < 0.05. p values determined by ratio, 
paired two-tailed t test.  
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TABLES 
 

     WGS        WES      
  DOX 

(n=3)  
GEM 
(n=3)  

PTX 
(n=4)  

TPT 
(n=3)  

TPT 
(n=3)  

DOX 
(n=3)  

ETP 
(n=3)  

GEM 
(n=3)  

PTX 
(n=3)  

Indels   
Disruptive inframe 

ins. 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 

Frameshift 0.00 1.00 1.33 2.33 0.00 1.00 1.00 1.00 1.00 
Frameshift plus 

stop-gained 0.00 0.00 0.00 0.33 0.00 0.00 1.00 0.00 0.00 

Inframe insertion 0.00 0.00 1.00 0.33 0.00 0.00 1.00 0.00 0.00 
Intergenic 27.67 43.00 26.75 24.67 47.67 2.00 3.50 1.00 1.00 
Intragenic 10.00 5.67 9.00 9.00 14.33 1.00 2.00 1.00 1.00 

Intron 12.00 20.33 16.25 15.67 32.33 1.00 1.00 4.00 1.50 
Splice region plus 

intron  0.00 0.00 0.00 103.3 0.00 0.00 0.00 1.00 0.00 

SNVs 
Disruptive inframe 

del. 0.00 1.00 1.00 0.67 0.00 1.00 0.00 1.00 1.33 

Frameshift 1.00 2.00 1.00 22.33 2.00 3.00 1.67 1.00 3.00 
Inframe deletion 0.00 0.00 1.00 0.00 0.00 0.00 2.00 0.00 0.00 

Intergenic 898.33 1303.3 1416.6 258.6
7 2635.7 25.00 19.00 17.00 21.33 

Intragenic 272.00 403.33 389.25 77.67 834.67 15.33 12.33 10.33 11.33 
Intron 448.67 701.33 764.00 128.3 1358.33 28.00 27.00 33.00 22.67 

Missense 16.00 14.00 12.75 7.00 34.33 15.00 19.67 21.67 15.67 
Others 1.00 1.00 0.00 0.00 1.33 1.00 1.00 1.50 1.00 

Splice region plus 
intron  1.00 1.67 2.00 30.00 3.33 1.67 1.50 1.00 1.33 

Start lost 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 
Stop gained 0.00 2.50 1.00 0.00 1.67 1.50 2.00 2.67 0.00 

Stop lost 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Synonymous  3.00 7.33 4.00 6.33 7.67 6.67 5.33 7.67 5.33 

 
Table 1. Summary of average number of mutations. Number of selections performed with the 
drug is given by n. SNVs and Indels were grouped according to snpEff sequence ontology 
annotations (Methods, Table S4), and detailed counts per clone can be found in Table S5.  
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Drug  Sample  Gene  Amino Acid Change  Type  AF EC50 

(nM)  
WT  

EC50 (nM)  
KD/KO/CI 

DOX  R1, R2, R3  TOP2A  Pro803Thr  MS  0.89, 0.87 38.6 ± 4.3  164.3 ± 43.9  
  R4b  SLC13A4  Gly165His  MS  1 52.9 ± 

11.6  
204.3 ± 35.7  

  R5  SPG7  Lys593Asn  MS  1 NE*   
PTX  R1, R2a, R3  WWOX  16q23.1  CNV  - 5.8 ± 2.5  42.9 ± 11.7  

  R2a, R2b  ABCB1  7q21.12  CNV  - 252 ± 38 
218 ± 14 

1.3 ± 0.1 
1.3 ± 0.1 

  R2b, R6  SLCO3A1  Ile587Asn (R2b),  
Ala263Thr (R6)  

MS    6.6 ± 3.3  51.5 ± 9.9  

GEM  R1, R2, R3  
  

DCK  Ser129Tyr (R1, R2), 
Asn80fs (R1. R3); 

Asn113fs (R2);  
Thr184fs (R3)  

MS, 
FS  

  14.3 ± 1.7  521.7 ± 58.3  

  R4, R5, R6  RRM1  11p15.4  CNV  - 54.9 ± 5.8  1.8 ± 0.1  
ETP  R2, R3 WNT3A  1q42.13 (R2) CNV - ND  -  

  R3  WDR33  P622T  MS  1 241.5 ± 
31.0  

821.6 ± 
226.9  

TPT  R1, R4a, 
R4b, R4c  

CYP1B1  Val432Leu; 
Asp217Glu (R4a,b,c)  

MS  0.13, 0.40, 
0.43, 0.42 

6.3 ± 0.2  13.3 ± 0.3  

  R1, R2, R3  
  

WWOX  16q23.1  CNV  - 2.4 ± 0.3  22.8 ± 2.7  

  R4a, R4b,  
R4c  

TOP1  His81fs; 20q12  FS; 
CNV  

1 ND  - 

 R4a, R4b,  
R4c 

USP47 Arg408* Stop 0.38, 0.57, 
0.58 

3.05± 0.2 1.07± 0.07 

Table 2. Validation (knockdown) results for selected genes. CNV, copy-number variant. MS, 
missense. FS, frameshift variant, KO/KD/CI, knockout, knockdown, chemical inhibition 
(verapamil, ABCB1).  ND: No data: gene knockdowns were attempted but could not be achieved. 
NE: Not expressed (protein not detected by Western blot, preventing validation). EC50 WT and 
EC50 KO/KD/CI are from matched pairs for the given drug and represent the mean ± s.e.m. (n=3 
biological replicates).   
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