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ABSTRACT 
Genome sequences provide genomic maps with a single-base resolution for exploring 
genetic contents. Sequencing technologies, particularly long reads, have revolutionized 
genome assemblies for producing highly continuous genome sequences. However, 
current long-read sequencing technologies generate inaccurate reads that contain many 
errors. Some errors are retained in assembled sequences, which are typically not 
completely corrected by using either long reads or more accurate short reads. The issue 
commonly exists but few tools are dedicated for computing error rates or determining 
error locations. In this study, we developed a novel approach, referred to as K-mer 
Abundance Difference (KAD), to compare the inferred copy number of each k-mer 
indicated by short reads and the observed copy number in the assembly. Simple KAD 
metrics enable to classify k-mers into categories that reflect the quality of the assembly. 
Specifically, the KAD method can be used to identify base errors and estimate the 
overall error rate. In addition, sequence insertion and deletion as well as sequence 
redundancy can also be detected. Therefore, KAD is valuable for quality evaluation of 
genome assemblies and, potentially, provides a diagnostic tool to aid in precise error 
correction. KAD software has been developed to facilitate public uses. 
 
INTRODUCTION 
DNA sequencing technologies have revolutionized genetic and genomic analyses, 
facilitating de novo assemblies of genomes from various species with small to large 
complex genomes of species such as wheat (1). Genome assemblies using Illumina 
technologies, here referred to as short-read sequences, are typically highly fragmented 
but sequence bases are accurate. The contiguity of genome assemblies can be 
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dramatically improved by using long single-molecule sequencing technologies led by 
two technologies, principally by Pacific Biosciences SMRT and Oxford Nanopore (ONT) 
platforms (2). Sequencing reads yielded from both technologies have relatively high 
rates of errors, and are dominated by small insertions or deletions. Although consensus 
sequences from high coverage of sequencing reads reduce errors in genome 
assemblies, nonrandom errors, or biased errors, in reads can result in inaccurate 
consensus sequences. Biased errors could be caused by epigenomic modifications that 
affect sequencing signals for base calling (3, 4).  

To mitigate per base errors in a draft assembly, sequencing polishing algorithms 
have been developed to mitigate such issues through using signal-level raw data (5, 6). 
However, for genome sequences of many species, a great number of errors still exist 
after multiple rounds of sequence polishing, or error correction (7). Practically, errors 
can be further reduced via correction with additional Illumina short reads. Variants 
revealed by alignments of Illumina reads with assembled sequences are typically used 
for error correction (8). This strategy works well for small low-repetitive genomes 
because most assembly regions can be uniquely covered by Illumina reads. For large 
repetitive genomes, the strategy works less well due to a lower proportion of genomes 
uniquely aligned by Illumina reads, a higher rate of misalignments, and even no 
alignments at some poorly assembled regions (9). 

Assembly quality of genome sequences is related to assembly contiguity and 
completeness, correctness of sequence ordering, and consensus base accuracy. 
Community-based projects like GAGE (10) and Assemblathon (11) looked at a suite of 
criteria for a comprehensive assessment when benchmarking different assembly 
methods when the ground truth assembly is known. The value of N50, the length of the 
smallest contig of a set of the top long contigs that cover half of assembly space, is 
widely used as an indicator of assembly contiguity. Alignment rates or number of 
variants based on alignment to assembled sequences with genome sequencing reads, 
RNA sequencing reads, or comparison against the reference genomes of related 
varieties or species can indicate assembly quality. Tools were developed for comparing 
some of these parameters for genome assemblies, such as Quast (12). Conserved 
benchmarking universal single-copy orthologs (BUSCO)  (13) or core eukaryotic genes 
mapping approach (CEGMA) (14) were used to assess genome completeness simply 
based on evaluating the coding or gene space. LTR Assembly Index (LAI) that indicates 
the assembly quality of LTR (Long Terminal Repeats) retrotransposons was designed to 
evaluate assembly continuity, extending assembly quality assessment to repetitive 
regions (15). 

In addition, approaches for genome assembly characterization were also developed 
based on profiles of k-mers, substrings of length k from longer DNA sequences. K-mer 
based approaches have been used to quantify genome size, repetitive levels, 
heterozygosity in assembled sequences (16–19), and to perform reference-free genome 
comparisons based on sequencing data (20, 21). A method KAT (k-mer analysis toolkit) 
was developed to profile k-mer spectra of both sequencing reads and assemblies and to 
visualize difference of k-mer abundance in the assembly and read data (22). Here, we 
quantified abundance of k-mers from sequencing reads and k-mer occurrence in the 
assembly genome, and developed a single value, K-mer Abundance Difference (KAD), 
per k-mer. Given a set of input reads, KAD analysis can evaluate the accuracy of 
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nucleotide base quality at both genome-wide and single-locus levels, which, indeed, is 
appropriate, efficient, and powerful for assessing genome sequences assembled with 
inaccurate long reads. 
 
METHODS 
Simulation of genome sequences with single nucleotide substitution errors 
Genome sequences were simulated with various single nucleotide substitution errors 
using the software simuG (23). The parameters of simuG were set as “-snp_count <total 
nucleotide number of genome x variation rate> -titv_ratio 0.5”. 
 
Simulation of genome sequences with different error types 
The software simuG was also used to simulate genome sequences with different error 
types (23). For single nucleotide substitution errors, the parameters of simuG were set 
as “-snp_count <total nucleotide number of genome * variation rate> -titv_ratio 0.5”. For 
short INDELs, the parameter was set as “-indel_count <total nucleotide number of 
genome × variation rate> -ins_del_ratio 1”. For long sequence redundancy, the 
parameter was set as “-cnv_count <number of long sequence redundancy> -
cnv_gain_loss_ratio Inf”. For long sequence deletion, the parameter was set as “-
cnv_count <number of long sequence redundancy> -cnv_gain_loss_ratio 0”. 
 
Simulation of reads with and without errors 
The software DWGSIM (https://github.com/nh13/DWGSIM) was used to generate reads 
with or without errors (error-free reads) using reference genomes of multiple species 
with various genome sizes. To simulate reads without errors with different read depths, 
the parameter was set as “-e 0 -E 0 -C <read depth> -1 150 -2 150 -r 0 -R 0 -X 0 -y 0 -c 
0 -S 0”. To simulate reads with single nucleotide substitution errors with 50x read depth, 
the parameter was set as “-e <sequencing error rate> -E <sequencing error rate> -C 50 
-1 150 -2 150 -r 0 -R 0 -X 0 -y 0 -c 0 -S 0”. The parameter -C represents the read depth, 
the parameters -1 and -2 represent the lengths of the first and the second reads of 
paired-end reads. To simulate reads without errors, all the parameters control the error 
rates in reads (-r, -R, -X, -y, -c, -S) were set to 0. 
 
Calculation of True Capture Rate (TCR) and False Capture Rate (FCR) 
Error k-mers were identified with the KAD script “KADprofile.pl”, which determined the 
KAD value per k-mer and identified error k-mers. To calculate the TCR value that 
stands for the percentage of simulated base errors detected by KAD, all the error k-
mers detected by KAD were aligned to their simulated genomes with bowtie (24) and 
the overlapping error k-mers were merged into error regions, which was implemented 
by a KAD script “KADdist.pl”. The ratio of simulated errors located in error regions to 
total simulated errors was calculated as the TCR value. The FCR value stands for the 
percentage of error k-mers that do not overlap with simulated base errors. Therefore, 
the FCR value was determined by calculating the ratio of the number of error k-mers 
overlapping with simulated errors to the total number of error k-mers detected by KAD. 
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Xvv1601 whole genome sequencing via PacBio and genome assembly 
Bacterial growth and DNA extraction referred to a previous procedure (25). The 10-20kb 
whole genome shotgun libraries were constructed using Xvv1601 genomic DNAs. The 
library was sequenced with P6-C4 chemistry on a SMRTcells of PacBio RS II at the 
Yale Center for Genomic Analysis (YCGA). PacBio genome assembly: Canu (v1.3) was 
used for genome assembly (26). PacBio reads with the minimum length of 5 kb were 
used. 

To generate Illumina data for the bacterium XV1601, the sequencing library was 
prepared using the Illumina TruSeq DNA LT sample Prep kit. Paired-end 2x300 bp 
reads were generated on an Illumina MiSeq at the Integrated Genomic Facility at 
Kansas State University. To examine the impact of read depths on error detection, the 
module “sample” of the software seqtk (https://github.com/lh3/seqtk) was used to down-
sample Illumina reads to approximately 90x, 80x, 70x, 60x, 50x, 40x, 30x, and 20x. 
 
Identification of polymorphisms between two Xvv1601 assembly versions 
The software MUMmer 4 (27) was used to identify DNA polymorphisms between the 
two assemblies (canu and final) of the bacterial strain Xvv1601. The two assembly 
sequences were aligned with the nucmer command. Alignments were filtered with the 
command delta-filter with (-1 -l 10000 -i 90) which resulted in unique alignments with at 
least 10 kb matches and at least 90% identity between the two assembled genomes. 
The alignments passing the filtering were used for the variant discovery with “show-
snps”. 
 
B71 whole genome sequencing using Nanopore MinION 
B71 nuclear genomic DNA was prepared as described previously (28). Genomic DNA 
was subjected to 20kb size selection using Bluepippin cassette kit BLF7510 with High-
Pass protocol (Sage Science, USA), followed by library preparation with the SQK-
LSK109 kit (Oxford Nanopore, UK). Library was loaded to the flowcell FLO-MIN106D 
(Oxford Nanopore, UK) and sequenced on MinION (Oxford Nanopore, UK). Guppy 
version 2.2.2 was used to convert Nanopore raw data (fast5) to fastq data with default 
parameters. 
 
B71 Nanopore genome assembly and sequence polishing 
Nanopore reads were input to Canu 1.8 for genome assembly with the following 
parameters (genomeSize=45m minReadLength=5000 minOverlapLength=1000 
corOutCoverage=80) (26). Nanopore reads were aligned back to the Canu assembly 
with minimap2 (2.14-r892) with the parameter of (-ax map-ont). Alignments in BAM 
format converted by Samtools (1.9) were input for assembly polishing with Nanopolish 
(version 0.11.0) with default parameters (https://github.com/jts/nanopolish). The 
Nanopolish procedure was repeated twice. Nanopolish-polished sequences were further 
polished with trimmed reads of Illumina sequencing data (SRA accession: 
SRR6232156) using Pilon (version 1.23) (8). In the Pilon polishing, Illumina reads were 
aligned to Nanopolish-polished sequences with the aligner bwa (0.7.12-r1039) with 
default parameters of the module “mem” (29). Pilon used bwa alignments and polish 
assembled sequences with the parameters of (--minmq 40 --minqual 15). Assembled 
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contigs were renamed based on their similarity to the assembly of B71Ref1 (28). We 
also manually fixed a misassembly that joined a previously identified mini-
chromosome’s sequence with chromosome 6. The assembly and polishing procedure 
resulted in ONTv0.14. The same Pilon procedure was applied to further polish the 
PacBio assembly B71Ref1 (28) with Illumina reads, resulting in a new assembly 
PBRef1.3. 
 
Whole genome sequence alignment via NUCmer 
The nucmer command from the software MUMmer 4 (27) was used for whole genome 
alignment between B71Ref1.3 and ONTv0.14. The parameter of “-L 1000” was used in 
the command nucmer and the parameter of “-L 5000 -I 98” in the command of show-
coords, which resulted in alignments with at least 5 kb matches and at least 98% 
identity between the two assemblied genomes. 
 
KAD analysis to analyze B71 genome assemlies 
Using trimmed B71 Illumina reads, the KAD analysis was performed for both 
assemblies ONTv0.14 and B71Ref1.3 with the script “KADprofile.pl”, which determined 
the KAD value per k-mer and grouped k-mers. The script “KADdist.pl” was used to map 
k-mers to the assembly genomes and profile distributions of k-mers from each k-mer 
group, particularly the group of error k-mers. 
 
RESULTS 
Rationale of KAD profiling and software development 
With the availability of long-noisy-read and short-accurate-read sequencing 
technologies, genome sequences nowadays are often constructed by using both long 
and short whole genome shotgun (WGS) reads. The Illumina sequencing platform is the 
dominant short-read technology and produces accurate reads with ~0.1% error rate, 
predominated by single nucleotide substitutions (30). High-depth sequencing data (e.g., 
30x or above) and relatively uniformly distributed reads across the genome enable to 
quantify genome content through k-mer analysis. Specifically, the abundance of a k-mer 
from short reads should be highly correlated with occurrence of the k-mer in the 
genome. For most genomes, single-copy k-mers each of which is present once in the 
genome are dominant among all k-mer sequences (non-redundant k-mers with one or 
multiple copies) derived from the genome. The mode of sequencing depths of single-
copy k-mers (𝑚), representing sequencing depth of read data, can be estimated from 
the spectrum of abundance of read k-mers that are k-mers generated from sequencing 
reads. For a given read k-mer, the k-mer abundance, or the count per k-mer in reads, is 
signified by 𝑐. The occurrence or the copy of the k-mer in a given genome can be 
estimated by #

$
. In assembled sequences, the occurrence of the k-mer is signified by 𝑛. 

Therefore, 𝑙𝑜𝑔2* #
$+
, represents the copy number difference between the estimate by 

reads and the copy of the k-mer in assembled sequences. Because the 𝑛 value per k-
mer is 0 for the k-mers that are present in reads but absent in assembled sequences, 
the formula was adjusted as 𝑙𝑜𝑔2* #-$

$(+-/)
,, the value of K-mer Abundance Difference 
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(KAD). Using this formula, KADs of k-mers with matching copies indicated by reads and 
the assembly should be 0 or around 0. If a single-copy k-mer from an assembly is 
resulted from errors, and no such k-mer is found in reads, the KAD equals -1. Read k-
mers missed in the assembly have positive KAD values. In such cases, high-copy k-
mers from a genome that are well represented in reads but not in the assembly have 
high KAD values. Collectively, this simple KAD metric indicates how each k-mer 
matches with read data in copy number. Therefore, based on the KAD profile of all k-
mers together, the quality of an assembly can be assessed using a common standard 
informed by a read set. 
 
Base errors in assemblies can be detected through KAD analysis 
The use of KAD in error detection was tested by the simulation using an Escherichia coli 
reference genome (4.7 Mb). The KAD calculation requires a genome assembly and 
short reads generated from the genome. We simulated 50x reads without errors (error-
free reads) from the E. coli reference genome and 10 sets of genome sequences with 
0.1-1% single nucleotide substitution errors (Methods). The KAD value using 25-mer as 
the k-mer size was determined for each k-mer derived from simulated genomes that 
contains varying numbers of errors. A k-mer with the KAD value equaling -1 was 

referred to as an 
error k-mer. As 
expected, the 
numbers of error k-
mers increased with 
error rates of the 
simulated genomes 
(Figure 1A). We 
extended 
simulations using 
larger genomes 
from 4 additional 
species, namely, 
yeast 
(Saccharomyces 
cerevisiae, 12.4 
Mb), Arabidopsis 
(Arabidopsis 
thaliana, 121.6 Mb), 

rice (Oryza sativa japonica, 381.3 Mb), and maize (Zea mays, 2.2 Gb). For each 
genome, 50x error-free reads were simulated. Similar to the simulation using the E. coli 
genome, the number of error k-mers detected by KAD analysis in four species showed 
a linear correlation with error rates (Figure 1A, Figure S1, Table S1), which supported 
the conjecture that the number of error k-mers determined by KAD analysis accurately 
reflects error rates regardless of genome size and complexity. 

Error k-mers were mapped to simulated genomes and the regions covered by error k-
mers were referred to as error regions. The simulated errors located in error regions 
were considered as errors captured by KAD and the percentage of captured errors was 

 
Figure 1. Error detection through KAD analysis. (A) Number of error k-mers 
detected in simulated E. coli and maize genomes with different simulated error 
rates. The left and right y-axes represent the number of error k-mers detected 
in the simulated E. coli and maize genome sequences, respectively. (B) Under 
the 0.5% rate of errors in simulated genomes, ratios of the number of error k-
mers to the number of simulated errors in five simulated genomes were plotted 
versus corresponding genome sizes. 
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defined as True Capture Rate (TCR). In relatively small genomes (E. coli, Yeast, and 
Arabidopsis) with error rates ranging from 0.1% to 1%, the TCR values were all higher 
than 99% (Table 1), which indicated that KAD analysis can inform almost all errors in 
these simulated genomes. For a genome with a moderate size (rice), the TCR values 
reduced to ~95%. The TCR values were further reduced to ~67% for maize that has a 
large and complicated genome, suggesting that the size and complexity of a genome 
have impacts on error detection. 

We also determined the False Capture Rate (FCR), which is the ratio of error k-mers 
that do not overlap with simulated errors to total error k-mers. Using data with simulated 
errors ranging from 0.1% to 1%, all FCR values remained at low levels (<5%) in all 
simulated genomes (Table 1), indicating that KAD analysis accurately pinpointed errors. 
In addition, in the range of 0.1-1% simulated error rates, the number of error k-mers 
detected exhibited an approximately linear relationship with the number of errors 
regardless of the genome size. Thus, we can use the number of error k-mers to 
estimate the number of errors in a genome assembly. Our simulation data showed that, 
depending on the error rate and the genome size, the exact conversion ratio of the 
number of error k-mers to the error rate varied from 14 to 25 when 25-mer was used as 
the k-mer length (Figure 1B, Figure S2, Table S2). In addition, we performed KAD 
analysis using 31-mer for five genomes with 1% simulated errors, both TCR and FCR 
retained very high and very low respectively for all genomes except the complex maize 
genome, for which TCR was improved from 68% to 80% and FCR was reduced from 
0.4% to 0.3% (Table S3). The TCR and FCR values continued to improve when higher 
k-mers (37, 43, 49, and 55 mers) were used for maize analyses using the same 
simulated assembly and read data (Table S4). Among them, the 49-mer had the 
highest TCR (91.9%) and the lowest FCR (0.12%). Collectively, the simulation 
supported that KAD analysis can detect most errors from the assemblies of small 
genomes to those of large genomes and provided the extrapolation formula to estimate 
error rates based on the number of error k-mers detected by KAD analysis. 
 
Table 1. Assessment of error detection via KAD analysis 

 
KAD analysis detects diverse types of errors 
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Besides single nucleotide substitution errors, we predicted that KAD analysis can inform 
other types of errors, such as short insertion and deletion (INDELs), missing sequences 
or assembly collapses, and contaminated DNA sequences in genome assemblies (31). 
We grouped k-mers other than error k-mers based on their KAD values into: k-mers with 
KADs close to 0 (Good), k-mers over-represented in the assembly (OverRep), k-mers 
under-represented at a low level in the assembly (LowUnderRep), and k-mers under-
represented at a high level in the assembly (HighUnderRep) (Figure 2). Good k-mers 
represent k-mers from well assembled and accurate sequences. OverRep k-mers are k-
mers with low KAD values (e.g., smaller than -1), representing k-mers showing multiple 
times in the assembly 
but are absent or 
having lower copies 
indicated by read 
data. K-mers from 
redundant sequences 
in the assembly 
belong to this group. 
Under-represented k-
mers are k-mers that 
occur less frequently 
in the assembly. K-
mers derived from 
incompletely 
assembled or missing 
sequences belong to 
LowUnderRep or 
HighUnderRep. If a 
repetitive sequence 
has a high number of 
copies and most are 
missing, the derived k-
mers would have a high KAD value (e.g., greater than 2) and therefore would be 
grouped to HighUnderRep. Note that the KAD ranges specified here are default values 
used in the KAD scripts to define each k-mer group, and may be redefined in different 
applications. 

We next examined how the KAD-based grouping strategy detects various assembly 
errors through simulation of multiple types of errors using the E. coli genome. We 
separately simulated four types of errors: (I) single nucleotide substitution ranging from 
1% to 10% (II) short INDELs (less than 10 bp) ranging from 1% to 10% (III) long 
sequence redundancy (insertion between 100 bp and 1000 bp) and (IV) sequence 
deletion (deletion between 100 bp and 1000 bp) with the number from 50 to 500. KAD 
analysis was performed on each of these simulated genomes along with 50x error-free 
reads (Table S5). For the types I and II, while the error rates increase, the number of 
Good k-mers decreases and the number of Error k-mers increases (Figure 3A, 3B). 
Because of the presence of error sequences, corresponding correct sequences are 

 
Figure 2. K-mer classification based on KAD values. Examples are 
provided to illustrate from each k-mer group (A) Good, (B) Error, (C) 
OverRep whose k-mers are over-represented in the assembly, (D) 
LowUnderRedp whose k-mers are under-represented at a low level in the 
assembly, and (E) HighUnderRep whose k-mers are under-represented at a 
high level in the assembly. In these examples, 6 reads are the mode of k-
mer abundances (m=6). The c and n values are abundances of k-mer in 
reads and copy numbers in the assembly, respectively. In each purple box, 
green bars highlight a k-mer in reads and red bar(s) indicate the occurrence 
of the k-mer in the assembly. The KAD ranges specified are cutoff values 
that define each k-mer group. 
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under-represented in the assembly, resulting in the increase of k-mers in the group of 
“lowUnderRep”. Note that, owing to a higher frequency of multiple errors in an error k-
mer when the error rate in the simulated genomes is greater than 2%, the linear 
relationship between the number of error k-mers and error rates was not maintained 
(Figure 3A, 3B). Long sequence errors, redundancy and deletion, in the assembly 
resulted in abundant OverRep k-mers and LowUnderRep k-mers, respectively. But both 
of them had a few error k-mers compared to single nucleotide substitutions and short 
INDELs (Figure 3C, 3D, Table S5). These results indicated that KAD analysis was able 

 
Figure 3. KAD analysis of multiple error types simulated on the E. coli genome. KAD results of 
simulated genome sequences with different types of errors: (A) single nucleotide substitutions, (B) 
short INDELs, (C) long sequence redundancy, and (D) long sequence deletion. In each plot, colors of 
lines represent different groups of k-mers detected by KAD. 
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to separate errors due to sequence redundancy or missing assemblies. At the same 
time, the KAD analysis can detect errors caused by single nucleotide substitutions and 
short INDELs but cannot distinguish these two error types. 
 
The impacts of depths and errors of sequencing reads on KAD analysis 
KAD analysis quantitatively compares k-mer abundance in sequencing reads and in the 

assembly. To 
examine the 
impact of 
sequencing 
depth on KAD 
analysis, error-
free reads were 
separately 
simulated with 
read depths from 
10x to 100x in E. 
coli genome. 
Using various 
depths of 
sequencing read 
data, KAD 
analysis was 
performed on the 
previously 
simulated 
genome 
sequences with 
1% to 10% 

single nucleotide substitution errors. As a result, the accuracy of error detection using 
KAD analysis, represented by TCR, was >99.9% for simulated E. coli genomes when 
sequencing depths were higher than 20x (Figure 4A). However, when sequencing 
depth is lower than 40x, false error capture rates (FCR) were high for the simulated 
genomes with low error rates (Figure 4B). Similar results were observed for simulations 
with other three larger genomes, namely, yeast, Arabidopsis, and rice, with 0.1% to 1% 
single nucleotide substitution (Data S1). This simulation result indicated that at least 40x 
read depth is required for accurate detection of errors through KAD analysis. 

All simulations so far used error-free reads. To examine the impact of read errors on 
KAD analysis, 50x reads with error rates of single nucleotide substitutions from 0.1% to 
0.5% and from 1% to 5% were simulated from the E. coli reference genome. KAD 
analysis was then performed using these error-bearing reads and the simulated E. coli 
genomes with 1% to 10% single nucleotide substitutions. The numbers of error k-mers 
detected by KAD were robust using reads with ≤2% error rates (Figure 5A). The TCR 
values stayed above 99.9% for all error rates of reads from 0.1% to 5% (Figure 5B). 
However, where error rates of reads were higher than 3%, high levels of FCR were 
observed (Figure 5C). This simulation result showed that, as long as read errors are not 

 
Figure 4. Impacts of read depths on error detection in simulated genomes. 
Various random errors of single nucleotide substitution on the E. coli reference 
genome were simulated, resulting in simulated E. coli genomes with errors ranging 
from 1% to 10% that are shown on x-axes. KAD analyses were performed to 
detect errors using different depths of error-free read data whose depths range 
from 10x to 100x coverages. Both TCR (A) and FCR (B) of error detection via 
KAD were determined, and plotted versus percentages of simulated errors in the 
simulated genomes. Each curve represents a certain depth of read data used for 
KAD analyses. Depths of read data, ranging from 10 to 100x, are color coded and 
labeled within each plot. 
 
 

% errors in simulated assemblies

TC
R

 (%
)

98
.6

99
99

.4
99

.8

1 2 3 4 5 6 7 8 9 10

10
20
30
40
50
80
100 0

20
40

60

% errors in simulated assemblies

FC
R

 (%
)

1 2 3 4 5 6 7 8 9 10

10
20
30
40
50
80
100

A B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.994566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.994566
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

higher than 1%, the impacts of read errors on error detection of assembled sequences 
through KAD analysis is trivial. 

 
Assessing a bacterial genome assembly via KAD analysis 
We previously produced a genome assembly of a Xanthomonas vasicola pv. 
vasculorum (Xvv) isolate Xvv1601 that was isolated from a Kansas corn adult leaf 
showing the symptoms characteristic of bacterial leaf streak in 2016 (32). PacBio long 
reads were used for the genome assembly with the assembler Canu (26). The resulting 
assembly with the software Canu, referred to as assembly canu, was then polished with 
raw PacBio reads and Illumina reads, followed by the circularization by removing 
overlapping ends, resulting in a final assembly (assembly final, Genbank accession 
CP025272.1). The final assembly consists of 4,956,923 bp. Comparison between 
assemblies canu and final found 142 polymorphisms that were all one-base INDELs. 

KAD analysis was performed on two versions of assemblies with trimmed Illumina 
2x300bp paired-end reads. The spectrum of k-mer abundance showed that the 
sequencing depth of Illumina reads is 199 (Figure 6A). KAD profiling of both 
assemblies canu and final showed KAD values of most k-mers are around 0, indicating 
that the overall base quality of both assemblies is high (Figure 6B). In assembly canu, a 
small peak of error k-mers (N=2,649) is detected, suggesting that base errors were 
retained in assembly canu. These error k-mers covered 141 error regions on assembly 
canu. All error regions were not larger than 51 bp. Strikingly, all 142 INDELs between 
the two versions of assemblies were located within these small error regions and each 
error region contained one INDEL polymorphism except one that contained two. KAD 
analysis of assembly canu also showed that some k-mers are under-represented in the 
assembly (Figure 6C). In the final assembly, no error k-mers were found but under-

 
Figure 5. Impacts of read errors on error detection. The simulated E. coli genome sequences contain 
single nucleotide substitution errors ranging from 1% to 10%. KAD analyses were performed to detect 
errors on these simulated genomes using error-bearing reads ranging from 0.1% to 0.5% and from 1% 
to 5%. Numbers of error k-mers detected (A), TCR of error detection (B), and FCR of error detection (C) 
were plotted versus error rates in simulated genome sequences. Each curve represents a certain level of 
errors in reads used for KAD analysis. Different levels of errors in reads are color-coded and labeled in 
each plot. 
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represented (both LowUnderRep and HighUnderRep) k-mers largely retained (Figure 
6D). Aligning these under-represented k-mers to Genbank databases found that these 
k-mers were not derived from bacterial genomes. Instead, they were from the PhiX 
phage DNA that was used as controls for Illumina sequencing or DNA sequences of 
organisms other than Xanthomonas. Therefore, these sequences under-represented in 
the assembly were likely generated from DNA contamination during Illumina sequencing 
or library preparation. 

 

 
Figure 6. KAD analysis of assemblies of a bacterial genome. (A) Spectrum of abundance per k-mer 
profiled with trimmed Illumina reads. The spectrum determined the sequencing depth of Illumina data. (B) 
The summary table of numbers of k-mers in each k-mer group. Both k-mer counts from the unpolished 
assembly (canu) and the polished assembly (final) are shown. (C) KAD profiling of assembly canu shows 
that a strong peak is at around the KAD value of 0 (orange dash line), which represents correct k-mers 
(referred to as “Good”);  a small peak at the KAD value of -1 (blue dash lines), which represents a group of 
error k-mers (referred to as “Error”). Red arrow points at a small bump representing a low-level of under-
represented k-mers in the assembly, referred to as “LowUnderRep”. Blue arrow points at a bump 
representing a high-level of under-represented k-mers in the assembly, referred to as “HighUnderRep”. (D) 
The KAD profile of the “final” assembly. The peak representing error k-mers is disappeared. However, small 
bumps (red and blue arrows) remain, which contains k-mers from contaminated DNA during Illumina 
sequencing. (E) Grouped k-mers were mapped to assembly canu. All highUnderRep k-mers were not 
mapped. (F) Grouped k-mers were mapped to assembly final. Seven OverRep k-mers were repeatedly 
mapped to a 15-copy tandem “ATTCGGG” 7-bp repeat. In both E and F, and the number of k-mers per 50 
kb in each group was determined and plotted versus the position of the 50-kb window in the assembly. A k-
mer was counted multiple times if it was mapped to different locations. 
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To understand distributions of k-mers of different groups, k-mers were mapped to 
both canu and final assemblies, which required perfect matches but allowed multiple 
mapping locations. A KAD landscape plot displaying distributions of grouped k-mers 
from assembly canu showed that error k-mers were spread along the whole assembled 
genome and a few OverRep and LowUnderRep k-mers were mapped (Figure 6E). The 
KAD landscape plot of assembly final located the OverRep k-mers at a region that has 
15-copy “ATTCGGG” 7-bp tandem repeats (Figure 6F). Collectively, KAD analysis 
indicated that the final assembly of Xvv1601 (CP025272.1) is a finished genome 
assembly with a very high base quality. 

We randomly sampled reads from original high-depth (~200x) reads to the coverages 
from 90x to 20x and performed KAD analysis using each down-sampled read dataset. 
When the read depth was 40x or above, at least 98% error k-mers originally identified in 
assembly canu were repeatedly identified with the total number of error k-mers highly 
close, and 0 error k-mers were found in the final assembly (Figure S3). However, both 
error k-mers in assemblies canu and final were slightly increased when the read depth 
was 30x, but were dramatically increased when the read depth was 20x (Figure S3). 
The result suggested 40x is the minimum read depth for accurate KAD analysis, which 
agreed with previously simulation results. 
 
KAD analysis to improve the genome assembly of a fungal wheat blast isolate 
We previously used PacBio long reads to assemble a near-finished genome assembly 
of fungal field isolate B71 that causes wheat blast diseases (28). The B71Ref1 
assembly consists of seven core-chromosomes, five contigs that are from a 
supernumerary mini-chromosome, and a mitochondrial sequence (28). To improve the 
assembly, we generated Nanopore long reads (Figure 7A, Figure S4) and performed a 
de novo assembly using only Nanopore dada, resulting in 12 contigs. Based on the 
alignment of polished contigs (ONTv0.14, Methods) with the previously B71Ref1 
assembly, we reorganized these contigs into chromosomes and corrected a 
misassembly between chromosome 6 and a verified mini-chromosome sequence 
(Figure S5). The updated Nanopore assembly contains seven core-chromosomes, a 
mini-chromosome, and a mitochondrial sequence. We also updated the previous 
PacBio assembly with additional polishing steps (PBRef1.3). To compare ONTv0.14 
and PBRef1.3, we performed KAD profiling on both assemblies and aligned the two 
assemblies using Nucmer (27). The alignment of each core-chromosome indicated that 
the two assemblies have a very low level of dissimilarity (Figure 7B, Figure S6). KAD 
analysis enabled the determination of errors and their distribution along each 
chromosome. Combining both alignment results and error profiling indicated by KAD 
analysis, we selected assembled sequences from either assembly that contains more 
complete sequences or fewer errors (Table S6). The combined assembly (B71Ref1.5) 
took advantage of both Nanopore and Pacbio long read technologies. KAD profiling of 
B71Ref1.5 indicated that the combined assembly carries ~2,568 base errors as 
estimated by the number of error k-mers, i.e., 99.995% accuracy (Table S7). 

More than 99% error k-mers were uniquely and perfectly mapped to assembled 
sequences. The KAD landscape plot showed that error k-mers were spread along the 
whole genome but obviously not randomly distributed (Figure S7). About 66% error k-
mers were located in the repetitive regions that consist of only 13% of the genome. K-
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mers with KAD values greater than 5 were largely derived from the mitochondrion that 
had a high number of copies each cell (Figure 7C). Most k-mers from the highly 

 

 
Figure 7. KAD analysis identified errors in the fungal genome assembly. (A) Spectrum of abundance 
per k-mer profiled with trimmed Illumina reads, which was used to determine the sequencing depth. (B) 
Comparison of chromosome 5 between the assembly with Nanopore long reads (ONTv0.14) and the 
assembly with PacBio long reads (PBRef1.3). Distributions of percentages of estimated base errors (err%) 
per 50 kb are plotted separately for the two assemblies along chromosome 5 (orange shades). In between 
two assemblies, alignments of the same chromosomes with NUCmer are displayed with two colors to 
indicate neighboring alignments. (C) B71Ref1.5 is the merged assembly combining both ONTv0.14 and 
PBRef1.3. KAD profiling was performed using this merged assembly and trimmed Illumina reads. The red 
circle highlights a bump that is largely contributed by k-mers from the mitochondria whose genome was in 
high number of copies in each cell. (D) Error k-mers and under-represented k-mers identified using the 
B71Ref1.5 assembly were mapped to the B71Ref1.5 assembly. Each k-mer was allowed to map to up to 
100 locations. The number of k-mers in each group per 50 kb was determined and plotted versus the 
position of the 50-kb window in the assembly. (E) Counts of homopolymers of different lengths per 100 bp 
were plotted versus lengths of homopolymers. The red curve represents counts on error regions and the 
gray curve represents counts on non-error regions.  (F) After k-mers were aligned to the assembly, the 
mean KAD value per position was calculated by averaging KAD values of all k-mers aligned to the position. 
This example shows the mean KAD values per position at a small region on chromosome 2. The DNA 
sequence is from the assembly. Each base matches the linked position. The lowest mean of KAD points at 
a G homopolymer tract (red). 
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repetitive ribosome DNA (rDNA) at the beginning of chromosome 1 have high KAD 
values (around 2), indicative of incomplete assembly. The rDNA cluster region also 
carries a higher level of errors (~0.4%) (Figure 7D). We defined error regions where 
error k-mers were mapped. Sequence analysis of these error regions revealed that the 
homopolymers with the length between 4 and 16 are highly enriched as compared to 
their frequencies in the genomic regions with no error k-mers mapped (Figure 7E). We 
also determined the means of KAD values per genomic position by averaging KADs 
values of k-mers mapped to the position. At small regions with negative continuous KAD 
values, we frequently observed the positions with the lowest means of KADs pointed at 
homopolymer tracts (as an example shown in Figure 7F). Here we scrutinized a 
Nanopore and Pacbio combined wheat blast fungal assembly, we showed that the 
combined assembly B71Ref1.5 is a “finished” assembly using the community standard 
(33) but is still incomplete at highly repetitive regions and contains a low level of base 
errors, particularly in repetitive sequences. 
 
DISCUSSION 
Remarkable progress has been made to advance genome assemblies in recent 
decades, including cost-efficient and accurate high-throughput short-read sequencing, 
long-read single molecule sequencing, and improved assembly and error correction 
algorithms (34, 35). The evaluation of multiple versions of assemblies using different 
assembly algorithms and various assembly procedures is critical for optimization of 
genome assemblies. It is also important to assess the final assembly products for 
information on errors and incompleteness. Here we developed a simple but effective 
method for genome evaluation based on the quantitative comparison of k-mer 
abundances between accurate short-read sequencing data and the assembly 
sequences. The method, referred to as KAD, depicts how sequence contents from high-
depth short-reads are represented in each examined genome assembly, identifies the 
regions in the assembly where base errors occur, estimates the overall error rate of an 
assembly, and finds the regions containing potential sequence redundancy or 
incompleteness. Additionally, problems with short-read data, if they exist, could be 
detected. The KAD method has been implemented and the scripts are freely accessible 
(https://github.com/liu3zhenlab/kad), which would be useful for genome assembly 
projects of a wide range of species from small bacterial genomes to large eukaryotic 
genomes. 

KAD first analyzes high-depth (at least 40x) Illumina data to determine the 
sequencing depth, or the coverage of the genome. This analysis assumes that k-mers 
having a single copy in the genome are most abundant among all k-mers generated 
from the genome, which is true for genomes of most species if the k-mer length is 
sufficiently long (e.g., 25 nt). Caution is needed when analyzing polyploidy genomes 
such as wheat or heterozygous diploids. Based on that assumption, the k-mer 
abundance that occurs most frequently (the mode of k-mer abundances) should 
represent the sequencing depth of single-copy k-mers if the reads contain no 
sequencing errors. Reads with sequencing errors, even at a low frequency of 
sequencing errors, generate a very high number of k-mers with small abundance (e.g., 
1-3), and can slightly reduce k-mer abundance of each correct k-mer. Such reduction is 
negligible as it is very small. We thus use the mode of k-mer abundances (the most 
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frequent k-mer abundance that is not small) as the estimate of the sequencing depth, 
which is an important parameter in the formula to calculate KADs. 

For a complete assembly with no errors and unbiased sequencing data with no 
contamination, the KAD profile would be ideal in that KADs of all k-mers would be 
around 0. In reality, problematic k-mers with KADs distant from 0 can be found. We 
categorized problematic k-mers into four groups: over-represented (OverRep), errors 
(Error), low-level under-represented (LowUnderRep) and high-level under-represented 
(HighUnderRep). The group of “Error” is well defined. KAD values of all k-mers of this 
group are -1, which indicates that no such k-mers are produced from sequencing reads 
but they are present in the assembly. Importantly, the number of k-mers in this group 
(error k-mers) reflects the sequence error rate of the assembly. Our simulation data 
indicate that the assembly error rate can be estimated using the number of error k-mers. 
This estimation is particularly useful nowadays because many genome assemblies 
retain a number of errors from noisy long reads that are used for assemblies (7). 
Importantly, most of these errors create new sequences that are not present in the 
actual genome sequences. Therefore, most error k-mers can be unambiguously 
mapped to error regions in the assembled sequences even though error k-mers are 
located in highly repetitive regions. This provides a unique approach to identify errors in 
repetitive sequences that are error-prone. The other three groups are arbitrarily 
categorized by defining the range of KADs. KAD thresholds to define these categories 
are adjustable but the defaults worked well for all the genomes that we tested. 

The over-represented group includes k-mers with low KAD values (e.g., smaller than 
-1), representing k-mers occurring multiple times in the assembly, but are absent or 
represented less frequently in reads than expected. Mostly likely, these k-mers are 
derived from sequence redundancy in the assembly, or regions containing systematic 
errors across multiple locations in the assemblies, or sequences in the genome that are 
biasedly under-represented in reads. Biased under-representation in reads could occur 
at extremely highly GC- or AT-rich regions (25). The under-represented groups include 
k-mers with high positive KAD values (e.g., greater than 0.75), representing k-mers 
showing fewer copies in the assembly than indicated by reads. For example, k-mers 
from a region incorrectly collapsed due to tandem repeats would be categorized in 
these groups. The higher the KAD values, the higher the level of potential assembly 
incompleteness. However, when k-mers are derived from high-copy organelles or 
plasmids, the high KAD values reflect the fact that high copies of the sequence are 
present but only one is probably assembled. In addition, when k-mers are from 
contamination in short-reads, their KAD values could be high. When mapping over- and 
under-represented k-mers to the assembly, the issue of multiple mapping is frequently 
encountered. KAD scripts allow users to tune the parameter of the maximum number of 
locations, which enables the examination of k-mers that are located at multiple genomic 
regions. However, users need to bear this in mind that the over- or under-represented 
signal from a region could be repeatedly shown at multiple locations. 

In this study, for most analyses, we chose 25-mer as the k-mer size because it is an 
optimal size in the genome assembler ALLPATHS-LG for analyzing k-mer abundance 
spectrum (36) and we have successfully applied it to examine repetitive sequences of 
maize that has a large complex genome (21). A shorter k-mer size can have a higher 
resolution to pinpoint error regions but compromises the uniqueness of each k-mer in 
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the assembled genome sequences. In our simulation result, we showed that 25-mer has 
high power and accuracy for detecting base error in assembled genomes with small or 
moderate sizes. We also showed that large complex genomes like maize need longer k-
mers for improving the uniqueness of k-mers in the genomes. But error regions 
identified using longer k-mers are wider, more likely cover multiple errors, and the 
analysis requires more computation resources. In addition, sequencing reads used in 
KAD analysis are not error-free. The longer the k-mer size, the higher the likelihood that 
a k-mer from reads would carry errors (37). Therefore, slightly higher depth than 40x 
would help ensure reliable error detection when a longer k-mer length (e.g., 49-mer) is 
used. 

The development of the KAD analysis was inspired by a motivation to generate a 
high-quality genome assembly and to develop a method to compare different 
assemblies for nomination of the final release. With the KAD bioinformatics pipeline, we 
can quantify the overall sequence error rate and locate errors. Existing error correction 
algorithms can use the information provided by KAD for targeted error correction, which 
should reduce false correction. KAD can also help to determine whether one or multiple 
rounds of polishing were sufficient to meet the convergence criteria, for example, on the 
basis of the diagnostic plots including KAD error profiles and KAD landscape plots. In 
the future, new error correction approaches, particularly approaches that are not based 
on read alignments, could be developed along with KAD for precise error correction in 
both non-repetitive and repetitive sequences. 
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