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Abstract 
Summary: Variability in datasets are not only the product of biological processes: they are 
also the product of technical biases. ComBat is one of the most widely used tool for correcting 
those technical biases, called batch effects, in microarray expression data. 
In this technical note, we present a new Python implementation of ComBat. While the 
mathematical framework is strictly the same, we show here that our implementation: (i) has 
similar results in terms of batch effects correction; (ii) is as fast or faster than the R 
implementation of ComBat and; (iii) offers new tools for the bioinformatics community to 
participate in its development.  
 
Availability and Implementation: pyComBat is implemented in the Python language and is 
available under GPL-3.0 (https://www.gnu.org/licenses/gpl-3.0.en.html) license at 
https://github.com/epigenelabs/pyComBat. 
 
Contact: akpeli@epigenelabs.com 

1. Introduction 
Batch effects are the product of technical biases, such as variations in the experimental design 
or even atmospheric conditions (Lander, 1999; Thomas L.  Fare et al., 2003). They 
particularly reveal themselves when merging different datasets, which have likely been built 
under different conditions. If not corrected, these batch effects may lead to incorrect 
biological insight, since the variability can be wrongly interpreted as the product of a 
biological process. 
Multiple methods exist that address this problem. They include approaches related to 
frequentist statistics, such as simple normalization (Yang et al., 2002; Irizarry et al., 2012) or 
principal component analysis (Nielsen et al., 2002); and machine learning, such as support-
vector machines (Benito et al., 2004). One of their main flaws is, however, their incapacity to 
handle low sample sizes or more than two batches at the same time (Chen et al., 2011). 
ComBat, originally implemented in the R library sva (Leek et al., 2012), is based on the 
mathematical framework defined in (Johnson et al., 2007). This tool leverages a parametric 
and non-parametric empirical Bayes approach for correcting the batch effect in datasets that 
works for small sample sizes or in the presence of outliers. Note that the parametric method 
requires strong assumptions but is largely faster than the non-parametric approach. 
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We introduce in this article pyComBat, a new Python implementation of ComBat, following 
the same mathematical framework. We show that it yields comparable results for adjusting for 
batch effects, but is generally faster, in particular for the usually slow, but more general, non-
parametric method. 

2. pyComBat 
pyComBat is a Python 3 implementation of ComBat. It mostly uses generic libraries like 
Pandas (McKinney, 2010) or NumPy (Van Der Walt et al., 2011) to mimic ComBat, 
following the exact same mathematical framework. 
Two important features are not directly related to the performances of the software but are of 
outmost importance. First, pyComBat is available as an open source software under a GPL-
3.0 license, which means anyone can use, modify, distribute and share it. Opening pyComBat 
to the Python for bioinformatics community is the best way for maintaining and improving it, 
while increasing its robustness. Second, the reliability of pyComBat has been thoroughly 
checked, using unit testing (with the pytest library, cover=83%) for assessing the proper 
functioning of each sub-module as well as insuring an easy maintenance, in particular after 
modifications. 

3. Comparison with ComBat 

a. Dataset used 
For software validation, we used the package bladderbatch version 1.22.0 (Leek, 2019), that 
contains microarray gene expression data on 57 samples from 5 batches and is the reference 
example dataset for the sva package. We then compared ComBat and pyComBat on the same 
dataset (corresponding to the 20,000 first genes of bladderbatch) for (i) power for batch effect 
correction and; (ii) computation time. 

b. Batch effect correction 
As an implementation of the ComBat algorithm, pyComBat is expected to have similar, if not 
identical, power in terms of batch effects correction. This is confirmed in Fig.1A, which 
shows the distribution of differences between the outputs of ComBat and pyComBat. As 
expected, the differences are distributed closely around zero (mean = -9.8·10-5, 95% CI = [-
0.03,0.027]). The slight variability can be explained by the different ways R and Python (in 
particular NumPy) handle matrices and matrix calculation. 
To further validate PyComBat, we used Principal Variant Component Analysis (PVCA) (Li et 
al., 2009) –  implemented in R in the library of the same name – to estimate the batch effect 
before and after applying pyComBat. Fig. 1B and Fig. 1C show that the batch effects are 
completely removed. We still observe variability due to the interaction between batches and 
cancer, which is however related to the design of the sampling and not correctable through the 
same means. 

c. Computation time 

Computation time is evaluated by running ComBat (resp. pyComBat) 100 times on the 
bladderbatch dataset presented in section 3a, with the parametric and the non-parametric 
approaches.  

Due to Python efficiency in handling matrix operations and matrix manipulations as well as 
thorough optimization of our code, pyComBat is also as fast or even faster than ComBat. The 
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parametric version of the software indeed appears twice as fast as ComBat in terms of 
computation time (fig.1D), with less variability. 
The most striking result concerns the non-parametric version (fig.1E), which is more time 
consuming, but also less dependent on the distribution of the data. In this case pyComBat is 
approximatively 15 times faster than ComBat, going from around 100 minutes to less than 10 
minutes. 

4. Discussion and conclusion 
We have presented a new Python implementation for ComBat, the most commonly used 
software for batch effects correction on high-throughput molecular data. Our implementation 
offers the same correcting power, with similar computation time for the parametric method, 
and significantly shorter time for the slower non-parametric version. This reduced computing 
time opens perspectives for a more generic use of the non-parametric approach to a larger 
range of datasets. 
While developed and tested on microarray gene expression data, ComBat has also been used 
to correct batch effects for a wider range of high-throughput molecular profiling platforms, 
such as RNA sequencing platform (Gandal et al., 2018). However, a prior log-transformation 
of the data is necessary to use ComBat. Similar tools have recently been developed to avoid 
this additional transformation (Zhang et al., 2020). 
We have attached importance to making the software open source and as documented as 
possible while providing tools for testing modifications to the code. We believe that this will 
be benefiting the Python bioinformatics community and opening the way towards the 
translation of other widely used software from R to Python. 
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Figures 

Fig. 1 
 

 

Legend of figures 
Fig. 1 
Performance of pyComBat vs. Combat on the bladderbatch data set. A Distribution of the 
differences between the expression matrices corrected for batch effects, respectively by 
ComBat and pyComBat (parametric version). The vertical dotted line corresponds to zero. 
B Principal Variance Component Analysis (PVCA) estimation of the contribution of “cancer” 
and “batch” as sources of variability in the raw data. “resid” bar corresponds to the residual, 
i.e. the variability unexplained by the informed sources. C PVCA estimation of the 
contribution of “cancer” and “batch” as sources of variability in the data after the pyComBat 
correction. D Computation time in seconds for ComBat (left) and pyComBat (right) for the 
parametric method. The y-axis is in a log scale. E Computation time in minutes for ComBat 
(left) and pyComBat (right) for the non-parametric method. The y-axis is in a log scale. 
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