
1 / 5

pyComBat, a Python tool for batch effects correction in high-
throughput molecular data using empirical Bayes methods

Abdelkader Behdenna1, Julien Haziza1, Chloé-Agathe Azencott2,3,4

and Akpéli Nordor1

1Epigene Labs, Paris, France

2 MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology,
75006 Paris, France

3 Institut Curie, PSL Research University, 75005 Paris, France
4INSERM, U900, 75005 Paris, France

Abstract
Summary: Variability in datasets are not only the product of biological processes: they are
also the product of technical biases. ComBat is one of the most widely used tool for correcting
those technical biases, called batch effects, in microarray expression data.
In this technical note, we present a new Python implementation of ComBat. While the
mathematical framework is strictly the same, we show here that our implementation: (i) has
similar results in terms of batch effects correction; (ii) is as fast or faster than the R
implementation of ComBat and; (iii) offers new tools for the bioinformatics community to
participate in its development.

Availability and Implementation: pyComBat is implemented in the Python language and is
available under GPL-3.0 (https://www.gnu.org/licenses/gpl-3.0.en.html) license at
https://github.com/epigenelabs/pyComBat.

Contact: akpeli@epigenelabs.com

1. Introduction
Batch effects are the product of technical biases, such as variations in the experimental design
or even atmospheric conditions (Lander, 1999; Thomas L. Fare et al., 2003). They
particularly reveal themselves when merging different datasets, which have likely been built
under different conditions. If not corrected, these batch effects may lead to incorrect
biological insight, since the variability can be wrongly interpreted as the product of a
biological process.
Multiple methods exist that address this problem. They include approaches related to
frequentist statistics, such as simple normalization (Yang et al., 2002; Irizarry et al., 2012) or
principal component analysis (Nielsen et al., 2002); and machine learning, such as support-
vector machines (Benito et al., 2004). One of their main flaws is, however, their incapacity to
handle low sample sizes or more than two batches at the same time (Chen et al., 2011).
ComBat, originally implemented in the R library sva (Leek et al., 2012), is based on the
mathematical framework defined in (Johnson et al., 2007). This tool leverages a parametric
and non-parametric empirical Bayes approach for correcting the batch effect in datasets that
works for small sample sizes or in the presence of outliers. Note that the parametric method
requires strong assumptions but is largely faster than the non-parametric approach.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 / 5

We introduce in this article pyComBat, a new Python implementation of ComBat, following
the same mathematical framework. We show that it yields comparable results for adjusting for
batch effects, but is generally faster, in particular for the usually slow, but more general, non-
parametric method.

2. pyComBat
pyComBat is a Python 3 implementation of ComBat. It mostly uses generic libraries like
Pandas (McKinney, 2010) or NumPy (Van Der Walt et al., 2011) to mimic ComBat,
following the exact same mathematical framework.
Two important features are not directly related to the performances of the software but are of
outmost importance. First, pyComBat is available as an open source software under a GPL-
3.0 license, which means anyone can use, modify, distribute and share it. Opening pyComBat
to the Python for bioinformatics community is the best way for maintaining and improving it,
while increasing its robustness. Second, the reliability of pyComBat has been thoroughly
checked, using unit testing (with the pytest library, cover=83%) for assessing the proper
functioning of each sub-module as well as insuring an easy maintenance, in particular after
modifications.

3. Comparison with ComBat

a. Dataset used
For software validation, we used the package bladderbatch version 1.22.0 (Leek, 2019), that
contains microarray gene expression data on 57 samples from 5 batches and is the reference
example dataset for the sva package. We then compared ComBat and pyComBat on the same
dataset (corresponding to the 20,000 first genes of bladderbatch) for (i) power for batch effect
correction and; (ii) computation time.

b. Batch effect correction
As an implementation of the ComBat algorithm, pyComBat is expected to have similar, if not
identical, power in terms of batch effects correction. This is confirmed in Fig.1A, which
shows the distribution of differences between the outputs of ComBat and pyComBat. As
expected, the differences are distributed closely around zero (mean = -9.8·10-5, 95% CI = [-
0.03,0.027]). The slight variability can be explained by the different ways R and Python (in
particular NumPy) handle matrices and matrix calculation.
To further validate PyComBat, we used Principal Variant Component Analysis (PVCA) (Li et
al., 2009) – implemented in R in the library of the same name – to estimate the batch effect
before and after applying pyComBat. Fig. 1B and Fig. 1C show that the batch effects are
completely removed. We still observe variability due to the interaction between batches and
cancer, which is however related to the design of the sampling and not correctable through the
same means.

c. Computation time

Computation time is evaluated by running ComBat (resp. pyComBat) 100 times on the
bladderbatch dataset presented in section 3a, with the parametric and the non-parametric
approaches.

Due to Python efficiency in handling matrix operations and matrix manipulations as well as
thorough optimization of our code, pyComBat is also as fast or even faster than ComBat. The

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 / 5

parametric version of the software indeed appears twice as fast as ComBat in terms of
computation time (fig.1D), with less variability.
The most striking result concerns the non-parametric version (fig.1E), which is more time
consuming, but also less dependent on the distribution of the data. In this case pyComBat is
approximatively 15 times faster than ComBat, going from around 100 minutes to less than 10
minutes.

4. Discussion and conclusion
We have presented a new Python implementation for ComBat, the most commonly used
software for batch effects correction on high-throughput molecular data. Our implementation
offers the same correcting power, with similar computation time for the parametric method,
and significantly shorter time for the slower non-parametric version. This reduced computing
time opens perspectives for a more generic use of the non-parametric approach to a larger
range of datasets.
While developed and tested on microarray gene expression data, ComBat has also been used
to correct batch effects for a wider range of high-throughput molecular profiling platforms,
such as RNA sequencing platform (Gandal et al., 2018). However, a prior log-transformation
of the data is necessary to use ComBat. Similar tools have recently been developed to avoid
this additional transformation (Zhang et al., 2020).
We have attached importance to making the software open source and as documented as
possible while providing tools for testing modifications to the code. We believe that this will
be benefiting the Python bioinformatics community and opening the way towards the
translation of other widely used software from R to Python.

Acknowledgements
The authors thank Phuong Pham for his advice about the estimation of the efficiency of the
adjustments.

References
Benito,M. et al. (2004) Adjustment of systematic microarray data biases. Bioinformatics, 20,

105–114.
Chen,C. et al. (2011) Removing batch effects in analysis of expression microarray data: An

evaluation of six batch adjustment methods. PLoS One, 6.
Gandal,M.J. et al. (2018) Shared molecular neuropathology across major psychiatric disorders

parallels polygenic overlap. Science (80-.)., 359, 693–697.
Irizarry,R.A. et al. (2012) Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Sel. Work. Terry Speed, 601–616.
Johnson,W.E. et al. (2007) Adjusting batch effects in microarray expression data using

empirical Bayes methods. Biostatistics, 8, 118–127.
Lander,E.S. (1999) Array of hope. Nat. Genet., 21, 4.
Leek,J.T. (2019) bladderbatch: Bladder gene expression data illustrating batch effects.
Leek,J.T. et al. (2012) The sva package for removing batch effects and other unwanted

variation in high-throughput experiments. Bioinformatics, 28, 882–883.
Li,J. et al. (2009) Principal Variance Components Analysis: Estimating Batch Effects in

Microarray Gene Expression Data. In, Batch Effects and Noise in Microarray
Experiments: Sources and Solutions. John Wiley & Sons, Ltd, Chichester, UK, pp. 141–
154.

McKinney,W. (2010) Data Structures for Statistical Computing in Python. Proc. 9th Python
Sci. Conf., 1697900, 51–56.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 / 5

Nielsen,T.O. et al. (2002) Molecular characterisation of soft tissue tumours: a gene expression
study. Lancet, 359, 1301–1307.

Thomas L. Fare et al. (2003) Effects of Atmospheric Ozone on Microarray Data Quality.
Van Der Walt,S. et al. (2011) The NumPy array: A structure for efficient numerical

computation. Comput. Sci. Eng., 13, 22–30.
Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method

addressing single and multiple slide systematic variation. Nucleic Acids Res., 30, 15e –
15.

Zhang,Y. et al. (2020) ComBat-Seq: batch effect adjustment for RNA-Seq count data.
bioRxiv, 2020.01.13.904730.

Chen,C. et al. (2011) Removing batch effects in analysis of expression microarray data: An

evaluation of six batch adjustment methods. PLoS One, 6.
Gandal,M.J. et al. (2018) Shared molecular neuropathology across major psychiatric disorders

parallels polygenic overlap. Science (80-.)., 359, 693–697.
Irizarry,R.A. et al. (2012) Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Sel. Work. Terry Speed, 601–616.
Johnson,W.E. et al. (2007) Adjusting batch effects in microarray expression data using

empirical Bayes methods. Biostatistics, 8, 118–127.
Lander,E.S. (1999) Array of hope. Nat. Genet., 21, 4.
Leek,J.T. (2019) bladderbatch: Bladder gene expression data illustrating batch effects.
Leek,J.T. et al. (2012) The sva package for removing batch effects and other unwanted

variation in high-throughput experiments. Bioinformatics, 28, 882–883.
Li,J. et al. Principal Variance Components Analysis: Estimating Batch Effects in Microarray

Gene Expression Data. In, Batch Effects and Noise in Microarray Experiments. John
Wiley & Sons, Ltd, Chichester, UK, pp. 141–154.

McKinney,W. (2010) Data Structures for Statistical Computing in Python. Proc. 9th Python
Sci. Conf., 1697900, 51–56.

Nielsen,T.O. et al. (2002) Molecular characterisation of soft tissue tumours: a gene expression
study. Lancet, 359, 1301–1307.

Price,E.M. and Robinson,W.P. (2018) Adjusting for Batch Effects in DNA Methylation
Microarray Data, a Lesson Learned. Front. Genet., 9.

Thomas L. Fare et al. (2003) Effects of Atmospheric Ozone on Microarray Data Quality.
Van Der Walt,S. et al. (2011) The NumPy array: A structure for efficient numerical

computation. Comput. Sci. Eng., 13, 22–30.
Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method

addressing single and multiple slide systematic variation. Nucleic Acids Res., 30, 15e –
15.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

5 / 5

Figures

Fig. 1

Legend of figures
Fig. 1
Performance of pyComBat vs. Combat on the bladderbatch data set. A Distribution of the
differences between the expression matrices corrected for batch effects, respectively by
ComBat and pyComBat (parametric version). The vertical dotted line corresponds to zero.
B Principal Variance Component Analysis (PVCA) estimation of the contribution of “cancer”
and “batch” as sources of variability in the raw data. “resid” bar corresponds to the residual,
i.e. the variability unexplained by the informed sources. C PVCA estimation of the
contribution of “cancer” and “batch” as sources of variability in the data after the pyComBat
correction. D Computation time in seconds for ComBat (left) and pyComBat (right) for the
parametric method. The y-axis is in a log scale. E Computation time in minutes for ComBat
(left) and pyComBat (right) for the non-parametric method. The y-axis is in a log scale.

−0.2 0.0 0.2

0
20

40
60

Difference

D
en

si
ty

A

0.0

0.2

0.4

0.6

0.8

1.0

ba
tc

h:
ca

nc
er

ba
tc

h

ca
nc

er

re
si

d

0.043

0.227

0.313

0.417

B

0.0

0.2

0.4

0.6

0.8

1.0

ba
tc

h:
ca

nc
er

ba
tc

h

ca
nc

er

re
si

d

0.146

0

0.135

0.719

C

ComBat pyComBat

0.
2

0.
4

0.
6

0.
8

C
om

pu
tin

g
tim

e
(s

ec
)

D

ComBat pyComBat

10
20

50
20

0
50

0

C
om

pu
tin

g
tim

e
(m

in
)

E

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

