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Abstract 
Summary: Variability in datasets is not only the product of biological processes: they are 
also the product of technical biases. ComBat is one of the most widely used tool for correcting 
those technical biases, called batch effects, in microarray expression data. 
In this technical note, we present a new Python implementation of ComBat. While the 
mathematical framework is strictly the same, we show here that our implementation: (i) has 
similar results in terms of batch effects correction; (ii) is as fast or faster than the R 
implementation of ComBat and; (iii) offers new tools for the bioinformatics community to 
participate in its development.  
 
Availability and Implementation: pyComBat is implemented in the Python language and is 
available under GPL-3.0 (https://www.gnu.org/licenses/gpl-3.0.en.html) license at 
https://github.com/epigenelabs/pyComBat and https://pypi.org/project/combat/. 
 
Contact: akpeli@epigenelabs.com 

1. Introduction 
Batch effects are the product of technical biases, such as variations in the experimental design 
or even atmospheric conditions (Lander, 1999; Fare et al., 2003). They particularly reveal 
themselves when merging different datasets, which have likely been built under different 
conditions. If not corrected, these batch effects may lead to incorrect biological insight, since 
the variability can be wrongly interpreted as the product of a biological process. 
Multiple methods exist that address this problem. They include approaches related to 
frequentist statistics, such as simple normalization (Yang et al., 2002; Tai and Speed, 2012) or 
principal component analysis (Nielsen et al., 2002); and machine learning, such as support-
vector machines (Benito et al., 2004). One of their main flaws is, however, their incapacity to 
handle low sample sizes or more than two batches at the same time (Chen et al., 2011). 
ComBat, originally implemented in the R library sva (Leek et al., 2012), is based on the 
mathematical framework defined in (Johnson et al., 2007). This tool leverages a parametric 
and non-parametric empirical Bayes approach for correcting the batch effect in datasets that 
works for small sample sizes or in the presence of outliers. Note that the parametric method 
requires strong assumptions but is largely faster than the non-parametric approach. 
We introduce in this article pyComBat, a new Python implementation of ComBat, following 
the same mathematical framework. In comparison to both the R implementation and the 
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existing Python implementation of ComBat in the single-cell analysis library Scanpy (Wolf et 
al., 2018), we show that it yields similar results for adjusting for batch effects, but is generally 
faster, in particular for the usually slow, but more loose, non-parametric method. 

2. pyComBat 
pyComBat is a Python 3 implementation of ComBat. It mostly uses generic libraries like 
Pandas (McKinney, 2010) or NumPy (Van Der Walt et al., 2011) to mimic ComBat, 
following the exact same mathematical framework. 
Two important features are not directly related to the performances of the software but are of 
outmost importance. First, pyComBat is available as an open-source software under a GPL-
3.0 license, which means anyone can use, modify, distribute and share it. Opening pyComBat 
to the Python for bioinformatics community is the best way for maintaining and improving it, 
while increasing its robustness. Second, the reliability of pyComBat has been thoroughly 
checked, using unit testing (with the pytest library, cover=84%) for assessing the proper 
functioning of each sub-module as well as insuring an easy maintenance, in particular after 
modifications. 

3. Comparison with ComBat 

a. Datasets used 
For software validation, we created two meta-datasets from public data, all originated from 
the Gene Expression Omnibus repository, one on Ovarian Cancer (6 datasets), one on 
Multiple Myeloma (4 datasets). Both meta-datasets are described in more details in Table 1. 
We then compared ComBat, Scanpy’s implementation of ComBat and pyComBat on both 
datasets for (i) power for batch effect correction and (ii) computation time. 

b. Batch effect correction 
As an implementation of the ComBat algorithm, pyComBat is expected to have similar, if not 
identical, power in terms of batch effects correction. This is confirmed in Fig.1A, which 
shows the distribution of differences between the outputs of ComBat and pyComBat, on the 
Ovarian Cancer dataset. As expected, the differences are distributed closely around zero 
(mean = -1.06·10-7, 95% CI = [-1.28·10-3,1.32 ·10-4]). The slight variability can be explained 
by the different ways R and Python (in particular NumPy) handle matrices and matrix 
calculation. 
 

c. Computation time 
Computation time is evaluated by running pyComBat (resp. Scanpy’s implementation of 
ComBat and ComBat itself) respectively 100 times on both datasets presented in section 3a, 
with the parametric approach. As Scanpy doesn’t handle the non-parametric approach, only 
ComBat and pyComBat have been tested with it, on the Ovarian Cancer dataset.  

Due to Python efficiency in handling matrix operations and matrix manipulations as well as 
thorough optimization of our code, pyComBat is also as fast or even faster than ComBat. The 
parametric version of the pyComBat indeed appears 4 to 5 times as fast as ComBat, and 
around 1.5 times as fast as the Scanpy implementation of ComBat, in terms of computation 
time (fig.1B, fig.1C), on both datasets. 
The same results are observed with the non-parametric version (fig.1D), which is more time 
consuming, but also less dependent on the distribution of the data. In this case pyComBat is 
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also approximatively 4 to 5 times faster than ComBat, going from more than an hour to 
around 15 minutes. 

4. Discussion and conclusion 
We have presented a new Python implementation for ComBat, the most commonly used 
software for batch effects correction on high-throughput molecular data. Our implementation 
offers the same correcting power, with shorter computation time for the parametric method 
compared to other implementations, and significantly shorter time for the slower non-
parametric version compared to ComBat. This reduced computing time opens perspectives for 
a more generic use of the non-parametric approach to a larger range of datasets. 
While developed and tested on microarray gene expression data, ComBat has also been used 
to correct batch effects for a wider range of high-throughput molecular profiling platforms, 
such as RNA sequencing platform (Gandal et al., 2018). However, a prior log-transformation 
of the data is necessary to use ComBat. Similar tools have recently been developed to avoid 
this additional transformation (Zhang et al., 2020). 
We have attached importance to making the software open source and as documented as 
possible while providing tools for testing modifications to the code. We believe that this will 
be benefiting the Python bioinformatics community and opening the way towards the 
translation of other widely used software from R to Python. 
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Figures 

Fig. 1 
 

 

Legend of figures 
Fig. 1 
Performance of pyComBat vs. Combat vs. Scanpy’s implementation of ComBat. A 
Distribution of the differences between the expression matrices corrected for batch effects, 
respectively by ComBat and pyComBat (parametric version), on the Ovarian Cancer dataset. 
The vertical dotted line corresponds to zero. B Computation time in seconds for pyComBat, 
Scanpy and ComBat for the parametric method, on the Multiple Myeloma dataset. The y-axis 
is in a log scale. C Computation time in seconds for pyComBat, Scanpy and ComBat for the 
parametric method, on the Ovarian Cancer dataset. The y-axis is in a log scale. D 
Computation time in minutes for pyComBat (left) and ComBat (right) for the non-parametric 
method, on the Ovarian Cancer dataset. The y-axis is in a log scale. 
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Tables 
Table 1 
 

Dataset Reference(s) 

Ovarian Cancer 

GSE18520 (Mok et al., 2009) 

GSE66957  

GSE69428 (Yamamoto et al., 2016) 

GSE9891 (Tothill et al., 2008) 

GSE26712 (Bonome et al., 2008; Vathipadiekal et al., 2015) 

GSE38666 (Lili et al., 2013; Huang et al., 2018) 

Multiple Myeloma 
GSE5900 (Zhan et al., 2007; Driscoll et al., 2010; Li et al., 2021) 
GSE66291 (Lionetti, Barbieri, Todoerti, Agnelli, Marzorati, et al., 2015; 

Lionetti, Barbieri, Todoerti, Agnelli, Fabris, et al., 2015) 
GSE68891  

GSE122231 (Dhodapkar et al., 2014; Khan et al., 2015) 
 

Legend of tables 
Table 1 
Composition of each meta-dataset used for benchmarking pyComBat, Scanpy’s 
implementation of ComBat, and ComBat. 
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