
1 / 6

pyComBat, a Python tool for batch effects correction in high-
throughput molecular data using empirical Bayes methods

Abdelkader Behdenna1, Julien Haziza1, Chloé-Agathe Azencott2,3,4

and Akpéli Nordor1

1Epigene Labs, Paris, France

2 MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology,
75006 Paris, France

3 Institut Curie, PSL Research University, 75005 Paris, France
4INSERM, U900, 75005 Paris, France

Abstract
Summary: Variability in datasets is not only the product of biological processes: they are
also the product of technical biases. ComBat is one of the most widely used tool for correcting
those technical biases, called batch effects, in microarray expression data.
In this technical note, we present a new Python implementation of ComBat. While the
mathematical framework is strictly the same, we show here that our implementation: (i) has
similar results in terms of batch effects correction; (ii) is as fast or faster than the R
implementation of ComBat and; (iii) offers new tools for the bioinformatics community to
participate in its development.

Availability and Implementation: pyComBat is implemented in the Python language and is
available under GPL-3.0 (https://www.gnu.org/licenses/gpl-3.0.en.html) license at
https://github.com/epigenelabs/pyComBat and https://pypi.org/project/combat/.

Contact: akpeli@epigenelabs.com

1. Introduction
Batch effects are the product of technical biases, such as variations in the experimental design
or even atmospheric conditions (Lander, 1999; Fare et al., 2003). They particularly reveal
themselves when merging different datasets, which have likely been built under different
conditions. If not corrected, these batch effects may lead to incorrect biological insight, since
the variability can be wrongly interpreted as the product of a biological process.
Multiple methods exist that address this problem. They include approaches related to
frequentist statistics, such as simple normalization (Yang et al., 2002; Tai and Speed, 2012) or
principal component analysis (Nielsen et al., 2002); and machine learning, such as support-
vector machines (Benito et al., 2004). One of their main flaws is, however, their incapacity to
handle low sample sizes or more than two batches at the same time (Chen et al., 2011).
ComBat, originally implemented in the R library sva (Leek et al., 2012), is based on the
mathematical framework defined in (Johnson et al., 2007). This tool leverages a parametric
and non-parametric empirical Bayes approach for correcting the batch effect in datasets that
works for small sample sizes or in the presence of outliers. Note that the parametric method
requires strong assumptions but is largely faster than the non-parametric approach.
We introduce in this article pyComBat, a new Python implementation of ComBat, following
the same mathematical framework. In comparison to both the R implementation and the

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 / 6

existing Python implementation of ComBat in the single-cell analysis library Scanpy (Wolf et
al., 2018), we show that it yields similar results for adjusting for batch effects, but is generally
faster, in particular for the usually slow, but more loose, non-parametric method.

2. pyComBat
pyComBat is a Python 3 implementation of ComBat. It mostly uses generic libraries like
Pandas (McKinney, 2010) or NumPy (Van Der Walt et al., 2011) to mimic ComBat,
following the exact same mathematical framework.
Two important features are not directly related to the performances of the software but are of
outmost importance. First, pyComBat is available as an open-source software under a GPL-
3.0 license, which means anyone can use, modify, distribute and share it. Opening pyComBat
to the Python for bioinformatics community is the best way for maintaining and improving it,
while increasing its robustness. Second, the reliability of pyComBat has been thoroughly
checked, using unit testing (with the pytest library, cover=84%) for assessing the proper
functioning of each sub-module as well as insuring an easy maintenance, in particular after
modifications.

3. Comparison with ComBat

a. Datasets used
For software validation, we created two meta-datasets from public data, all originated from
the Gene Expression Omnibus repository, one on Ovarian Cancer (6 datasets), one on
Multiple Myeloma (4 datasets). Both meta-datasets are described in more details in Table 1.
We then compared ComBat, Scanpy’s implementation of ComBat and pyComBat on both
datasets for (i) power for batch effect correction and (ii) computation time.

b. Batch effect correction
As an implementation of the ComBat algorithm, pyComBat is expected to have similar, if not
identical, power in terms of batch effects correction. This is confirmed in Fig.1A, which
shows the distribution of differences between the outputs of ComBat and pyComBat, on the
Ovarian Cancer dataset. As expected, the differences are distributed closely around zero
(mean = -1.06·10-7, 95% CI = [-1.28·10-3,1.32 ·10-4]). The slight variability can be explained
by the different ways R and Python (in particular NumPy) handle matrices and matrix
calculation.

c. Computation time
Computation time is evaluated by running pyComBat (resp. Scanpy’s implementation of
ComBat and ComBat itself) respectively 100 times on both datasets presented in section 3a,
with the parametric approach. As Scanpy doesn’t handle the non-parametric approach, only
ComBat and pyComBat have been tested with it, on the Ovarian Cancer dataset.

Due to Python efficiency in handling matrix operations and matrix manipulations as well as
thorough optimization of our code, pyComBat is also as fast or even faster than ComBat. The
parametric version of the pyComBat indeed appears 4 to 5 times as fast as ComBat, and
around 1.5 times as fast as the Scanpy implementation of ComBat, in terms of computation
time (fig.1B, fig.1C), on both datasets.
The same results are observed with the non-parametric version (fig.1D), which is more time
consuming, but also less dependent on the distribution of the data. In this case pyComBat is

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 / 6

also approximatively 4 to 5 times faster than ComBat, going from more than an hour to
around 15 minutes.

4. Discussion and conclusion
We have presented a new Python implementation for ComBat, the most commonly used
software for batch effects correction on high-throughput molecular data. Our implementation
offers the same correcting power, with shorter computation time for the parametric method
compared to other implementations, and significantly shorter time for the slower non-
parametric version compared to ComBat. This reduced computing time opens perspectives for
a more generic use of the non-parametric approach to a larger range of datasets.
While developed and tested on microarray gene expression data, ComBat has also been used
to correct batch effects for a wider range of high-throughput molecular profiling platforms,
such as RNA sequencing platform (Gandal et al., 2018). However, a prior log-transformation
of the data is necessary to use ComBat. Similar tools have recently been developed to avoid
this additional transformation (Zhang et al., 2020).
We have attached importance to making the software open source and as documented as
possible while providing tools for testing modifications to the code. We believe that this will
be benefiting the Python bioinformatics community and opening the way towards the
translation of other widely used software from R to Python.

Acknowledgements
The authors thank Phuong Pham for his advice about the estimation of the efficiency of the
adjustments. The authors also thank Aryo Gema and Guillaume Appé for their feedback on
the code for pyComBat.

References
Benito,M. et al. (2004) Adjustment of systematic microarray data biases. Bioinformatics, 20,

105–114.
Bonome,T. et al. (2008) A gene signature predicting for survival in suboptimally debulked

patients with ovarian cancer. Cancer Res., 68, 5478–5486.
Chen,C. et al. (2011) Removing batch effects in analysis of expression microarray data: An

evaluation of six batch adjustment methods. PLoS One, 6.
Dhodapkar,M. V. et al. (2014) Clinical, genomic, and imaging predictors of myeloma

progression from asymptomatic monoclonal gammopathies (swog s0120). Blood, 123,
78–85.

Driscoll,J.J. et al. (2010) The sumoylation pathway is dysregulated in multiple myeloma and
is associated with adverse patient outcome. Blood, 115, 2827–2834.

Fare,T.L. et al. (2003) Effects of atmospheric ozone on microarray data quality. Anal. Chem.,
75, 4672–4675.

Gandal,M.J. et al. (2018) Shared molecular neuropathology across major psychiatric disorders
parallels polygenic overlap. Science (80-.)., 359, 693–697.

Huang,C. et al. (2018) Machine learning predicts individual cancer patient responses to
therapeutic drugs with high accuracy. Sci. Rep., 8.

Johnson,W.E. et al. (2007) Adjusting batch effects in microarray expression data using
empirical Bayes methods. Biostatistics, 8, 118–127.

Khan,R. et al. (2015) Four genes predict high risk of progression from smoldering to
symptomatic multiple myeloma (SWOG s0120). Haematologica, 100, 1214–1221.

Lander,E.S. (1999) Array of hope. Nat. Genet., 21, 4.
Leek,J.T. et al. (2012) The SVA package for removing batch effects and other unwanted

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 / 6

variation in high-throughput experiments. Bioinformatics, 28, 882–883.
Li,C. et al. (2021) Genetic analysis of multiple myeloma identifies cytogenetic alterations

implicated in disease complexity and progression. Cancers (Basel)., 13, 1–15.
Lili,L.N. et al. (2013) Molecular profiling predicts the existence of two functionally distinct

classes of ovarian cancer stroma. Biomed Res. Int., 2013.
Lionetti,M., Barbieri,M., Todoerti,K., Agnelli,L., Fabris,S., et al. (2015) A compendium of

DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias.
Oncotarget, 6, 26129–26141.

Lionetti,M., Barbieri,M., Todoerti,K., Agnelli,L., Marzorati,S., et al. (2015) Molecular
spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias:
Implication for MEK-ERK pathway activation. Oncotarget, 6, 24205–24217.

McKinney,W. (2010) Data Structures for Statistical Computing in Python. Proc. 9th Python
Sci. Conf., 1697900, 51–56.

Mok,S.C. et al. (2009) A Gene Signature Predictive for Outcome in Advanced Ovarian
Cancer Identifies a Survival Factor: Microfibril-Associated Glycoprotein 2. Cancer Cell,
16, 521–532.

Nielsen,T.O. et al. (2002) Molecular characterisation of soft tissue tumours: A gene
expression study. Lancet, 359, 1301–1307.

Tai,Y.C. and Speed,T.P. (2012) A multivariate empirical Bayes statistic for replicated
microarray time course data. In, Selected Works of Terry Speed., pp. 617–642.

Tothill,R.W. et al. (2008) Novel molecular subtypes of serous and endometrioid ovarian
cancer linked to clinical outcome. Clin. Cancer Res., 14, 5198–5208.

Vathipadiekal,V. et al. (2015) Creation of a human secretome: A novel composite library of
human secreted proteins: Validation using ovarian cancer gene expression data and a
virtual secretome array. Clin. Cancer Res., 21, 4960–4969.

Van Der Walt,S. et al. (2011) The NumPy array: A structure for efficient numerical
computation. Comput. Sci. Eng., 13, 22–30.

Wolf,F.A. et al. (2018) SCANPY: Large-scale single-cell gene expression data analysis.
Genome Biol., 19, 15.

Yamamoto,Y. et al. (2016) In vitro and in vivo correlates of physiological and neoplastic
human Fallopian tube stem cells. J. Pathol., 238, 519–530.

Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method
addressing single and multiple slide systematic variation. Nucleic Acids Res., 30, 15e –
15.

Zhan,F. et al. (2007) Gene-expression signature of benign monoclonal gammopathy evident
in multiple myeloma is linked to good prognosis. Blood, 109, 1692–1700.

Zhang,Y. et al. (2020) ComBat-seq: batch effect adjustment for RNA-seq count data. NAR
Genomics Bioinforma., 2.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

5 / 6

Figures

Fig. 1

Legend of figures
Fig. 1
Performance of pyComBat vs. Combat vs. Scanpy’s implementation of ComBat. A
Distribution of the differences between the expression matrices corrected for batch effects,
respectively by ComBat and pyComBat (parametric version), on the Ovarian Cancer dataset.
The vertical dotted line corresponds to zero. B Computation time in seconds for pyComBat,
Scanpy and ComBat for the parametric method, on the Multiple Myeloma dataset. The y-axis
is in a log scale. C Computation time in seconds for pyComBat, Scanpy and ComBat for the
parametric method, on the Ovarian Cancer dataset. The y-axis is in a log scale. D
Computation time in minutes for pyComBat (left) and ComBat (right) for the non-parametric
method, on the Ovarian Cancer dataset. The y-axis is in a log scale.

−0.02 0.00 0.01 0.02

0
20

00
0

40
00

0
60

00
0

Difference

D
en

si
ty

A

pyComBat Scanpy ComBat
1.

5
2.

0
2.

5
3.

5
4.

5

C
om

pu
tin

g
tim

e
(s

ec
)

B

pyComBat Scanpy ComBat

1
2

5

C
om

pu
tin

g
tim

e
(s

ec
)

C

pyComBat ComBat

20
30

40
50

70

C
om

pu
tin

g
tim

e
(m

in
)

D

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 / 6

Tables
Table 1

Dataset Reference(s)

Ovarian Cancer

GSE18520 (Mok et al., 2009)

GSE66957

GSE69428 (Yamamoto et al., 2016)

GSE9891 (Tothill et al., 2008)

GSE26712 (Bonome et al., 2008; Vathipadiekal et al., 2015)

GSE38666 (Lili et al., 2013; Huang et al., 2018)

Multiple Myeloma
GSE5900 (Zhan et al., 2007; Driscoll et al., 2010; Li et al., 2021)
GSE66291 (Lionetti, Barbieri, Todoerti, Agnelli, Marzorati, et al., 2015;

Lionetti, Barbieri, Todoerti, Agnelli, Fabris, et al., 2015)
GSE68891

GSE122231 (Dhodapkar et al., 2014; Khan et al., 2015)

Legend of tables
Table 1
Composition of each meta-dataset used for benchmarking pyComBat, Scanpy’s
implementation of ComBat, and ComBat.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2020.03.17.995431doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.17.995431
http://creativecommons.org/licenses/by-nc-nd/4.0/

