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Abstract 
Motivation: Driven by deep learning techniques, inter-residue contact/distance prediction has been significantly 

improved and substantially enhanced ab initio protein structure prediction. Currently all the distance prediction methods 

classify inter-residue distances into multiple distance intervals (i.e. a multi-classification problem) instead of directly 

predicting real-value distances (i.e. a regression problem). The output of the former has to be converted into real-value 

distances in order to be used in tertiary structure prediction.   

Results: To explore the potentials of predicting real-value inter-residue distances, we develop a multi-task deep learning 

distance predictor (DeepDist) based on new residual convolutional network architectures to simultaneously predict real-

value inter-residue distances and classify them into multiple distance intervals.  We demonstrate that predicting the real-

value distance map and multi-class distance map at the same time performs better than predicting real-value distances 

alone, indicating their complementarity. On 43 CASP13 hard domains, the average mean square error (MSE) of 

DeepDist’s real-value distance predictions is 0.896 Å when filtering out the predicted distance >=16 Å, which is lower 

than 1.003 Å of DeepDist’s multi-class distance predictions. When the predicted real-value distances are converted to 

binary contact predictions at 8Å threshold, the precisions of top L/5 and L/2 contact predictions are 78.6% and 64.5%, 

respectively, higher than the best results reported in the CASP13 experiment. These results demonstrate that the real-

value distance prediction can predict inter-residue distances well and improve binary contact prediction over the existing 

state-of-the-art methods. Moreover, the predicted real-value distances can be directly used to reconstruct protein tertiary 

structures better than multi-class distance predictions due to the lower MSE.  

 

 

1 Introduction  

Recently, the accuracy of protein inter-residue contact prediction has been 

substantially increased due to the development of residue-residue co-
evolution analysis methods effectively detecting the direct correlated 

mutations of contacted residues in the sequences of a protein family, such 

as Direct Coupling Analysis (DCA) (Weigt, et al., 2009), plmDCA 
(Ekeberg, et al., 2013), GREMLIN (Kamisetty, et al., 2013), CCMpred 

(Seemayer, et al., 2014), and PSICOV (Jones, et al., 2012). The capability 

of these methods to extract the correlated mutation information for contact 
prediction largely depends on the number of effective sequences in 

multiple sequence alignment (MSA) of a target protein. Due to the 

advancement in the DNA/RNA sequencing technology (Meyer, et al., 
2008; Wilke, et al., 2016), many proteins have a lot of sufficiently diverse, 

homologous sequences that make their contact/distance prediction fairly 

accurate.  However, for targets with a small number of effective 
homologous sequences (i.e. shallow sequence alignments), the co-

evolutionary scores are noisy and not reliable for contact prediction. The 

problem can be largely addressed by using noisy co-evolutionary scores 
as input for advanced deep learning techniques that have strong pattern 

recognition power to predict inter-residue contacts and distances.  

After deep learning contact prediction was first introduced for 
contact prediction in 2012 (Eickholt and Cheng, 2012; Di Lena, et al., 

2012), different deep learning architectures have been designed to 

integrate traditional sequence features with inter-residue coevolution 

scores to substantially improve contact/distance prediction (Wang, et al., 

2017; Adhikari, et al., 2018; Jones and Kandathil, 2018; Li, et al., 2019), 
even for some targets with shallow MSAs.  

The improved contact predictions can be converted into inter-residue 

distance information, which has been successfully used with distance-
based modeling methods such as CONFOLD (Adhikari, et al., 2015), 

CONFOLD2 (Adhikari and Cheng, 2018), and EVFOLD (Sheridan, et al., 

2015) to build accurate tertiary structures for ab initio protein targets 
(Michel, et al., 2014; Monastyrskyy, et al., 2014).  

In the most recent CASP13 experiment, several groups (e.g., 

AlphaFold (Senior, et al., 2020) and RaptorX (Xu, 2019)) applied deep 
learning techniques to classify inter-residue distances into multiple fine-

grained distance intervals (i.e. predict the distance distribution) to further 

improve ab initio structure prediction substantially. However, the 
probabilities of a distance belonging to different intervals predicted by the 

multi-classification approach still need to be converted into a distance 

value to be used for tertiary structure modeling. There is a lack of 

regression methods to directly predict the exact real-value of inter-residue 

distances.   

In this work, we develop a deep residual convolutional neural 
network method (DeepDist) to predict both the full-length real-value 

distance map and the multi-class distance map (i.e. distance distribution 

map) for a target protein. According to the test on 43 CASP13 hard 
domains (i.e. FM and FM/TBM domains; FM: free modeling; TBM: 

template-based modeling), 37 CASP12 hard (FM) domains, and 268 

CAMEO targets, the method can predict inter-residue distance effectively 
and perform better than existing state-of-the-art methods in terms of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995910doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.995910
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

precision of binary contact prediction. We further show that predicting 
both real-value distance map and multi-class map simultaneously at the 

same time is more accurate than only predicting real-value distance map, 

demonstrating that the two kinds of predictions are complementary. They 
can be used together in multi-task learning to improve protein distance 

prediction.   

2 Materials and Methods 

2.1 Overview 

The overall workflow of DeepDist is shown in Fig. 1. We use four sets of 

2D co-evolutionary and sequence-based features to train four deep 

residual convolutional neural network architectures respectively to predict 

the Euclidean distance between residues in a protein target. Three of four 

feature sets are mostly coevolution-based features, i.e. covariance matrix 

(COV) (Jones and Kandathil, 2018), precision matrix (PRE) (Li, et al., 
2019), and pseudolikelihood maximization matrix (PLM) (Seemayer, et 

al., 2014)) calculated from multiple sequence alignments. Considering 
that coevolution-based features sometimes cannot provide sufficient 

information, particularly when targets have shallow alignments, the fourth 

set of sequence-based features (OTHER), such as the sequence profile 
generated by PSI-BLAST (Bhagwat and Aravind, 2007), and solvent 

accessibility from PSIPRED (Jones, 1999) is used. The output of DeepDist 

is a real-value L ⨉ L distance map and a multi-class distance map (L: the 

length of the target protein). The two types of distance maps are generated 

by two prediction branches. For each branch, the final output is produced 
by the ensemble of four deep network models (COV_Net, PLM_Net, 

PRE_Net, and OTHER_Net) named after their input feature sets (COV, 

PLM, PRE, and OTHER). For the prediction of the multi-class distance 
map, we discretize the inter-residue distances into 25 bins: 1 bin for 

distance < 4.5Å, 23 bins from 4.5Å to 16Å at interval size of 0.5Å and a 

final bin for all distances greater than or equal to 16Å. For the real-value 
distance map, we simply use the true distance map of the native structure 

as targets to train deep learning models without discretization. Because 

large distances are not useful and not predictable, we only predict inter-
residue distances less than 16 Å by filtering out true distances >= 16 Å. 

 
Fig. 1.  The overall workflow of DeepDist for both real-value distance map prediction and 

multi-class distance map prediction. Given a sequence, DeepAln and DeepMSA are called 

to search it against sequence databases to generate two kinds of multiple sequence 

alignments (MSAs), which are used to generate four sets of features (COV, PLM, PRE, 

OTHER), respectively. The four sets of features are used by four deep networks (COV Net, 

PLM Net, PRE Net, and OTHER Net) to predict both real-value distance (real-dist) map 

and multi-class distance (multi-class) map, respectively. The real-value distance maps (or 

multi-class distance maps) of the individual networks are averaged to produce the final real-

value distance map (or multi-class distance map). 

 

2.2 Datasets 

We select targets from the training list used in DMPfold  (Greener, et al., 
2019) and extract their true structures from the Protein Data Bank (PDB) 

to create a training dataset. After filtering out the redundancy with the 

validation dataset and test datasets according 25% sequence identity 
threshold, 6463 targets are left in the training dataset. The validation set 

contains 144 targets used to validate DNCON2 (Adhikari, et al., 2018). 

The three blind test datasets are 37 CASP12 FM domains, 43 CASP13 FM 
and FM/TBM domains, and 268 CAMEO targets collected from 

08/31/2018 to 08/24/2019.  

2.3 Input Feature Generation 

The sequence databases used to search for homologous sequences for 

feature generation include Uniclust30 (2017-10) (Mirdita, et al., 2017), 

Uniref90 (2018-04) and Metaclust50 (2018-01) (Steinegger and Söding, 
2018), a customized database that combines Uniref100 (2018-04) and 

metagenomics sequence databases (2018-04), and NR90 database (2016). 

All of the sequence databases were constructed before the CASP13 
experiment.  

The three kinds of co-evolutionary features (i.e. COV, PRE, and 

PLM) are generated from multiple sequence alignment (MSA). Two 

methods, DeepMSA (Zhang, et al., 2019) and our in-house DeepAln, are 

used to generate MSA for a target. The outputs of both MSA generation 
methods are the combination of the iterative homologous sequence search 

of HHblits (Remmert, et al., 2012) and Jackhmmer (Eddy, 1992) on 

several sequence databases. The two methods differ in sequence databases 
used and the strategy of combining the output of HHblits and Jackhmmer 

searches. DeepMSA trims the sequence hits from Jackhmmer and 

performs sequence clustering, which shortens the time for constructing the 
HHblits database for the next round of search. To leverage its fast speed, 

we apply DeepMSA to search against a large customized sequence 

database that is composed of UniRef100 and metagenomic sequences. In 
contrast, DeepAln directly uses the full-length Jackhmmer hits for 

building HHblits customized databases and is slower. It is applied to the 

Metaclust sequences database. In addition to three kinds of co-
evolutionary features, 2D features such as the coevolutionary contact 

scores generated by CCMpred, Shannon entropy sum, mean contact 

potential, normalized mutual information, and mutual information are also 
generated. Moreover, some other features used in DNCON2 including 

sequence profile, solvent accessibility, joint entropy, and Pearson 

correlation are also produced, which are collectively called OTHER 
feature.  

The features above are generated for the MSAs of both DeepMSA 

and DeepAln. Each of them is used to train a deep model to predict both 
real-value distance map and multi-class distance map, resulting in 8 

predicted real-value distance maps and 8 multi-class distance maps (Fig. 

1).  

2.4 Deep Network Architectures for Distance Prediction 

We design different deep learning architectures that work well for four 

different types of input features, which are called COV_Net, PLM_Net, 
PRE_Net, and OTHER_Net (Fig. 2), respectively. PRE_Net and 

OTHER_Net share almost the same architecture with some minor 

difference.   
COV_Net (Fig 2a) uses as input the COV matrix along with 

sequence profile (PSSM), contact scores (CCMpred) and Pearson 

correlation. It starts with a normalization block called RCIN that contains 
instance normalization (IN) (Ulyanov, et al., 2016), row normalization 

(RN), column normalization (CN) (Mao, et al., 2019) and a ReLU (Nair 

and Hinton, 2010) activation function, followed by one convolutional 
layer with 128 kernels of size 1×1 and one Maxout (Goodfellow, et al., 

2013) layer to reduce the input channel from 483 to 64. The output of 

Maxout is then fed into 16 residual blocks. Each residual block is 
composed of two RCIN normalization blocks, two convolutional layers 

that consist of 64 kernels of size 3×3 and one squeeze-and-excitation block 

(SE_block) (Hu, et al., 2018). The output feature maps from the block, 

together with the input of the block are added together as input for a ReLU 

activation function to generate the output of the residual block. The last 

residual block is followed by one convolutional instance normalization 
layer. The output of the layer is converted into two output maps 

simultaneously. One real-value distance map is obtained by a ReLU 

function through a convolution kernel of size 1×1, and one multi-class 
distance map with 25 output channels is obtained by a softmax function. 

PLM_Net (Fig. 2b) uses as input the PLM matrix concatenated with 

the sequence profile (PSSM) and Pearson correlation. The input is first fed 
into an instance normalization layer, followed by one convolutional layer 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.995910doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.995910
http://creativecommons.org/licenses/by-nc-nd/4.0/


and one Maxout layer. The output of Maxout is then fed into 20 residual 
blocks. Each residual block contains three RCIN blocks, four 

convolutional layers with 64 kernels of size 3×3, one SE_block and one 

dropout layer (Srivastava, et al., 2014) with a dropout rate of 0.2. The 
residual block is similar to the bottleneck residual block, except that the 

middle convolutional layer of kernel size 3×3 is replaced with three 

convolutional layers of kernel size 3×3, 7×1, 1×7, separately. The last 
residual block is followed by the same layers as in COV_Net to predict a 

real-value distance map and a multi-class distance map. 

PRE_Net (Fig. 2c) uses as input the PRE matrix as well as entropy 
scores (joint entropy, Shannon entropy) and sequence profile (PSSM). An 

instance normalization layer is first applied to the input. Unlike COV_Net 
and PLM_Net, one convolutional layer with 64 kernels of size 1×1 and an 

RCIN block are applied after the instance normalization layer for 

dimensionality reduction. The output of the RCIN block is then fed 

through 16 residual blocks. Each residual block is made of two stacked 

sub-blocks (each containing one convolutional layer with 64 kernels of 

size 3×3, a RCIN block, a dropout layer with a dropout rate of 0.2, a 
SE_block, and the shortcut connection). The final output layers after the 

residual blocks are the same as in COV_Net. 

OTHER_Net uses OTHER features as input. Its architecture is 
basically the same as PRE_Net, except that it has 22 residual blocks and 

there is no dropout layer in each residual block. 
 

Fig. 2.  Deep network architectures for four deep residual network models (COV_Net, 

PRE_Net, PLM_Net, and OTHER_NET). RCIN: normalization layer; SE_block: squeeze-

and-excitation block. 

 
(a) COV_Net 

 
(b) PLM_Net 

 
(c) PRE_Net / OTHER_Net 

 
The final output of DeepDist is an average real-value distance map and an 

average multi-class distance map calculated from the output of the four 

individual network models, i.e. the output of the ensemble of the 
individual networks. 

2.5 Training 

The dimension of the input of COV_Net, PLM_Net, and PLM_Net is 
L×L×483, L×L×482, and L×L×484 respectively, which is very large and 

consumes a lot of memory. Therefore, we use data generators from Keras 

to load large feature data batch by batch. The batch size is set as 1. A 

normal initializer (He, et al., 2015) is used to initialize the network. For 

epochs ≤ 30, Adam optimizer (Kingma and Ba, 2014) is performed with 

an initial learning rate of 0.001. For epochs > 30, stochastic gradient 
descent (SGD) with momentum (Qian, 1999) is used instead, with the 

initial learning rate of 0.01 and the momentum of 0.9. The real-value 
distance prediction and multi-class distance classification are trained in 

two parallel branches. The mean squared error (MSE) and cross-entropy 

are used as their loss function, respectively. At each epoch, the precision 
of top L/2 long-range contact predictions derived from the average of the 

two contact maps converted from the real-value distance map and the 

multi-class distance map on the validation dataset is calculated. The inter-
residue real-value distance map is converted to the contact map by 

inversing the predicted distance to obtain a relative contact probability (i.e. 

dij: predicted distance between residues i and j; 1/dij: relative contact 
probability score). The multi-class distance map is converted to the 

contact map by summing up the predicted probabilities of all the distance 

intervals <= 8Å as contact probabilities. 

2.6 Ab Initio Protein Folding by Predicted Distances 

We use distances predicted by DeepDist with our in-house tool – DFOLD 

(unpublished) built on top of CNS (Brünger, et al., 1998), a software 
package that implements distance geometry algorithm for NMR based 

structure determination, to construct 3D structure models. For the 

predicted real-value distance map, we select the predicted distances <= 
15Å and with sequence separation >= 3 to generate the distance restraints 

between Cb-Cb atoms of residue pairs.  0.1Å is added to or subtracted 

from the predicted distances to set the upper and lower distance bounds. 
For the predicted multi-class distance map, we first convert the distance 

probability distribution matrix to a real-value distance map by setting each 

distance as the probability-weighted mean distance of all intervals for a 
residue pair and using the standard deviation to calculate the upper and 

lower distance bounds. Given a final real-value distance map, we prepare 

five different subsets of input distance constraints by filtering out 
distances ≥ x respectively, where x = 11Å, 12Å, 13Å, 14Å and 15Å. For 

each subset of distance constraints, we run DFOLD for 3 iterations. For 

each iteration, we generate 50 models and select the top five models 
ranked by the CNS energy score - the sum of all violations of all distance 

restraints used to generate a model. The top selected models generated 

from five subsets are further ranked by SBROD (Karasikov, et al., 2019). 
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The final top one model is the one with the highest SBROD score. 
PSIPRED is used to predict the secondary structure to generate hydrogen 

bonds and torsion angle constraints for DFOLD to use.  

3 Results 

3.1 Comparing DeepDist with state-of-the-art methods on 

CASP12 and CASP13 datasets in terms of precision of 

binary contact predictions 

As a multi-task predictor, our distance predictor DeepDist can not only 
classify each residue pair into distance intervals (multi-classification), but 
also predict its real-value distance (regression). We convert the predicted 
distances into contact maps in order to compare DeepDist with existing 
methods using the most widely used evaluation metrics – the precision of 
top L/5, L/2, L long-range contact predictions (sequence separation >= 
24). Fig. 3 reports the contact prediction precision of the multi-class 
distance prediction and the real-value distance prediction of DeepDist and 
several state-of-the art methods on two CASP test datasets (43 CASP13 
FM and FM/TBM domains and 37 CASP12 FM domains). On the 
CASP13 dataset (Fig 3a), the precision of DeepDist is higher than the 
accuracy of three top methods (RaptorX-Contact (Xu and Wang, 2019), 
AlphaFold (Senior, et al., 2020), and TripletRes (Li, et al., 2019)) reported 
in CASP13 in almost all cases. For instance, the precision of top L/5 
predicted contacts for DeepDist(multi-class) and DeepDist(real_dist) is 
0.793 and 0.786 on the CASP13 dataset, respectively, higher than 0.744 
of RaptorX-Contact. The multi-class distance prediction (DeepDist(multi-
class)) works slightly better than the real-value distance prediction 
(DeepDist(real_dist)) according to this metric.  

We also compare DeepDist with DeepMetaPSICOV on 37 CASP12 
FM domains. To rigorously evaluate them, we ran DeepMetaPSICOV 
with the same sequence-based features (sequence profile from PSI-
BLAST and solvent accessibility from PSIPRED) and MSAs used with 
DeepDist.  Both multi-class distance prediction and real-value distance 
prediction of DeepDist perform consistently better than 
DeepMetaPSICOV (Kandathil, et al., 2019) (Fig. 3b).  
 
Fig. 3.  (a) Long-range contact prediction precision of DeepDist, RaptorX-Contact, 

AlphaFold,, TripletRes on CASP13 hard targets. “Top L/5”, “Top L/2” and “Top L” stands 

for the top L/5, L/2 and L predicted contacts, where L is the length of the domain. (b) Long-

range contact prediction precision of DeepDist and DeepMetaPSICOV on CASP12 hard 

targets. 

 
(a) On 43 CASP13 FM and FM/TBM domains 

 

 
(b) 37 CASP12 FM domains 

3.2 Comparison of predicting real-value distance map and 

multi-class distance map simultaneously with predicting 

real-value distance map alone  

In order to evaluate if predicting real-value distance map and multi-class 

distance map together improves the performance over predicting real-
value distance map only, we apply the same deep learning architecture on 

the PLM input features in the two experimental settings. The precision of 

top L/5, top L/2, and L contact predictions, as well as MSE and Pearson 
correlation of predicted distances on 43 CASP13 FM and FM/TBM 

domains, are reported in Table 1. The results show that predicting the two 
at the same time is better than predicting real-value distances only, 

demonstrating coupling multi-class distance prediction with real-value 

distance prediction can improve the performance of real-value distance 
prediction according to all the metrics. DeepDist(real_dist) works slightly 

better in terms of MSE and Pearson’s correlation than DeepDist (multi-

class), but slightly worse in terms of precision of top contact predictions.    

Table 1. The results of predicting real-value distance map and multi-class 
distance map (DeepDist_PLM_Net (real-dist) and DeepDist_PLM_Net 
(multi-class) at the same time versus predicting real-value distance 
separately (real-dist ony) on 43 CASP13 hard domains.  MSE: average 
mean square error between predicted distances and true distances; Pearson 
coefficient: the Pearson’s correlation between predicted distance and true 
distance. 

 L/5 

(Precision) 

L/2 

(Precision) 

L 

(Precision) 

MSE Pearson 

coefficient 

DeepDist_PLM_Net 

(real-dist) 0.699 0.580 0.446 1.151 0.979 

DeepDist_PLM_Net 
(multi-class) 0.711 0.587 0.457 1.206 0.978 

Real-dist only 

0.687 0.558 0.430 1.282 0.978 

 

3.3 Comparison of the ensemble model based on four kinds 

of input and a single model based on one input 

Table 2 reports the performance of DeepDist (an ensemble of multiple 
models trained on four kinds of input) on the CASP13 dataset. The 

accuracy of DeepDist’s real-value distance prediction (DeepDist(real-

dist)) and multi-class distance prediction (DeepDist(multi-class)) in Table 
2 is substantially higher than the accuracy of a single deep model 

(DeepDist_PLM_Net) trained on one kind of feature - PLM in Table 1. 
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For instance, the precision for top L/5 contact prediction and MSE of 
DeepDist (real-dist) are 0.786 and 0.896 Å, better than 0.699 and 1.151 Å 

of DeepDist_PLM_Net (real-dist). The same results are observed for other 

single models trained on COV, PRE or OTHER features, separately. The 
results clearly demonstrate that the ensemble approach improves the 

accuracy of inter-residue distance prediction.  

Table 2. The performance of DeepDist on 43 CASP13 hard domains. 
DeepDist(real-dist): real-value distance prediction; DeepDist(multi-
class): multi-class distance prediction 

 L/5 

(Precision) 

L/2 

(Precision) 

L 

(Precision) 

MSE Pearson 

coefficient 

DeepDist(real-dist) 0.786 0.645 0.496 0.896 0.981 

DeepDist(multi-class) 0.793 0.661 0.517 1.003 0.981 

 

3.4 Comparison of real-value distance prediction and multi-

class distance prediction of DeepDist in terms of contact 

prediction accuracy, MSE, and Pearson’s correlation 

As shown in Table 2, the multi-class distance prediction of DeepDist is 

slightly better than the real-value distance prediction in terms of precision 
of contact prediction, but is a little worse in terms of MSE of predicted 

distance, and is the same in terms of Pearson’s correlation of predicted 

distance on the CASP13 dataset. Overall, their performance is comparable 
and the two kinds of predictions are complementary.    

3.5 Comparison between real-value distance prediction and 

multi-class distance distribution prediction in term of 

3D protein structure folding 

We use the real-value distance map and multi-class distance map predicted 

by DeepDist with DFOLD to construct the 3D models for the 43 CASP13 

hard domains respectively in order to compare their usefulness for 3D 

structure folding. Table 3 shows the average TM-score of the top 1 model 
and the best model of the top 5 models of using real-value distances 

(DeepDist(real-dist)) and of using multi-class distances (DeepDist(multi-

class)) on the 43 CASP13 FM and FM/TBM domains. The average TM-
scores of top 1 and top 5 models generated from real-value distance 

predictions are 5.2%, and 3.1%, respectively, higher than those models 

generated from multi-class distance predictions.  

Table 3. TM-scores of models on CASP13 43 FM and FM/TBM 
domains for four methods.  

Method Top 1 Top 5 # of TM-

score >= 0.5 

(Top 1) 

# of TM-

score >= 

0.5 (Top 

5) 

DeepDist (real-dist) 0.487 0.522 21 23 

DeepDist (multi-class) 0.463 0.506 21 22 

DMPfold 0.438 0.449 16 16 

CONFOLD2 0.382 0.466 12 19 

 
Fig. 4 illustrates the distribution of TM-score of the top1 models of 43 

CASP13 domains for DeepDist (real-dist) and DeepDist(multi-class). The 

distribution of DeepDist (real-dist) shift toward higher scores. The 
improvement of DeepDist (real-dist) over DeepDist(multi-class) is 

probably attributed to the reduction of MSE of predicted distances. The 
average MSE between the predicted real-value distance map and the true 

distance map is 0.8964 Å, which is lower than the average MSE (1.0037 

Å) between the distance map converted from the predicted multi-class 
distance map and the true distance map.   

 
Fig. 4.  Distribution of TM-scores of the top 1 models of 43 CASP13 FM and FM/TBM 

domains, built from the real-value distance predictions and the multi-class distance 

predictions.  

 

 
On the 43 CASP13 FM and FM/TBM domains, we also compared 

the models generated from the predicted distance of DeepDist with two 
popular ab initio distance-based model folding methods: DMPfold and 

CONFOLD2 (Table 3). For DMPfold, we applied the same sequence-

based features and multiple sequence alignment used with DeepDist as 
input for DMPfold to build 3D models. For CONFOLD2, we converted 

the predicted distance map to the contact map as its input to build 3D 

models. As shown in Table 3, Both DeepDist and DMPfold have a much 
better performance than the contact-based method CONFOLD2, clearly 

demonstrating that the distance-based 3D modeling is better than contact-

based 3D modeling. The average TM-score of DeepDist (real-dist) is 
0.487, higher than 0.438 of DMPfold, probably due to more accurate 

distance prediction made by DeepDist. Considering top 5 models, 

DeepDist(real_dist) folds 23 out of 43 domains (TM-score > 0.5) 
correctly, higher than 16 of DMPfold. Fig. 5 shows five high-quality 

CASP13 models built from the predicted real-value distances that have the 

TM-scores >= 0.7.  
 
Fig. 5.  Five high-quality CASP13 models (TM-score >= 0.7) generated from DeepDist 

real-value distance predictions. Brown: model; Blue: native structure. 
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                                                  TM-score:0.842 

                                                  RMSD:3.762 

3.6 The relationship between 3D models reconstructed from 

predicted real-value distances and multiple sequence 

alignments. 

Fig. 6.  The quality of the top 1 models folded from DeepDist real-value distance 

predictions versus the logarithm of number of effective sequences (Neff) on 43 CASP13 

FM and FM/TBM domains. The six points in red denote domains with Neff < 55 and TM-

score > 0.5. 

 
The main input features used with DeepDist are derived from MSAs. Fig. 

6 plots the TM-scores of top 1 models of 43 CASP13 domains against the 

natural logarithm of number of effective sequences in their MSAs. There 
is a moderate correlation (Pearson’s correlation = 0.66) between the two. 

Moreover, 3D models for 6 domains (T0957s2-D1, T0958-D1, T0986s2-

D1, T0987-D1, T0989-D1, and T0990-D1) with shallow alignments (the 
number of effective sequences (Neff) in the alignment < 55) have TM-

score > 0.5 (i.e. TM-score 0.568, 0.644, 0.658, 0.555, 0.545 and 0.593, 

respectively), indicating DeepDist works well on some targets with 
shallow alignments.   

3.7 Evaluation on CAMEO targets. 

In order to further evaluate DeepDist on a large dataset, we test DeepDist 
on 268 CAMEO targets selected from 08/31/2018 to 08/24/2019. The 

average precision of the top L/5 or L/2 long-range inter-residue contact 

prediction converted from the real-value distance prediction is 0.691, and 

0.598, respectively. 191 out of 268 targets have the long-range top L/5 

contact prediction precision >= 0.7. Fig. 7 shows 5 high-quality models 

constructed from DeepDist predicted real-value distances. For the 14 
targets with the number of effective sequences less than or equal to 50, the 

average top L/5 and top L/2 long-range contact prediction precision is 

0.696 and 0.515, which is reasonable. Using the predicted distance to build 
3D structures for the 14 targets, five of them have models with TM-score 

> 0.5. This further confirms that DeepDist’s predicted distances can fold 

some proteins with very shallow alignments correctly.  
 
Fig. 7.  High-quality 3D models for five CAMEO targets constructed from DeepDist 

predicted real-value distances. The model is shown in brown and the native structure is 

shown in blue. 
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                                                RMSD: 2.938 

 
                                                5YAA-A 
                                                TM-score: 0.883 

                                                RMSD: 1.916 

Conclusion 

We develop an inter-residue distance predictor DeepDist based on new 

deep residual convolutional neural networks to predict both real-value 

distance map and multi-class distance map simultaneously. We 
demonstrate that predicting the two at the same time yields higher 

accuracy in real-value distance prediction than predicting real-value 

distance alone. The overall performance of DeepDist’s real-value distance 
prediction and multi-class distance prediction is comparable according to 

multiple evaluation metrics. Both kinds of distance predictions of 

DeepDist are more accurate than the state-of-the-art methods on the 
CASP13 hard targets. Moreover, DeepDist can work well on some targets 

with shallow multiple sequence alignments. And the real-value distance 

predictions can be used to reconstruct 3D protein structures better than 
predicted multi-class distance predictions, showing that predicting real-

value inter-residue distances can add the value on top of existing distance 

prediction approaches.  
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