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Abstract Antimicrobial resistance is a major threat to global health and food
security today. Scheduling cycling therapies by targeting phenotypic states as-
sociated to specific mutations can help us to eradicate pathogenic variants in
chronic infections. In this paper, we introduce a logistic switching model in
order to abstract mutation networks of collateral resistance. We found partic-
ular conditions for which unstable zero-equilibrium of the logistic maps can
be stabilized through a switching signal. That is, persistent populations can
be eradicated through tailored switching regimens.

Starting from an optimal-control formulation, the switching policies show
their potential in the stabilization of the zero-equilibrium for dynamics gov-
erned by logistic maps. However, employing such switching strategies, deserve
a specific characterization in terms of limit behaviour. Ultimately, we use evo-
lutionary and control algorithms to find either optimal and sub-optimal switch-
ing policies. Simulations results show the applicability of Parrondo’s Paradox
to design cycling therapies against drug resistance.
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1 INTRODUCTION

Throughout history, we have witnessed alarming high death tolls derived from
infectious diseases around the globe. Antimicrobials such as antibiotics and
antivirals are powerful weapons to fight against infections. However, the misuse
and overuse of drugs have led to drug resistance, which can be roughly defined
as the ability of a microorganism to replicate in the presence of a drug [4].
Truly, during the course of an infection, pathogens can evolve genetically to
generate resistance to a given drug. In other infections scenarios, the host
can also be infected by different pathogenic variants deriving in a complex
therapeutic challenge.

The World Health Organization (WHO) has reported that antimicrobial
resistance (AMR) is a large-scale health problem worldwide [39]. This has been
clearly exposed by HIV resistance to antiretrovitals [40] or the growing list of
bacteria that are becoming harder to treat due to antibiotics becoming less
effective e.g. pneumococcus, staphylococcus, aureus, pseudomonas aeruginosa
among others [39].

Resistance can be developed by horizontal gene transfer of resistance encod-
ing genes or mutations that derive the resistance phenotype to the population
[6]. An important term is the mutation rate, which refers to the amount of ge-
netic errors that accumulates per generation [15]. For example, mutation rates
are about 10−8 to 10−6 substitutions per nucleotide per cell infection (s/n/c)
for DNA viruses and from 10−6 to 10−4 s/n/c for RNA viruses [35]. Muta-
tion rates in higher eukaryotes are roughly 0.003 mutations per genome per
cell generation [14]. For different antibiotics, bacterial mutation rates oscillate
between 3× 10−8 to 5× 10−9 per cell per generation [26].

Resistance can decrease the fitness of a pathogens, known as the biological
cost of resistance, but in some cases, fitness can also be increased [3]. In this
context, pathogens such as bacteria, viruses and fungus are mainly described
respect to a standard wild type (most fit) in terms of phenotypes and genotypes
[13]. While the phenotype attributes observable properties of the population,
genotype refers to the genetic constitution. The scenario is multi-complex in
the case of antibiotic resistance, for instance, mutations in different genes can
produce similar antibiotic resistance phenotypes [5].

Mathematical modeling of infectious diseases has been developed at differ-
ent scales [21]. Between-hosts models have helped to propose new vaccination
strategies or support public health strategies [34,16,32]. On the other hand,
for within-host infection, mathematical modeling has been used to capture
the dynamics of different infectious diseases inside the host to understand the
interaction of the pathogen and the immune system, as well as scheduling of
therapies [2,22,11,9,33]. Most mathematical models to represent microbes dy-
namics are shown to be based on variations of the classical Verhulst logistic
growth equation. For instance, the logistic model has served as a key mathe-
matical tool in to represent the growth of tumors [1] and microbes [24]. The
logistic model considers a stable population would consequently have a satura-
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tion level, known as the carrying capacity and forms a numerical upper bound
on the growth size [38].

While theoretical approaches to mitigate drug resistance have been mainly
developed at between-host level [37,8], too little has been directed to inves-
tigate within-host strategies against antimicrobial resistance [23]. However,
previous within-host control strategies are only developed for switched linear
systems [21].
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Fig. 1 Illustrative mutation tree for n variants and m therapies. WT represents the wild
type. Different variants would mutate the effect of a given therapy which is indicated with
color squares. After a sequence of mutations, it is hypothesized the appearance of a highly
resistant variant (black circle HR), meaning that it is resistant to both therapies.

Here, for a any mutation network (illustrative example in Fig.1), we in-
troduce a logistic switching map to capture the drug resistance dynamics of
bacteria. This model is instrumental to design control strategies to minimize
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the ability of a bacterial sub-population to survive a drug concentration is
known as persistence. However, designing switching strategies in dynamical
systems is not trivial in the context of the so-called Parrondo’s Paradox [10,
27,28], that is two losing games can be combined in a determined order to
obtain a winning game [19]. Previous numerical simulations of switching lo-
gistic maps [28] have shown that switching decisions may follow either the
“undesirable + undesirable = desirable” or the “chaotic+chaotic = order”
dynamics.

Next sections, the mathematical abstraction of antimicrobial resistance dy-
namics is formulated in the form of non-linear switched systems. Consequently,
we employ evolutionary and control algorithms to find sub-optimal switching
policies. Simulations results show the applicability of Parrondo’s Paradox to
design cycling therapies against drug resistance.

2 Logistic Switching Maps

Throughout, R is the field of real number, Rn stands for the vector space of
all n-tuples of real numbers. Rn×n is the space of n × n matrices with real
entries. N denotes the set of natural numbers. For x in Rn , xi denotes the
ith component of x, and the notation x � 0 means that xi ≥ 0 for 1 ≤ i ≤ n.
Rn+ = {x ∈ Rn : x � 0} denotes the non-negative orthant in Rn. The transpose
is represented as A′.

Definition 1 Well-defined. A switching signal σ(·) is said to be well-defined
on any interval [tk, tk+1), if it is defined in [tk, tk+1), and for all t ∈ [tk, tk+1).

Definition 2 Well-posed. A switched system is said to be well-posed at x0

over any interval [tk, tk+1) if the switched system admits a unique solution via
the well-defined switching signal σ(·) over interval [tk, tk+1).

Consider now the well-posed switched non-linear autonomous system described
as follows:

ẋ(t) = fσ(t)(x(t)), (1)

where x(t) ∈ X ⊂ Rn is the system state at time t, and the state space X is
closed. The initial condition at time t0 = 0 is x(0) = x0. σ(t) ∈ Nq is the well-
defined switching sequence that selects a transition function fi ∈ Rn×n for
i = 1, 2, · · · , q, where q is a positive integer representing the number possible
subsystems. Due to the applicability to biological systems, the set of non-linear
functions represented by fi(x(t)) are positive, which is defined next.

Definition 3 Positivity. For any initial condition x0 ∈ Rn+ The set of continuous-
time nonlinear sub-systems fi(x(t)) is called positive if x(t) ∈ Rn+ for all t ≥ 0

For a fix horizon of time tf there is a finite length of horizon tf − t0 which can
be divided into Nq intervals. Thus, there is a well-defined switching path

σ = {σ(0), σ(1), · · · , σ(Nq − 1)}
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defined on the set ZN−1, which has a finite number of jump instants in any
finite length sub-interval of ZNq−1. Any jump instant s ∈ ZNq−1 is said to be
a switching time [18]. Thus, a switching time s satisfies σ(s) 6= σ(s + 1). Let
s1, s2, · · · , sl be the ordered of switching times in ZNq−1 with

0 ≤ s1 < s2 < · · · < sl ≤ Nq.

The ordered sequence {s1, s2, · · · , sl} = {si}li=1, is defined as the switching
sequence of σ on ZNq−1, which implies that there are l jump instants. The i
element of the path σ, then

σ(t) :=


σ(0) if i ∈ Zs1−1,

σ(s1) if i ∈ Zs1:s2−1,
...

σ(sl) if i ∈ Zsl:Nq−1,

which means that σ is such that

σ = {
Nq︷ ︸︸ ︷

σ(0), · · · , σ(0)︸ ︷︷ ︸
s1

, σ(s1), · · · , σ(s1)︸ ︷︷ ︸
s2−s1

, · · · , σ(sl), · · · , σ(sl)︸ ︷︷ ︸
Nq−sl

}. (2)

Now, let hi = si+1 − si for i = 0, · · · , l (consider s0 := 0), then the sequence
{(σ(0), h0), · · · , (σ(sl), hl)} is said to be the switching duration sequence of σ
on ZNq−1. It is clear that the switching duration sequence is uniquely deter-
mined by the switching sequence, and vice versa.

Remark 1 Different initial conditions will correspond to distinct switching
paths and hence different switching sequences. Thus, the switching sequence
depends heavily on the initial state [18].

From literature in switched systems [27], we know that a switched system is
stable if all individual subsystems are stable and the switching signal between
them is sufficiently slow. Next, we bring the definition of dwell-time.

Definition 4 Dwell-time. The switching times ti satisfy the inequality ti+1−
ti ≥ τd for all i, where τd ≥ is the dwell-time.

Problem 1 In this work, σ(·) is considered as the only manipulable control
signal to the system (1). The primary goal, if possible, would be to design
a switching path to make the origin of the system stable (1). However, for
biological reasons of the application described in next sections, we relax the
problem to the design of a sub-optimal switching path σ(·) that yields the
closest behavior to satisfy a cost functional J in a fix horizon of time (tf ).
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2.1 Modeling Antimicrobial Resistance as Logistic Maps

To abstract the dynamics of the different genotypes during drug therapy, the
following switched logistic model is described:

ẋi(t) = ρi,σ(t)xi(t)

(
1− xi(t)

K

)
− δxi(t) + µ

η∑
j 6=i

mi,jxj(t). (3)

The population of different η pathogenic variants are represented with xi.
ρi,σ(t) is the proliferation rate of the variant i under the treatment regiment
σ(t) ∈ {1, 2, 3, ..., N} which can be changed at any time t. N is the total
number of possible drug therapies that can be administered. The maximum
carrying capacity is K. δ is the clearance of the variant xi.

The mutation rate is represented by µ. The genetic connections between
genotypes is represented by mi,j ∈ {0, 1}, that is, mi,j = 1 if and only if it is
possible for genotype j to mutate into genotype i. An illustrative example to
represent the mutation network for nine variant and two therapies is presented
in Figure 1. However, more complex mutation tress can be considered. The
switched model (3) is based on following assumptions:

Assumption 1 Negligible effect of the immune system. For a complete
picture of a within-host infection and the corresponding selective pressure that
could derive into a new phenotype, the immune responses would need to be
modelled. However, this would result in a complex model with many param-
eters to fit and still difficult to represent the reality [22,12]. As we focus to
chronic infections that could not been cleared by the immune system, the main
pressure and clearance of pathogenic variants would be directed by the drug.
This assumption allows to simplify the model to being essentially a logistic
map of the pathogen dynamics.

Assumption 2 Logistic deterministic dynamics. Logistic equations is
how most of bacterial infections are modelled [24,38]. A main interest in this
study is to compare bacterial growth of different sub-populations with control
strategies under distinct infection scenarios, thus logistic are constructed based
on ODEs. While this will simplify the control design, it is also a strong as-
sumption, as it will be difficult to evaluate numerically if a control strategy
derived in eradication. The alternative would be a stochastic model, which is
in fact a very attractive long-term problem.

Assumption 3 Pathogen clearance independent of therapy and mu-
tant. Pathogen clearance rate (parameter δ) could depend on one or more
of the treatment regimes or the variant genetics. For the case of viral infec-
tions, antivirals can only inhibit the viral replication inside of cells [21]. For
the case of bacterial infections, penicillin-based antibiotics can kill directly bac-
teria while bacteriostatic inhibits bacterial proliferation [25]. Mathematically
speaking, the drug effect is effective if the pathogenic clearance is bigger than
its proliferation (δ > ρi). For simplicity to design switching policies, this is
considered constant for all the variants.
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Assumption 4 Resources are not a limited factor. During the course
of an infection, the amount of sources (e.g. nutrients, cells to infect, etc.) are
usually in excess. Thus, we assume the same current capacity (parameter K)
for the different variant during the course of the therapy.

Assumption 5 Mutation rate independent of treatment and strain.
There is the possibility of dependence of mutation rate (parameter µ)) on the
replication rate. Thus, there is a relationship between genetic strain, treatment,
and mutation rate. For simplicity in the design of control strategies, it is as-
sumed that the mutation rate between species with the same genetic distance
is constant.

Assumption 6 Growth rates based on therapy. The most adequate frame-
work to represent the drug effects on a disease is with the corresponding PK/PD
dynamics (pharmacokinetics and pharmadynamics). To quantify bacterial re-
sistance, the minimum inhibitory concentration (MIC) is used to measure the
lowest concentration of an antibiotic to prevent bacterial replication [4]. Pre-
vious control engineering works [20] formulated the scheduling of drugs in an
impulsive framework. While this is an excellent framework for single ther-
apy, the complexity increase when different therapies are considered. Thus, it
is assumed that a corresponding therapy affect instantaneously the pathogen,
which is a reasonable assumption for chronic diseases due to the long-term
time scales.

3 Stability analysis without Switching

Let us take the system (3) and focus on the case of a single therapy. With-
out loss of generality, we simplify the notation by taking ρi,σ(t) → ρi, and
normalizing the bacterial populations by the carrying capacity of the system,
xi/K → xi, so that

ẋi(t) = ρixi(t) (1− xi(t))− δxi(t) + µ

η∑
j 6=i

mi,jxj(t). (4)

The strains that mutate act as a source to one or more strains, whereas each
strain can have at most one source, with the case of zero sources corresponding
to the wildtype. In other words, we do not take into account the case when two
or more different strains can yield exactly the same genotype upon mutation,
since this is unlikely in a real-life scenario. At the same time, and for the
same reason, all backwards mutations are forbidden, so that if mj,i 6= 0 then
necessarily mi,j = 0. More generally, there is no way of coming back to strain i
starting from strain i; that is, once a mutation from strain i to strain j occurs,
there exists no possible sequence of L mutations xj1 → xj2 → . . .→ xjL → xi
for any length L.
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The equilibrium points of the system with n strains, which we denote by
(x̄1, . . . , x̄n), can be found recursively by solving for ẋi = 0 in Eq. (4), and
have the form

x̄i =



{
0,max

(
λi
ρi
, 0

)}
, s̄i = 0

λi +
√
λ2
i + 4µρis̄i

2ρi
, s̄i > 0

(5)

Here, we have denoted by s̄i the equilibrium value of the strain that acts as a
source of xi; this means that, if xi results from the mutation of a certain xk,
then s̄i = x̄k. At the same time,

λi = ρi − δ − µci (6)

where ci is the number of children of strain i, i.e., the number of genotypes
that result from one mutation of genotype i—we note that ci = −mi,i.

Theorem 1 λi > 0 ensures the existence of the equilibrium point with x̄i > 0
and x̄k > 0 for all xk that can be reached starting from xi, with x̄k = 0
otherwise. This point is linearly stable if, additionally, λk < 0 for all other k.

Proof The Jacobian of the system evaluated at a given equilibrium point can
be decomposed as J = D+µM1, where M1 contains the off-diagonal elements
of M , and thus only encodes the mutations between strains. The entries of D
are given by

dii = ρi − δ − µci − 2ρix̄i

The properties derived above for the constraints on the mutation patterns
imply that M1 can be thought of as the adjacency matrix of a directed acyclic
graph (DAG) [29]; therefore, there exists a topological ordering of the strains
that renders M1 strictly upper triangular [30]. In other words, we can relabel
the strains so that for every mutation from xi to xj , i comes before j in the
ordering. With this, the Jacobian becomes upper triangular, and its eigenval-
ues will be given by the entries of D. At the origin, the i-th eigenvalue will
correspond to λi from Eq. (6). On the other hand, the eigenvalues associated
with non-zero coordinates are given by

∆i = −
√
λ2
i + 4µρis̄i

and they are always negative. As a consequence, whenever a strain xi is able to
persist by itself—which translates into λi > 0—then all of its children will also
persist, as seen from Eq. (5), even if they would be eradicated in isolation. If
all other strains in the system are unable to persist in isolation, the eigenvalues
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associated to the equilibrium point where x̄i > 0, with x̄k > 0 if k corresponds
to a children of i—that is, s̄k = x̄i—and x̄k = 0 otherwise, will be given by

−λi < 0

∆k < 0 s̄k = x̄i

λk < 0 s̄k 6= x̄i

and the equilibrium is thus linearly stable. ut

Theorem 2 If we explicitly separate the zero and non-zero equilibrium coordinates—
so that the i-th element of an equilibrium point is either 0 or x̄i—then the set
defined by

Ω = {x|0 ≤ xi ≤ x̄i ∀i}

is positively invariant with respect to the system described by Eq. (4). That is,
for any given initial condition x0 ∈ Ω when t = 0, the solution to (4) satisfies
x(t) ∈ Ω ∀t > 0 [7].

Proof Let us recall that ẋ = f(x) = (f1(x), . . . , fn(x)), and consider the
boundaries of Ω, given by

B
(1)
i = {x|xi = 0, 0 < xj < x̄j ∀j 6= i}

B
(2)
i = {x|xi = x̄i, 0 < xj < x̄j ∀j 6= i}

The invariance condition translates into f · n̂ ≥ 0 along the boundaries above,
where n̂ is a normal vector pointing towards Ω. We note that the normal

vectors that correspond to each boundary are given by n̂
(1)
i = êi for B

(1)
i and

n̂
(2)
i = −êi for B

(2)
i , where êi is the i-th unitary vector, (êi)j = δij , with δij

the Kronecker delta.
Choosing an initial condition x0 along B

(1)
i , with xj = pj ∈ [0, x̄j ] ∀j 6= i

we have

f(x0) · n̂(1)
i = fi(x0)

= µ

η∑
j 6=i

pjmi,j

≥ 0 ∀i

Similarly, for the case of B
(2)
i , we choose an initial condition x0 with xi = x̄i

and xj = pj ∈ [0, x̄j ] ∀j 6= i; this yields

f(x0) · n̂(2)
i = −fi(x0)

= −ρix̄i(1− x̄i) + δx̄i + µcixi + µ

η∑
j 6=i

mi,jpj
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Now, we use the fact that (x̄1, . . . , x̄n) is an equilibrium point of the system,
so that

ρix̄i(1− x̄i)− δx̄i − µcix̄i + µ

η∑
j 6=i

mi,j x̄j = 0

and

−ρix̄i(1− x̄i) + δx̄i + µcix̄i = µ

η∑
j 6=i

mi,j x̄j

Hence,

f(x0) · n̂(2)
i = µ

η∑
j 6=i

mi,j (x̄j − pj)

≥ 0 ∀i

since 0 ≤ pj ≤ x̄j ∀j 6= i.
Therefore, Ω is positively invariant with respect to the system (4). ut

Corollary 1 The origin of the system is globally asymptotically stable when

ρi < δ ∀i
Proof We have seen above that the origin is a linearly stable equilibrium point
of (4) when ρi < δ + µci ∀i simultaneously. In order to establish the global
stability of the origin, let us choose a Lyapunov function

V (x) =

η∑
i

xi

We note that V ≥ 0 ∀x ∈ Ω, and V = 0 iff x = 0. Now,

V̇ (x) =

η∑
i

ẋi

=

η∑
i

ρixi(1− xi)− δxi

=

η∑
i

(ρi − δ)xi −
η∑
i

ρix
2
i (7)

From the expression above, ρi < δ ∀i ensures that V̇ ≤ 0 ∀x ∈ Ω, and V̇ = 0
iff x = 0. Therefore, the origin is globally asymptotically stable under this
condition. ut

The condition above arises trivially from considering all strains as indepen-
dent of one another, in absence of mutations, and it is more restrictive than
the condition found previously, since mutations have a stabilizing effect on the
origin. However, Eq. (7) can be employed as a basis to establish a switching
policy in order to ensure the eradication of the pathogen in the case with
mutations under a set of different available therapies.
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4 Switching therapies

Based on the general model (3), the problem description can then be broadly
described as the design of a switching policy for the gradual eradication of
pathogenic strains. To formally state the problem we need the following defi-
nitions:

Definition 5 A switching policy is the cycling choice between therapies σ
with a period Tσ, which can be represented by a piecewise constant function
σ(t) : R→ {1, 2, . . . , N}. σ(t) remains constant for all t ∈ [kTσ, (k + 1)Tσ)

Definition 6 A periodic cycling policy is the periodic switching between ther-
apies i with regular intervals Ti.

For example, for the case of two therapies with periods T1 and T2, we have
σ(T1) = 1 and σ(T2) = 2, then the periodic cycling policy sequence is

σ = {σ = 1︸ ︷︷ ︸
T1

, σ = 2︸ ︷︷ ︸
T2

, · · · , σ = 1︸ ︷︷ ︸
T1

, σ = 2︸ ︷︷ ︸
T2

}. (8)

Next, we describe the design of switching policies of the system (3) in
discrete-time version. To this end, we will divide the analysis in two parts.
The first is assuming the variants do not mutate that is µ = 0, this is still an
interesting biological scenario as the main goal is to eradicate different variants
of a pathogenic microorganism. The second part will consider mutation, as
µ 6= 0 for the case of not backward mutations, as from the evolution point of
view, it is very difficult that this type of mutations occur.

4.1 Switching Policies without mutation µ = 0

Assuming no mutations (µ = 0) we re-parameterized the model (3) for a fixed
period of treatment (σ(t) = σ) as follows:

ẋi(t) = bi,σxi(t)

(
1− xi(t)

ai,σ

)
(9)

where bi,σ = ρi,σ − δ and ai,σ = Kbi,σ/ρi,σ. Equation (9) has the conventional
logistic form which can be solved analytically, thus the recursive form of (3)
is as follows:

zi(k + 1) =
ai,σzi(k)

zi(k) + (ai,σ − zi(k))e−bi,σTσ
(10)

where Tσ is the period where the therapy σ is provided.

Theorem 3 Given the dynamics in (3) without mutation (µ = 0) and any
periodic cycle (Tσ) of the different therapies (σ = 1, ..., N), the different vari-
ants will go to eradication independently if for a given treatment the origin is
unstable if and only if the following condition is satisfied∑N

σ=1 ρi,σTσ
T

< δ (11)
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where T =
∑N
σ=1 Tσ.

Proof Considering the initial condition z0 = z(0) = 0 and the first two cycle
of therapies σ = 1, 2 with their respective period Tσ=1,2, by construction, we
have the the Jacobian matrix Jσ=1,2 at the origin as follows:

Jσ=1,2 = ebi,1T1+bi,2T2 (12)

In similar vein we can generalize the Jacobian Jσ=1,..,N in the origin as follows,

Jσ=1,...,N = e
∑N
σ=1 bi,σTσ (13)

as bi,σ = ρi,σ − δ and and we are interested in the stability of the origin, we
check the exponential term to be less than 1, then

N∑
σ=1

(ρi,σ − δ)Tσ ≤ 0 (14)

N∑
σ=1

ρi,σTσ ≤ δT (15)

∑N
σ=1 ρi,σTσ

T
< δ (16)

ut

Remark 2 The condition (11) can additionally serve to design the duration of
the therapies (Tσ) to eradicate all different variants during the course of an
infection if the following inequality system has a solution

N∑
σ=1

ρ1,σTσ < δT

N∑
σ=1

ρ2,σTσ < δT

...
N∑
σ=1

ρn,σTσ < δT.

This can be formulated as a feasible solution to a linear programming problem.
While this could provide a sufficient condition for a possible success of a cycling
therapy, the unfeasible solution does not necessarily imply the failure of a
switching trajectory to stabilize the origin.

Corollary 2 For a cycle of the therapies with equal time duration, the stability
condition (11) can be further reduced as∑N

σ=1 ρi,σ
N

< δ
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Proof Following the Theorem 3, we have that the period of each therapy is
equal, that is T1 = T2 = ... = TN . Then,

∑N
σ=1 Tσ = NTσ. Therefore Tσ can

be deleted from numerator and denominator in conditional (11). ut

Remark 3 The corollary 2 points out that in order to eradicate a variant i with
cycling therapies, the average expansion of the variant i through the cycling
should be less than its contraction.

4.2 With Mutation µ 6= 0

For the case with mutation (µ 6= 0), the condition (11) is difficult to proof.
Model Predictive Control (MPC) appears to be suitable for a suboptimal
application to the biomedical application, due to its robustness to distur-
bances, model uncertainties and the capability of handling constraints [21–23,
41]. Thus, selection of therapies based on MPC will be employed on similar
reasoning as in our previous work based on switched linear systems [23]. In
summary, if the total population size is small enough during a finite time of
treatment, then there is a significant probability that the population becomes
zero. Therefore, we consider the cost

J := c′x(tf ) (17)

where c is the column vector with all ones, and tf is an appropriate final time.
This cost should be minimized under the action of the switching rule. MPC
problem can be formulated as in [17]. Based on measurements obtained at the
step k, the controller predicts the future dynamic behavior of the system over
a prediction horizon Tp and computes an open-loop optimal control problem
with control horizon Tc, to predict the future input for the system. The problem
is written as follows:

Problem 2 The internal variables in the controller by a bar (x̄, σ̄) is denoted,
where x(k) ∈ X ⊆ Rn and σ(•) ∈ U ⊆ Rm. Find

min
σ̄
J(x(k), σ̄(•);Tc, Tp),

with
J(x(k), σ̄(•);Tp, Tc) := cx(t+ Tp)

subject to:
˙̄x(τ) = Aσ̄(τ)x̄(τ) x̄(τ) = x(k)

σ̄(τ) ∈ U , ∀τ ∈ [k, k + Tc]

σ̄(τ) = σ̄(τ + Tc), ∀τ ∈ [k + Tc, k + Tp]

x̄(τ) ∈ X , ∀τ ∈ [k, k + Tp]

The MPC involves a nonlinear and complex optimization problem, the global
optimization algorithm known as differential evolution [36] is considered here.
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5 Numerical Simulations

In similar way to [23], simple illustrative examples are considered based on 4
genetic variants and two different therapies. Thus, η = 4, and 2 drug therapies,
N = 2. The strain i = 1 is considered the Wild Type which is susceptible
to most of drugs. The Genotype 1 (G1) is resistant to therapy 1 but it is
susceptible to therapy 2. The Genotype 2 (G2) is resistant to therapy 2, but it
is susceptible to therapy 1. The Highly Resistant Genotype (RG) is a genotype
with low replication rate, but it is resistant to all drug therapies.

Pathogen clearance rate is fixed, δ = 0.24 day−1, which corresponds to a
half life of slightly less than 3 days [31]. Typical mutation rates are of the
order of µ = 10−4. The following mutation matrix is considered:

Mu =


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

 (18)

Scenario Therapy WT(x1) 1 G1 (x2) G2 (x3) RG (x4)
1 1 ρ1,1 = 0.05 ρ2,1 = 0.27 ρ3,1 = 0.05 ρ4,1 = 0.20

2 ρ2,1 = 0.05 ρ1,2 = 0.05 ρ3,2 = 0.27 ρ4,2 = 0.20
2 1 ρ1,1 = 0.01 ρ2,1 = 0.3 ρ3,1 = 0.1 ρ4,1 = 0.3

2 ρ2,1 = 0.01 ρ1,2 = 0.1 ρ3,2 = 0.3 ρ4,2 = 0.3
3 1 ρ1,1 = 0.01 ρ2,1 = 0.26 ρ3,1 = 0.05 ρ4,1 = 0.25

2 ρ2,1 = 0.01 ρ1,2 = 0.15 ρ3,2 = 0.38 ρ4,2 = 0.24

Table 1 Illustrative simulations scenarios for drug Resistance based on Equation (3)

Three different scenarios are proposed as in the Table 1. The first scenario,
the most ideal case, describes a stabilizable switched system with a complete
symmetry between G1 and G2, in the sense that therapy 1 inhibits G2 with
the same intensity that therapy 2 inhibits G1. In practice, a small difference
in relative replication ability is expected. The second scenario shows a system
that can not be stabilized with a complete symmetry between G1 and G2

(similar to Case 1) but there is a resistant genotype that can not be stabilize
under switching. The third scenario is a switched system that can be stabilize
under switching and it has completely asymmetry for replication rates in G1

and G2. In general, the finite set of possible control values causes problems for

Table 2 Total pathogen load at the end of treatment of 200 days with a possibility to
switch every 20 days.

Scenario Optimal (Brute Force) Optimal (DE Algorithm) MPC
1 2.3615×10−5 2.3615×10−5 2.3615×10−5

2 1.8851×103 1.8851×103 1.8851×103

3 0.1040 0.1040 0.1141
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many control techniques. Nevertheless in the cause of MPC, having a finite set
of options may be an advantage in making the optimization easier to solve.

To compute optimal switching trajectories, we consider a “brute force”,
which calculates all possible combinations of the therapies (Nc = tf/Tc) and
then finding the minimum for the cost function (17). However, this approach
is computational unfeasible for checking Nc > 15. Thus, to check larger treat-
ment combination we consider the differential evolution algorithm [36]. Fur-
thermore we consider also a MPC strategy as discussed in Problem 2.

Table 2 illustrates treatment scenarios of 200 days (tf ) with decision time
to switch therapy of 20 days (Tc), that is Nc = 10, 210 combinations. Based
on the column of “brute force” results in the Table 2, we can conclude that
the DE algorithm can find optimal trajectories. While we can not guarantee
DE algorithm will find the optimal solution for all any example, it might find
solutions very close to the optimal. In similar fashion, the MPC was able to
find optimal switching trajectories in case 1 and 2 but not in case 3. However,
we can observe it find solution very close to the optimal.
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Fig. 2 Numerical results for simulation scenario 3. This considers a simulation time of 500
days with a decision time of every 5 days. The wildtype is rapidly decreased. The genotypes
2 and 3 are gradually decreased by the switching between therapies. It can be observed that
the switching rule is not having a clear patron. The resistant genotype is also decreased due
to the appropriate switched between the therapies. Total pathogen load is represented in
the cost function J .

The advantage of MPC would be the computational time, thus we could
explore short decision times. Thus, in Fig. 2 we illustrate the performance
of MPC for a horizon of 500 days (tf ) with decision time to switch therapy
of 5 days (Tc), that is Nc = 100, 2100 combinations. This scenarios would
not be computational feasible for a “brute force”. The upper panel in Fig. 2
shows how the MPC strategy can decrease the pathogen load of the different
genotypes. The lower panel in Fig. 2 presents the switching trajectory, which
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is not having any intuitive patron, thus highlighting the potential of MPC
strategy.

6 Conclusions

This paper introduced a switching logistic model wit the potential to be the
basis for scheduling antimicrobial to mitigate resistance. Considering the case
of not treatment and mutation trees where backwards mutations are forbidden,
we derived conditions of global stability For the case of therapies without
mutations, conditions for which unstable zero-equilibrium of the logistic maps
can be stabilized through a switching signal. For the case with mutations,
computational switching strategies such as MPC were formulated. Numerical
results highlighted that MPC strategy will perform very close to optima control
while computational resources are largely decreased.
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