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Abstract  17 

While the term standard diet is commonly used in studies using Drosophila 18 

melanogaster, more often than not these diets are anything but standard, making it 19 

difficult to contextualize results in the broader scope of the field. This is especially 20 

evident in microbiome studies, despite diet having a pivotal role in microbiome 21 

composition and resulting host-microbe interactions. Here, we performed a meta-22 

analysis of diets used in fly microbiome research and provide a web-based tool for 23 
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researchers to determine the nutritional content of diets of interest. Our goal is for these 24 

community resources to aid in contextualizing both past and future microbiome studies 25 

(with utility to other fields as well) to better understand how individual lab diets can 26 

contribute to observed phenotypes.   27 

 28 

Introduction  29 

In the laboratory, the typical Drosophila melanogaster diet is composed of agar, yeast, a 30 

sugar source, and cornmeal. However, in reality dietary compositions vary greatly 31 

across laboratories, making it difficult to clearly define the composition of a “standard” 32 

fly diet. Multiple “branded standard” diets exist such as the Bloomington Standard or 33 

CalTech diets that originated at hubs of D. melanogaster research, and while many lab 34 

groups base their own diets on these recipes, the vast majority of groups maintain flies 35 

on diets unique to their laboratory. Differences between these diets, despite their 36 

general suitability for fly rearing, can make it challenging to contextualize studies within 37 

the scope of D. melanogaster research, as nutrition is a critical factor influencing many 38 

aspects of physiology including metabolism (Piper et al. 2005; Brookheart and Duncan 39 

2016), behavior (Edgecomb et al. 1994; Ormerod et al. 2017; Davies et al. 2018), 40 

development (Ormerod et al. 2017; Grangeteau et al. 2018), longevity (Piper et al. 41 

2005; Ormerod et al. 2017; Stefana et al. 2017), and microbiome composition and 42 

function (Wong et al. 2014; Obadia et al. 2018; Erkosar et al. 2018). The relationship 43 

between nutrition and the gut microbiome is particularly important, as altering one will 44 

likely impact the other with physiologic consequences. Diet plays a pivotal role in 45 

shaping microbiome composition and affects interactions between microbiota and host, 46 
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and the microbiome itself impacts the fly’s nutritional environment, both as a direct 47 

source of nourishment and via production and/or utilization of nutrients (Storelli et al. 48 

2011; Shin et al. 2011; Wong et al. 2014; Yamada et al. 2015; Huang and Douglas 49 

2015; Broderick 2016; Keebaugh et al. 2018; Erkosar et al. 2018; Keebaugh et al. 50 

2019). Together, dietary nutrition and the microbiome act in concert with one another to 51 

dictate nutritional physiology (Figure 1).  52 

 53 

Figure 1. Dietary nutrition and the microbiome are inextricably linked. 54 

Dietary nutritional content impacts the diversity and abundance of microbiome 55 

members, can influence microbe-microbe interactions, and affects 56 

metabolites produced by the microbiome. At the same time, the microbiome 57 

itself contributes to overall nutrition via production of metabolites, which are 58 

then utilized by the host, catabolism of carbohydrates, and by serving as a 59 

direct source of protein to the fly. Together, dietary nutrition and the 60 

microbiome interact to play a significant role in host physiology.  61 

 62 

In an effort to aid in the contextualization of studies focused on the D. melanogaster 63 

microbiome, we performed a meta-analysis of diets used across the field. We analyzed 64 

the nutrition values of diet recipes, focusing on protein and carbohydrate content of 65 

diets to visualize how widely “standard” laboratory diets vary across D. melanogaster 66 

microbiome studies. Additionally, we have provided a web-based tool for use by the 67 
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broader community that we’ve named the Drosophila Diet Composition Calculator 68 

(DDCC, https://www.brodericklab.com/DDCC.php), which can be used to rapidly 69 

determine the macronutrient content of diets of interest simply by inputting amounts of 70 

each diet component for a given diet. It is our hope that this meta-analysis and the 71 

DDCC can be used to better understand dietary influences on previously observed 72 

phenotypes and serve as a resource for experimental design of future studies involving 73 

fly nutrition.  74 

 75 

Methods 76 

Nutritional information for dietary components 77 

Values for calories, fiber, sugars, protein, fat, and carbohydrates were determined for 78 

each dietary component using nutritional labels for specific food products, information 79 

directly from manufacturers, or from NutritionData.com, a database of food nutritional 80 

values obtained from the United States Department of Agriculture’s National Nutrient 81 

Database for Standard Reference. The sources for each dietary component are 82 

provided in the Supplemental Files. The carbohydrate and protein information for raw 83 

fruits was determined using NutritionData.com. 84 

 85 

Analysis of dietary differences across microbiome studies- Fly Microbiome Diet 86 

Database 87 

Dietary compositions from over 50 articles (listed in TableS1) with a focus on the D. 88 

melanogaster microbiome were recorded in appropriate columns of the database 89 

(Columns A-AF). Calculations for calories per liter, grams of fiber per liter, sugars per 90 
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liter, protein per liter, fat per liter, carbohydrates per liter, percent fiber, percent sugars, 91 

percent protein, percent fat, percent carbohydrates, and the ratio of protein to 92 

carbohydrates (P:C) (Columns AH-AT) were performed within the spreadsheet using 93 

the previously determined nutritional value for each dietary component. Nutritional 94 

information for the holidic fly diet (Piper et al. 2014) was determined by inputting the 95 

agar and sucrose amounts in the spreadsheet as normal and adding the calculated final 96 

mass of amino acids per liter to the formula in Column AL (grams of protein per liter). 97 

Similarly, for other diets containing one unique ingredient not otherwise represented in 98 

the database, calculations were performed as normal with the nutritional information for 99 

the unique ingredient added manually. In these cases, notes are made on the database 100 

to indicate special calculations. If it was not possible to calculate the nutritional 101 

information for an individual diet, it is noted in Columns AH-AM. Articles that did not 102 

readily provide dietary composition were documented for analytical purposes but 103 

excluded from the publicly available database. Ultimately, six “branded standard” diets 104 

and 71 explicitly reported diets from the literature were included in the database. An 105 

additional 14 studies examined did not provide their dietary composition.  106 

 107 

The Drosophila Dietary Composition Calculator (DDCC) 108 

Calculations used to obtain the nutrition facts for the database were used to generate 109 

the calculator tool found at https://www.brodericklab.com/DDCC.php. Through this web-110 

tool we also invite researchers to submit published diets using the provided web form to 111 

be placed in the publicly available database.  112 

 113 
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Data availability 114 

The source files for all nutritional information used to create the Fly Microbiome Diet 115 

Database and the DDCC are located at 116 

[https://doi.org/10.6084/m9.figshare.11920743.v1]. A downloadable version of the Fly 117 

Microbiome Diet Database is located at 118 

[https://doi.org/10.6084/m9.figshare.11920788.v2].  119 

 120 

Results and Discussion 121 

Comparison of diets used across fly microbiome studies 122 

We analyzed the nutritional content of over 70 published diets used for D. melanogaster 123 

microbiome research based on the dietary components listed in the study methods. 124 

Dietary composition varies considerably both in the types of components used and the 125 

amounts of components, leading to a wide range of calories, protein, carbohydrate, fat, 126 

and fiber levels (Figure 2). Moreover, the type/source of a given ingredient can impact 127 

these values. For example, for a common ingredient like yeast, several different 128 

formulations are used including active, inactive, brewer’s, Lesaffre, and Springaline, all 129 

of which have unique nutritional compositions (e.g. protein content ranges from 38% in 130 

active dry yeast to 63% in Springaline yeast). Specific ingredients can also add 131 

unexpected components to diet. For example, Springaline yeast (BioSpringer), used by 132 

a number of European fly immunity/microbiome labs contains 0.03 grams of the 133 

antioxidant glutathione per gram of yeast, meaning typical diets can range from 1.5-1.8 134 

grams of added glutathione per liter of diet. This equates to a concentration of around 5 135 
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mM, a level used in some studies to block superoxide toxicity (Kim et al. 1997; Buchon 136 

et al. 2009).  137 

 138 

 139 

Figure 2. Nutritional content of “standard” D. melanogaster diets. Calories, 140 

grams of fiber, grams of sugars, grams of protein, grams of fat, and grams of 141 

carbohydrates per liter of food of laboratory diets reported as “standard” in the 142 

literature. Each point represents a different diet. The minimum and maximum values 143 

for each parameter as are follows: Calories- 311.97 and 917.13, Fiber- 10.36 and 144 

26.38, Sugars- 0.80 and 105.00, Protein- 6.33 and 77.93, Fat- 0.30 and 10.80, 145 

Carbohydrates- 81.90 and 222.71. Line represents mean. n=29 diets referred to as 146 

“standard” out of 71 diets. 147 

 148 

To get a better sense for nutritional differences across the diets, we focused on protein 149 

and carbohydrate content (Figure 3A). While some overlap was seen, particularly for 150 

“branded standards” or multiple studies from the same laboratory, the overall spread of 151 

protein and carbohydrate content was large. Dietary protein to carbohydrate (P:C) ratio 152 

is known to be an important factor influencing life history traits (Lee et al. 2008; Jang 153 

and Lee 2018), so we next compared P:C of each diet and identified a range of 154 
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maintenance diets (i.e. not experimental diets with altered diet components) with P:C’s 155 

from 0.05 to 0.86 (Figure 3B). We additionally noted that a range of P:C’s existed for 156 

diets considered “rich” or “poor” with regard to protein content. “Poor” diet P:C’s were 157 

between 0.03 and 0.69 with “rich” diets ranging from 0.05 to 0.8 (Figure 3B).  158 

 159 

 160 

Figure 3. Comparisons of diets used across microbiome research. A) Protein and 161 

carbohydrate content of diets as determined using the microbiome database. B) Protein-162 

to-carbohydrate ratio (protein divided by carbohydrates) of individual diets. Each point 163 

represents a different diet reported in fly microbiome literature: closed circles represent 164 

diets used for normal maintenance of fly lines; triangles represent diets specifically defined 165 

as “rich” or high protein; inverted triangles represent diets designated as “poor” or low 166 

protein; open grey circles represent maintenance diets that are described as “standard” in 167 

the literature; asterisks represent the holidic fly diet. In (B), red points are examples of two 168 

diets used in the same study that represent both a normal and low protein diet (Shin et al. 169 

2011); orange points similarly represent another study utilizing a high and low protein 170 
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(Storelli et al. 2011); purple points represent a third study using multiple diets (Erkosar et 171 

al. 2018). n=71 diets (14 diets were not provided). 172 

 173 

Using this visualization of dietary composition, we observed an interesting comparison 174 

between two studies that each demonstrated a role for the microbiome in normal larval 175 

development in protein poor conditions (achieved through reduced yeast levels; Storelli 176 

et al. 2011 and Shin et al. 2011). Shin et al. used two diets that are relatively low in 177 

protein (red points) and only differed in P:C by 0.06. Storelli et al. also used two diets 178 

that differed in P:C by a similar level (0.05), however compared to Shin et al. these diets 179 

were relatively protein rich (orange points). Both studies show that the microbiome 180 

enhanced fly development on their respective low protein diets, but not on the higher 181 

protein version. Our comparative analysis indicates that small shifts in protein, even if 182 

not evident from P:C values, can be sufficient to reveal biologically important phenotypic 183 

effects of diet. However, while the observed phenotypes were similar in these studies, 184 

different mechanisms behind the observed developmental effects were reported, 185 

including being attributed to different microbiome members- Acetobacter pomorum in 186 

Shin et al. and Lactobacillus plantarum in Storelli et al. Our analysis shows that the 187 

overall diets differ significantly in both protein and carbohydrates levels (Figure 3), 188 

which could explain the different microbes and mechanisms, as macromolecule 189 

concentrations could greatly impact microbiome composition, microbe and/or host 190 

physiology, and/or the resulting interaction. This is supported by recent work by Erkosar 191 

et al. who showed that flies reared on diets containing significantly different 192 

concentrations of yeast (Figure 3, purple points) had distinct shifts in microbial 193 

community composition (Erkosar et al. 2018). These examples highlight the importance 194 
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of contextualizing studies based on dietary composition and how such comparisons can 195 

influence interpretation and subsequent studies.  196 

 197 

The “standard diet” fallacy 198 

At the time of writing, 16% of articles examined (14 of 85) gave no clearly defined diet 199 

composition and of this group, 71% (10 of 14) described their diet as “standard.” 200 

Overall, 46% of diets from all articles (39 of 85) were referred to as “standard,” yet both 201 

the range of diet components and total nutritional values of these diets are large (Figure 202 

2 and shown as open grey in Figure 3). It is clear from the ranges we observed that no 203 

true “standard” diet exists, highlighting the problematic, but common, phrasing of 204 

“standard fly diet” in the literature, which is compounded when the diet recipe is not 205 

provided. Our analysis only looked at fly microbiome studies, but we expect this is a 206 

wide-spread problem and that other areas of D. melanogaster research have a similarly 207 

wide range of “standard” diets (whether explicitly reported or not). 208 

 209 

Artificial versus natural diets  210 

To understand how the range of laboratory diets compares to natural fruit diets that D. 211 

melanogaster encounters in the wild, we obtained protein and carbohydrate information 212 

(grams per kilogram) for apples, pears, grapes, bananas, oranges, limes, peaches, and 213 

lemons. Carbohydrates spanned from 93 g/kg to 228 g/kg and protein from 3 g/kg to 11 214 

g/kg, resulting in a range of P:C’s from 0.02 to 0.11 (Figure 4). While many artificial 215 

diets fall within this range, protein content is typically much higher in laboratory 216 

conditions compared to natural diets, which may contribute to the lower diversity of 217 
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microbes found in laboratory reared flies compared to wild-caught (Chandler et al. 2011; 218 

Erkosar et al. 2018). In either natural or artificial diets, however, the nutritional role of 219 

microbes must also be considered. In nature, D. melanogaster only associates with 220 

decomposing (ripe/over-ripe) fruit that support high densities of yeasts and bacteria, 221 

which presumably alter macronutrient content of the food while also providing nutrients 222 

directly. While artificial diets remove the requirement for microbes to break down 223 

complex plant material before consumption by the fly, microbes likely still impact 224 

nutrition in artificial diets, but the extent of this and its impacts on the fly in “standard” 225 

conditions has not been extensively explored.  226 

 227 

 228 

Figure 4. Comparison of protein and carbohydrate content of fruits. A) Protein and 229 

carbohydrates of raw fruits. B) Protein-to-carbohydrate ratio (protein divided by 230 

carbohydrates) of raw fruits. Each point represents nutritional information for a different 231 

fruit as provided by the United States Department of Agriculture. 232 
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Does D. melanogaster need a standard diet? 235 

It is clear that differences in fly diet have led to issues in reproducibility of results across 236 

the field (See Sharon et al. 2010, Obadia et al. 2018, and Leftwich et al. 2018 for one 237 

example; Douglas 2018 for commentary on another). One approach to combat such 238 

issues is the use of a fully defined diet such as the holidic diet (Piper et al. 2014). There 239 

are many advantages of using a chemically defined diet, as diet components are more 240 

strictly controlled, providing greater power to assess the role of individual diet 241 

components on host physiology and microbiome-mediated impacts. However, 242 

chemically defined diets are labor-intensive to make and are less representative of 243 

natural, complex dietary substrates (which include complex textures, different particle 244 

sizes, etc.) making this an unrealistic option for standardization of fly rearing and 245 

research across fields. We suggest that a manageable and reasonable approach to 246 

address dietary differences across studies is simply to require explicit reporting of diet 247 

composition at the time of publication. While having such data does not eliminate 248 

variability, it is invaluable for contextualizing results and phenotypes, provides potential 249 

explanations for observed differences, and testable hypotheses for follow-up in 250 

subsequent studies. We also expect that use of complex diet components is beneficial 251 

for discovery of physiologically relevant phenotypes that may otherwise be lost or 252 

artificially altered on more defined diets. For example, food particle size in animal gut 253 

ecosystems is known to impact digestion and bulk passage rate as well as microbiome 254 

composition through attachment and microcolony support (Cheng et al. 1981; Martz and 255 

Belyea 1986; Bjorndal et al. 1990; McAllister et al. 1994; Vermeulen et al. 2018; Kiarie 256 

and Mills 2019). Ultimately, what is important is that researchers understand the 257 
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nutritional implications of the diets they use and look to nutritional information as a 258 

resource to aid in analysis of results and comparison across laboratories. It is our hope 259 

that the examples highlighted in this meta-analysis and the data provided by the DDCC 260 

will aid in a broader appreciation for the importance of dietary reporting, and help to 261 

contextualize observations across research studies using D. melanogaster.  262 

 263 

Web resources 264 

Fly Microbiome Diet Database: 265 

https://doi.org/10.6084/m9.figshare.11920788.v2  266 

 267 

Drosophila Dietary Composition Calculator: 268 

https://www.brodericklab.com/DDCC.php 269 

 270 
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