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Abstract

Motivation: The combination of genomic and epidemiological data hold the potential to enable accurate
pathogen transmission history inference. However, the inference of outbreak transmission histories
remains challenging due to various factors such as within-host pathogen diversity and multi-strain
infections. Current computational methods ignore within-host diversity and/or multi-strain infections, often
failing to accurately infer the transmission history. Thus, there is a need for efficient computational methods
for transmission tree inference that accommodate the complexities of real data.
Results: We formulate the Direct Transmission Inference (DTI) problem for inferring transmission trees that
support multi-strain infections given a timed phylogeny and additional epidemiological data. We establish
hardness for the decision and counting version of the DTI problem. We introduce TiTUS, a method that
uses SATISFIABILITY to almost uniformly sample from the space of transmission trees. We introduce
criteria that prioritizes parsimonious transmission trees that we subsequently summarize using a novel
consensus tree approach. We demonstrate TiTUS’s ability to accurately reconstruct transmission trees on
simulated data as well as a documented HIV transmission chain.
Availability: https://github.com/elkebir-group/TiTUS
Contact: melkebir@illinois.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
With the advent of cheaper and more powerful sequencing methods,
molecular epidemiology has become an indispensable tool for inference
of transmission histories of infectious disease outbreaks. Genomic data
of pathogen isolates collected from infected hosts is used to assist with
the identification of unknown infection sources and transmission chains.
Intensive field work generates crucial epidemiological data that provides
addition information such as contact history between patients and exposure
times of the patients to sources of infection. Methods that can efficiently
use genomic and epidemiological data together for accurate inference
of transmission history of outbreaks are the key to real-time outbreak
management and devising public health policies and disease control
strategies for future outbreaks (Dellicour et al., 2018).

There are several challenges that hinder the accurate inference of
the transmission history of an outbreak. Phylogeny estimation of the

pathogen isolates reveals the evolutionary history of the pathogen during
the outbreak. However, due to within-host diversity of the pathogen,
branching events in the phylogeny do not correspond to the transmission
events during the outbreak (Romero-Severson et al., 2014). Phylogeny-
based methods that assume that the transmission events coincide with
the branching events in the phylogeny are therefore not applicable in the
context of pathogens with low mutation rates, short incubation times and
acute infections (Ypma et al., 2011; Harris et al., 2010; Leitner et al., 1996;
Cottam et al., 2008).

Another factor that makes outbreak transmission history inference
challenging is a weak transmission bottleneck, where multiple strains of
the pathogen are transmitted from a donor to a recipient through a non-
negligibly small inoculum. Due to this, the most recent common ancestor
of lineages from the same host need not have arisen in that host. Although
large inocula have been observed in a number of diseases (Leonard
et al., 2017), most of the existing methods for transmission tree inference

© Sashittal and El-Kebir, 2020. 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996041doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996041
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2020/1/31 — 7:05 — page 2 — #2 i
i

i
i

i
i

2 Sashittal et al.

tim
e
τ

(τe, τr)

(T, ˆ̀)

J
Ĵ
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Fig. 1: Overview of the Direct Transmission Inference (DTI) problem. (a) The input of the problem consists of a timed phylogeny T that captures the
evolutionary history of the pathogen during the course of the outbreak. Each leaf of T corresponds to a sample collected for an individual host and is thus
labeled using ˆ̀(indicated by colors). The entry and removal times [τe(s), τr(s)] for each host s is also included in the input. (b) Our aim is to label the
internal vertices of T with ` such that the resulting transmission edges form a transmission tree S (as shown in Fig. 1b). Each edge (s, t) of S is weighted
by the number of transmission edges from host s to host t given by the vertex labeling `. (c) An alternative solution to the given DTI instance. It is easy
to see that no solution exists under the strong bottleneck constraint whereas under the weak transmission bottleneck there are multiple solutions. All the
feasible vertex labelings are shown in Fig. S7.

that account for the within-host diversity do not account for the co-
transmission of pathogen strains (Ypma et al., 2013; Didelot et al., 2014;
Hall et al., 2015; Didelot et al., 2017). That is, these methods assume a
strong transmission bottleneck where a single strain of the pathogen is
transmitted in an infection. A weak transmission bottleneck is considered
in SCOTTI (De Maio et al., 2016) and BadTrIP (De Maio et al., 2018),
however they make the simplifying assumption that all the transmissions
are independent of each other. SharpTNI (Sashittal and El-Kebir, 2019)
considers the weak transmission bottleneck without this assumption under
a parsimony based framework for a known phylogeny. However, SharpTNI
may yield transmission histories that cannot be represented by a tree due
to multiple infections of a single host from distinct donors. Such super-
infection are unlikely for pathogens where infected hosts acquire immunity
towards further infections of the pathogen (Whittle et al., 1999; Wearing
and Rohani, 2009), thus restricting the transmissions history to a tree.

The contributions of this paper are three-fold. First, we consider the
problem of counting and sampling uniformly from the set of possible
transmission trees for a known phylogeny and epidemiological data. In
previous works, this problem is considered by Kenah et al. (2016) when
the order of infections during the outbreak is completely known and by Hall
and Colijn (2019) under the strong transmission bottleneck constraint. In
this work, we relax both these constraints and propose a method TiTUS that
approximately counts and almost uniformly samples the transmission trees
under a weak transmission bottleneck for a given timed phylogeny (Fig. 1).
We prove the hardness of the decision and counting versions of this problem
and demonstrate the efficiency and accuracy of TiTUS on simulated
data. Second, we present a robust criteria for ranking or prioritizing
the uniformly sampled candidate transmission trees. In addition to the
simulated data, we demonstrate the performance of the selection criteria
on an HIV outbreak with a known transmission chain (Vrancken et al.,
2014). Third, in practice, the underlying phylogeny has some uncertainty
and there can be multiple candidates for the transmission tree for a
given phylogeny. It is therefore desirable to have an efficient method to
summarize the solution space of transmission trees that are consistent with
the genetic and epidemiological data. To this end, we propose a consensus-
based method that provides the mean transmission tree for a set of candidate
solutions while accounting for the number of distinct strains transmitted
in each infection event.

2 Preliminaries
To state the problems we consider in this manuscript, we start by
introducing the required concepts and notation. Let T be a rooted tree with

vertex set V (T ) and edge set E(T ). The set of leaves of the tree is given
by L(T ). The root of the tree is denoted by r(T ). We denote the children
of a vertex u by δT (u). We write u �T v if vertex u is ancestral to vertex
v, i.e. vertex u is present on the unique path from r(T ) to vertex v. Note
that�T is reflexive, i.e. it holds that u �T u for all vertices u. We denote
the set of m distinct hosts in the outbreak by Σ. In a phylogeographical
setting, the set Σ corresponds to m distinct geographical locations.

The evolutionary of all strains of a pathogen in an outbreak is modeled
by a timed phylogeny, which we define as follows.

Definition 1. A timed phylogeny T is a rooted tree whose vertices are
labeled by time-stamps τ : V (T )→ R≥0 such that τ(u) ≤ τ(v) for all
pairs u, v of vertices where u �T v.

Thus, as we can see in the above definition, time moves forward when
traversing down a timed phylogeny T starting from the root r(T ). It is
important to note that the leaves of a timed phylogeny T may occur at
distinct time-stamps, i.e. T is not necessarily ultrametric.

Each leaf of a timed phylogeny T corresponds to a strain of pathogen
that was collected during the outbreak. As such, we know the host from
which each individual strain was isolated. This is captured by a leaf
labeling, i.e. a labeling of the leaves of T by hosts Σ.

Definition 2. A leaf labeling of a timed phylogeny T is a function ˆ̀ :

L(T )→ Σ, assigning a host ˆ̀(u) ∈ Σ to each leaf vertex u ∈ L(T ).

While we know the host ˆ̀(u) from which each individual leaf u of
T was sampled, we do not know the hosts of the internal vertices, which
correspond to unsampled, ancestral strains. Here, our goal is to determine
the hosts in which these ancestral strains reside.Mathematically, we wish
to construct a vertex labeling ` : V (T ) → Σ, such `(u) = ˆ̀(u) for all
leaves u ∈ L(T ). Given a vertex labeling `, each internal vertex u of T
thus corresponds to a strain residing within host `(u) at time τ(u).

In addition to the evolutionary history of all strains in the outbreak, a
timed phylogenyT combined with a vertex labeling ` gives us information
about the transmission history of the outbreak. Transmissions of strains
from one host to another correspond to edges (u, v) ofT labeled by distinct
hosts `(u) 6= `(v). Formally, we define a transmission edge as follows.

Definition 3. Given a timed phylogeny T and vertex labeling `, an edge
(u, v) of T is a transmission edge if `(u) 6= `(v).

The vertex labeling that we construct for a given timed phylogenyT and
leaf labeling ˆ̀, must follow certain constraints for a realistic reconstruction
of the transmission history of the pathogen. We will now define these
epidemiological constraints.
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TiTUS: Sampling and Summarizing Transmission Trees with Weak Bottleneck 3

The first constraint that we introduce is called the direct transmission
constraint, which imposes the following two restrictions. First, the
outbreak begins with a single infected host. We call this initial host the root
host and it labels the root node r(T ) of the timed phylogeny. The root host
is not infected by any other host and therefore if s is the root host, there
cannot exist a transmission edge (u, v) such that `(u) 6= s and `(v) = s.
Second, the remaining hosts have a unique infector and are thus infected
only once in the course of the outbreak. A possible explanation for this
phenomenon is diseases where infected hosts acquire immunity towards
further infections of the pathogen (Whittle et al., 1999; Wearing and
Rohani, 2009). Consequently, there cannot exist two distinct transmission
edges (u, v) and (u′, v′) such that `(v) = `(v′) and `(u) 6= `(u′).
However, an infection between any two hosts s, t ∈ Σ may involve the
transmission of multiple strains at the same time. This is known as a
weak transmission bottleneck. Since the transmission of strains must occur
concurrently, the time intervals corresponding to any two transmission
edges between the same pair (s, t) of hosts must have an non-empty
intersection. More formally, we state the direct transmission constraint
as follows,

Definition 4. For a timed phylogeny T , a vertex labeling ` satisfies the
direct transmission constraint if (i) there does not exist a transmission
edge (u, v) such that `(v) = `(r(T )) and (ii) we have [τ(u), τ(v)] ∩
[τ(u′), τ(v′)] 6= ∅ for any two transmission edges (u, v) and (u′, v′)

where `(u) = `(u′) and `(v) = `(v′).

Under the direct transmission constraint, the set of transmission edges
induced by the vertex labeling ` uniquely determines the transmission tree
S. More formally, the vertex set V (S) of a transmission tree S is the
host set Σ, and there is a directed edge from s ∈ Σ to t ∈ Σ if and
only if there exists at least one edge (u, v) ∈ E(T ) such that (i) s 6= t,
(ii) `(u) = s and (iii) `(v) = t. Since every host except the root host
has a unique infector, the directed edges necessarily form a tree. Each
directed edge (s, t) ∈ E(S) is given a weight w : E(S) → N such that
w(s, t) equals the number of transmission edges in T from host s to t. If
w(s, t) = 1 for all edges (s, t) ∈ E(S) then each host is infected due to
the transmission of a single pathogen strain. This phenomenon is known
as a strong transmission bottleneck.

Epidemiological data provide two additional types of information.
First, for each host s we are given an interval [τe(s), τr(s)] during
which the host was present in the outbreak and susceptible for infection.
Specifically, τe(s) ∈ R≥0 is the entry time at which host s became
susceptible for infection, whereas τr(s) ∈ R≥0 is the removal time at
which the host was removed from the susceptible and infected populations
and placed in treatment or recovering.

Second, there can also be documented geographical constraints that
prevent transmissions between any given pair of hosts. We account for
all such constraints using a contact map. A contact map C is a directed
graph whose vertex set equals the set Σ of hosts. A directed edge (s, t)

represents a possible infection event from host s to host t. If any two hosts
are not connected in C then there can be no infection event between that
pair of hosts. It can clearly be seen that (i) the contact mapC is a subgraph
of the interval graph induced by the intervals [τe(s), τr(s)],∀s ∈ Σ and
(ii) the transmission tree S is a spanning arborescence of the contact map
C. Thus, even in the absence of documented contacts between hosts, a
contact map is induced by the entry and removal times of the hosts.

3 Problem Statement
We focus on inferring the transmission history of an outbreak for a known
pathogen phylogeny T . In addition, we are given epidemiological data,
which include the contact map C, entry and removal times [τe(s), τr(s)]

for each host s ∈ Σ and assume a direct transmission constraint under
a weak transmission bottleneck. This leads to the following decision
problem.

Problem 1 (Direct Transmission Inference (DTI)). Given a timed
phylogeny T with time-stamps τ : V (T ) → R≥0, a leaf labeling
ˆ̀ : L(T ) → Σ, a contact map C and entry τe : Σ → R≥0 and removal
times τr : Σ→ R≥0, find a vertex labeling ` that induces a transmission
tree S that is a spanning arborescence ofC and τ(u) ∈ [τe(s), τr(s)] for
all hosts s and vertices u where `(u) = s.

An instance of the DTI problem is shown in Fig. 1a shows an instance
of the DTI problem along a with a solution vertex labeling ` and induced
transmission tree S, where the three hosts are inducated using three
colors. Importantly, a DTI problem instance may admit multiple solutions,
as shown in Fig. 1b and Fig. 1c. These solutions provide alternative
reconstructions of the transmission history, and thus must be taken into
consideration in any downstream analysis of the outbreak to devise policy
to better manage/prevent future outbreaks. To quantify the number of
alternative reconstructions, we formulate the following counting problem.

Problem 2 (# Direct Transmission Inference (#DTI)). Given a timed
phylogeny T with time-stamps τ : V (T ) → R≥0, a leaf labeling
ˆ̀ : L(T ) → Σ, a contact map C and entry τe : Σ → R≥0 and
removal times τr : Σ → R≥0, count the number of vertex labelings
` that induce a transmission tree S that is a spanning arborescence of C
and τ(u) ∈ [τe(s), τr(s)] for all hosts s and vertices u where `(u) = s.

LetLbe the set of all solutions to a given DTI problem instance. Ideally,
we would exhaustively enumerate all solutions to the problem instance.
However, worst case, the number of solutions scales exponentially with
our input. Thus, to obtain a good overview of the solution space L, we
need to consider the sampling version of #DTI problem where we wish to
uniformly sample the solution space.

In summary, we defined three versions of the DTI problem: a decision,
counting and sampling version. In the following, we will consider a
previously defined constrained version of the DTI problem as well as a
generalization.

3.1 Related Transmission Tree Inference Problems

We start by considering a version of the DTI problem with one additional
constraint. This additional constraint requires that only one pathogen strain
is transmitted to a new host in a transmission event, and is known as a strong
transmission bottleneck. We refer to this problem as Directed Transmission
Inference under Strong Bottleneck (DTI-SB), and denote the space of
solutions by LSB. This problem was posed by Hall et al. (2015).In
subsequent work, Hall and Colijn (2019) introduced a polynomial time
algorithm to enumerate and uniformly sample from the setLSB. Since the
DTI-SB only has one additional constraint over the original DTI problem,
the solution space of DTI-SB is a proper subset of the solution space of
DTI for the same timed phylogeny T , leaf labeling ˆ̀and epidemiological
data. More formally, we have LSB ⊆ L.

The second problem we consider is a relaxed version of DTI.
Specifically, we relax the direct transmission constraint for a given instance
of DTI. We refer to this problem as rel-DTI and the space of feasible
solutions for a given instance by LREL. Section 5.2.1 introduces a
polynomial time dynamic programming algorithm that enumerates, counts
and uniformly samples from the set LREL. Since the rel-DTI problem is
a relaxation of the DTI problem, we can use the algorithm introduced
in Section 5.2.1 to uniformly sample from the solution space of the DTI
problem (L). Fig. 2 shows the relation between the solution spaces of the
three transmission tree inference problems.
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Fig. 2: Schematic to compare the solution spaces of transmission trees
under different constraints for a known timed phylogeny. We have
LSB ⊆ L ⊆ LREL. LSB is the solution space of transmission trees
with a strong bottleneck that is considered in the work of Hall and Colijn
(2019) where they show that counting the solutions and sampling from
this solution space can be performed in polynomial time. L is the solution
space of DTI which we show to be both NP-complete and #P-complete.
Finally, LREL is the relaxed solution space that is used to construct a
polynomial time rejection based naive sampling and counting algorithm
in Section 5.2.1.

3.2 Consensus Tree Problem

For the DTI problem described in the previous section, we start with a given
pathogen phylogeny T . However, in practice the phylogeny needs to be
inferred from genomic sequences of the strains collected from individual
hosts Σ. Several methods of phylogeny inference generate either multiple
candidates for the phylogeny or a posterior on the solution phylogeny
space (Bouckaert et al., 2019; Stamatakis, 2014). Moreover, for each given
timed phylogeny, we can get multiple solutions to the DTI problem as
shown for a representative instance in Fig. 1. Therefore, there is a need
for an efficient method to summarize the candidate transmission trees that
explain the disease outbreak.

A common method to summarize the solution space of transmission
trees is to aggregate the information from the candidate transmission trees
to generate a single graph where each edge is weighted by the number of
candidate trees that support that edge (De Maio et al., 2016; Wymant et al.,
2017; Didelot et al., 2014). This graph rarely represents a single coherent
transmission tree among the set of all hosts in the dataset. For this reason,
the resulting graph is called a relationship graph (Wymant et al., 2017)
and does not provide crucial information about co-occurrence and mutual
exclusivity among edges of the candidate transmission trees.

Another line of method summarizes the set of candidate solutions using
one or more consensus trees that best represent the solution space (Jombart
et al., 2017; Kendall et al., 2018). For instance, Jombart et al. (2017) apply
pairwise distance metrics on the space S of transmission trees, not taking
into account the numberw(s, t) of transmitted strains between pairs of host
(s, t). The resulting distance matrix is subsequently embedded into lower
dimensional space that the authors then cluster. Finally, each cluster is
then assigned a single transmission tree in S as its representative (Hall and
Colijn, 2019). Kendall et al. (2018) follow a similar embedding approach,
again not taking the number w(s, t) of transmission into account. Thus
neither method supports a weak transmission bottleneck. To address
this limitation, we define the weighted parent-child distance (WPCD)
d(S1, S2) between any two transmission trees S1 and S2 as follows.

Definition 5. Let S1 = (Σ, E1) with edge labeling w1 and S2 =

(Σ, E2) with edge labelings w2 be two transmission tree on the same
vertex set Σ. The weighted parent-child distance between the two graphs
denoted by d(S1, S2) is

d(S1, S2) =
∑

(s,t)∈E1

w1(s, t) +
∑

(s,t)∈E2

w2(s, t)

− 2
∑

(s,t)∈E1∩E2

min{w1(s, t), w2(s, t)}. (1)

In Appendix A.1.1 we show that this distance function induces a metric
in the space S of transmission trees. Note that transmission trees S and S′

that have the same topology but different edge weightsw andw′ will have
d(S, S′) > 0. As a result, WPCD can be used to produce a consensus
transmission tree while taking an incomplete transmission bottleneck into
account. Under the strong transmission bottleneck the weighted parent-
child distance simplifies to the size of the symmetric difference between the
edge sets of the two transmission trees, i.e. d(S, S′) = |E′\E|+|E\E′|.
This distance is known as the parent-child distance, and has been used to
compare tumor phylogenies (Aguse et al., 2019; Govek et al., 2018). Using
WPCD, we define the following consensus tree problem.

Problem 3 (Single Consensus Transmission Tree (SCTT)). Given k

distinct transmission trees S = {S1, · · · , Sk} with edge labelings
{w1, · · · , wk} find a consensus transmission tree R that minimizes
d(S, R) =

∑k
i=1 d(Si, R).

4 Complexity
This section establishes hardness results for the decision and counting
versions of the DTI problem.

Theorem 1. DTI is NP-complete.

We show the hardness of DTI by reduction from the 1-in-3SAT
problem, which is a known NP-complete problem (Karp, 1972). Details
are in Appendix A.2.

It is known that the #1-in-3SAT is a #P-complete problem (Creignou
and Hermann, 1993). In order to show that the #DTI is also #P-complete,
it suffices to show that there exists a polynomial-time reduction from #1-
in-3SAT such that the number of solutions is preserved, which we do in
Appendix A.2.

Theorem 2. #DTI is #P-complete.

Since the decision problem DTI is NP-complete, there does not exist
a fully polynomial randomized approximate scheme (FPRAS) for the
counting version of DTI unless NP=RP (Jerrum, 2003; Miklós, 2019).

5 Methods
This sections describes the methods developed to solve the decision,
counting and sampling versions of the DTI problem.

5.1 Decision Problem

Since the DTI is NP-complete, we propose to use SATISFIABILITY to
solve the decision problem. As such, we construct a Boolean formula φ
for a given DTI instance (T, ˆ̀, τe, τr, C), such that there is a bijection
between the solutions of the DTI instance and the corresponding SAT
instance φ. Solving the SAT instance will then be equivalent to solving the
corresponding DTI problem.
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Fig. 3: TiTUS accurately samples solutions to the DTI problem. (a) The number of solution to the rel-DTI (|LREL|), the DTI (|L|), and the DTI-SB
(|LSB|) problems computed using the Naive rejection sampling, TiTUS, and STraTUS respectively. The number of solutions to the rel-DTI problem
grows rapidly for increasing values of the simulated bottleneck size κ, while STraTUS fails to provide any solution when κ is greater than 1. (b) The
sampling efficiency, defined as the ratio |L| and |LREL| for increasing values of simulated number of hostsm and bottleneck size κ. (c) The ratio between
the minimum and maximum observed sampling frequency using TiTUS with the true uniform sampling frequency .

Vertex labeling: Decision variables x ∈ {0, 1}n×m encode a vertex
labeling, i.e. xi,s = 1 if and only if the node `(vi) = s and xi,s = 0

otherwise. We encode uniqueness of the label of each vertex with the
following formula.

onehot({xi,1, · · · , xi,m}), ∀vi ∈ V (T ). (2)

The function onehot(X) encodes that exactly one binary variable x ∈ X
is true, which can be accomplished by the following constraint.

[ ∨
x∈X

x

]
∧
[ ∧
x,y∈X

(¬x ∨ ¬y)

]
. (3)

Transmission edges: We encode the transmission edges using variables
cs,t with s, t ∈ Σ and s 6= t. We enforce that cs,t = 1 if and only if the
host t is infected by host s and cs,t = 0 otherwise as follows.

(xi,s ∧ xj,t) =⇒ cs,t, ∀(vi, vj) ∈ E(T ) and s, t ∈ Σ. (4)

Root host: To enforce that the host which labels r(T ) is not infected by
any other host, we have

xi,t =⇒ ¬cs,t, ∀s, t ∈ Σ, s 6= t, (5)

where vi = r(T ).

Direct transmission constraint: We enforce that any host cannot be
infected by more than one other host. For each host s ∈ Σ we have

¬cs,t ∨ ¬cs,t′ , t, t′ ∈ Σ and t 6= t′. (6)

We require that all transmission edges from host s to host tmust have time
intervals that overlap. For all edge pair (vi, vj), (vk, vl) that do not have
overlapping time intervals, i.e. [τ(vi), τ(vj)] ∩ [τ(vk), τ(vl)] = ∅, we
impose

¬xi,s ∨ ¬xj,t ∨ ¬xk,s ∨ ¬xl,t, ∀s, t ∈ Σ, s 6= t. (7)

5.2 Counting and Sampling Problem

5.2.1 Naive Rejection based Method
For a naive rejection sampling algorithm, we relax the direct transmission
constraint and uniformly sample vertex labelings for the timed phylogeny
T such that for all transmission edges (u, v) we have (`(u), `(v)) ∈
E(C). As described in Section 3.1, we refer to this as the rel-DTI problem.
Let the set of such vertex labelings be LREL. Drawing a vertex labeling
labeling ` ∈ LREL uniformly at random from the set LREL can be done
in polynomial time, as we describe in Appendix A.3. The sampled vertex
labeling labeling ` is rejected unless it satisfies the direct transmission
constraint, which can be verified in polynomial time. The probability of
success for this rejection based sampling algorithm is 1−(|L|/|LREL|)K

after K repetitions.

5.2.2 Approximate Counting and Sampling using SAT
Using the SAT formulation shown in Section 5.1, we may use
ApproxMC (Chakraborty et al., 2013; Soos and Meel, 2019) to
approximate |L| and UniGen (Chakraborty et al., 2014, 2015) to sample
almost uniformly fromL. We call the resulting method Transmission Tree
Uniform Sampler (TiTUS).

5.3 Consensus Problem

This section introduces a polynomial time algorithm to solve the SCTT
problem. The algorithm and the proof for correctness follow the work
of (Govek et al., 2018). Let S = {S1, · · · , Sk} be a set of k transmission
trees with edge weights {w1, · · · , wk}. Our goal is to find a consensus
tree R that minimizes d(S, R) where d(·, ·) is the weighted parent-child
distance. For any given tree Si, we define the function qi : Σ× Σ → N
where

qi(s, t) =

{
wi(s, t), (s, t) ∈ E(Si),

0, otherwise.

Observe that the parent-child distance between two transmission trees Si
and Sj can be re-written as

d(Si, Sj) =
∑

(s,t)Σ×Σ

|qi(s, t)− qj(s, t)|.
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Fig. 4: The transmission number and number of unsampled lineages of the solutions to the DTI problem are negatively correlated to the infection recall.
(a) The infection recall for the uniformly sampled solution within different percentile based on the transmission number. (b) The infection recall for the
uniformly sampled solution within different percentile based on the number of unsampled lineages. (c) The infection recall of the consensus transmission
trees within different percentiles of both the transmission number and the number of unsampled lineages simultaneously.

To get the optimal weights for the consensus tree, for any pair of hosts
(s, t) ∈ Σ× Σ, we define

w∗(s, t) = arg min
z>0

∑
Si∈S

|qi(s, t)− z|.

Clearly, w∗(s, t) for every pair of hosts (s, t) is given by max{med, 1}
where med is the median of the set {q1(s, t), · · · , qk(s, t)}. Thus, we
have the following observation.

Observation 1. Given a set S = {S1, · · · , Sk} of k transmission trees
with edge weights w1, · · · , wk , optimal consensus trees R that include
the edge (s, t) must assign this edge weight w∗(s, t).

We define the weighted parent-child graphP as a complete graph with
nodes given by the set Σ and a weight function

wp(s, t) =
∑
Si∈S

(|qi(s, t)− w∗(s, t)| − |qi(s, t)|)

Observe that the weights of the edges of P can be negative.

Theorem 3. Given a set S = {S1, · · · , Sk} of k transmission trees with
edge weights w1, · · · , wk , a minimum weight spanning arborescence of
the corresponding weighted parent-child graph P defines a treeR that is a
solution to the SCTT problem with the distance measure used is weighted
parent-child distance.

Proof. Provided in Appendix A.4.

Although edge weightsw∗ ofP can be negative, the requirement ofR
to be a spanning arborescence of G means that we can solve this problem
in polynomial time with standard minimum weight spanning arborescence
algorithms.

6 Results
This section presents the results obtained by applying TiTUS to simulated
as well as a real dataset.

6.1 Simulations

We employ a two-stage approach to simulate an outbreak, generalizing
Didelot et al. (2014)’s simulation framework that uses a strong
transmission bottleneck to support a weak transmission bottleneck. First,

S1,1

S2,1

S2,2

H1

H2

L1 L2

Fig. 5: Schematic representation of unsampled lineages in outbreaks.
Different hosts H1 and H2 are represented by rectangular boxes and the
samples taken from the hosts are indicated by blue or green circles inside
the boxes respectively. Black lines represent the evolution of pathogen
lineages. Solid lines correspond to within-host evolution of the pathogen
whereas dashed lines represent the transmission of strains during infection.
Two lineages L1 and L2 entering host H1 are shown. Lineage L1 is an
unsampled lineage because even though two strains of L1 are transmitted
to host H2, none of the samples of H1 belong to the lineage L1.

we simulate the transmission process between the m hosts using the
SIR epidemic model (Allen, 2008). The epidemiological model takes the
transmission bottleneck size κ and minimum number ns of strains/leaves
for each host s as input. Given this input, the model generates a
transmission treeS with entry τe(s) and removal times τr(s) for each host
s as well as the number of transmissions w(s, t) = κ between each pair
(s, t) ∈ E(S) of hosts. Given S and w, we then simulate the evolution
of the pathogens within each infected host using a simple coalescence
model with constant population size (Kingman, 1982). This process yields
a forest of timed phylogenies for each individual host s. We construct
a single timed phylogeny of all hosts by stitching together individual
timed phylogenies using the transmission tree S. For each combination
of number m ∈ {5, 7, 10} of hosts and bottleneck size κ ∈ {1, 2, 3} we
generate five instances, amounting to a total of 45 simulated instances.
The cases with κ = 1 correspond to outbreaks with a strong transmission
bottleneck. In order to mimic the uncertainty in epidemiological data seen
in practice, we increase the length of the entry and removal time interval
[τe(s)−∆, τr(s) + ∆] for each host s, where ∆ equals 10% of the total
outbreak duration.
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Fig. 6: Consensus transmission tree computed for the solutions selected using the proposed criteria infers almost the entire transmission chain
for the HIV outbreak. The figure on the left shows the infection recall of the solutions with different transmission numbers and number of unsampled
lineages, uniformly sampled using TiTUS. The black box encompasses the solutions selected for the percentile threshold of α = 0.01. The figure on the
right shows the consensus transmission tree for the selected solutions. Each edge is labeled by the number of strains transmitted from the donor to the
recipient host. The incorrectly inferred transmission B→F is highlighted in red.

We find that increasing the number of hosts and bottleneck size in
the simulations leads to an increase in the number of vertices n in the
phylogenetic trees (Fig. S12a). This leads to a sharp increase in the
number of feasible solutions to the rel-DTI (Fig. 3a). The number of
solutions to DTI, on the other hand, stays relatively constant for increasing
bottleneck size. As a consequence of this, the sampling efficiency of
the naive rejection sampling method, defined by the ratio L/|LREL|,
precipitates with increasing number m of hosts and bottleneck size κ
proving it unsuitable for any real applications.

For cases with simulated bottleneck size κ > 1, STraTUS fails
to provide any solutions (Fig. 3a). This shows that when multi-strain
infections occur, transmission history inference with a strong bottleneck
assumption will fail to provide the true transmission tree topology. Finally,
we assess the sampling accuracy of TiTUS by comparing the sampling
frequency with 1/|L| where |L| is computed with sharpSAT (Thurley,
2006). For each unique solution that is sampled, the expected sampling
frequency 1/|L| is the same. Fig. 3c shows that the ratio between both
the minimum and maximum values of the observed sampling frequencies
with their expected values is close to 1.

In summary, our simulations show that methods that assume a strong
transmission bottleneck cannot be applied to outbreaks with a weak
bottleneck. Moreover, the exponentially increasing gap between the size of
the solution space of rel-DTI compared to DTI renders the rejection-based
sampling impractical. In contrast, TiTUS almost uniformly samples from
the complex solution space of DTI.

6.1.1 Criteria to Prioritize Candidate Transmission Trees
We propose several criteria for ranking the vertex labelings for a given
timed phylogeny uniformly sampled by TiTUS. The first criterion is
the number of transmission edges in the vertex labeling. Based on
the parsimony principle, which has been used in previous works for
both phylogeny inference (Sankoff, 1975) as well as transmission tree
inference (Wymant et al., 2017; Snitkin et al., 2012; Sashittal and El-
Kebir, 2019), we expect vertex labelings that have few transmission edges
to be closer to the ground truth. The second criterion is the number of
unsampled lineages, which is the number of transmission edges (u, v) for
which there does not exist a descendant leaf v′ (i.e. v �T v′) labeled by
`(v). Unsampled lineages are a consequence of multi-strain infections and
we expect to see fewer unsampled lineages when the within-host diversity
of the infected hosts is adequately sampled. Fig. 5 illustrates this concept.

To assess these criteria, we compare the sampled transmission trees
with the ground truth by computing the infection recall, defined as the
fraction of transmission events between pairs of hosts that are correctly
inferred. Fig. 4a shows the value of the infection recall for candidate
solutions in different percentiles based on the number of transmission
edges. Clearly, as we look at solutions with larger transmission numbers,
the infection recalls decreases. Fig. 4b show a similar negative correlation
between the infection recall and the number of unsampled lineages. We
use both the transmission number and the number of lineages to prioritize
the uniformly sampled candidate solutions. Specifically, for any given
percentile thresholdαwe include all the vertex labelings whose percentile
is at mostα for both the transmission number and the number of unsampled
lineages. (Thus, setting α = 1 will include all sampled vertex labelings.)
The selected vertex labelings are then used to compute the consensus
transmissions tree. Fig. 4c shows the infection recall of the consensus
transmission trees for increasing value of the percentile threshold α. We
see that a value of α that is either too small or too large results in a
decrease in the infection recall Based on the simulated data, we see that
α∗ = 0.01 yields accurate consensus transmission tree solutions. Hence,
the two criteria enable accurate prioritization of sampled vertex labelings.

6.2 HIV Outbreak with a Known Transmission Chain

We apply our method TiTUS to infer the transmission history of an HIV-1
outbreak involving 11 patients with a known transmission chain (Vrancken
et al., 2014; Lemey et al., 2005). The data consists of 212 samples
collected over the span of 18 years from the 11 patients. The direction of
transmissions and a relatively narrow time interval for each transmission
event were inferred from epidemiological information obtained by patient
interviews, clinical data and treatment histories of the patients.

The DTI problem for this HIV dataset is set up as follows. For the timed
phylogeny, we use the Maximum Clade Credibility (MCC) tree obtained
from the partially sequenced env regions presented by Vrancken et al.
(2014) in their publication. Table 1 in Appendix A.6 shows the sampling
times and transmission windows provided in the epidemiological data for
each of the hosts. The transmission window of a host is the time interval
inside of which the host is expected to have been infected. Transmission
windows for host A and host D are incongruent with the given timed
phylogeny. By this we mean there is no vertex labeling on the given MCC
phylogeny that allows for the known transmissions to host A and host
D. We exclude these time windows, while the transmission windows for
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the remaining hosts are used to constraint the possible vertex labelings
of the MCC tree. We restrict the infection for each host to take place
in within the transmission window provided in the epidemiological data.
Appendix A.6 shows the details of the implementation of this constraint in
the SAT formulation. Note that while using the time window constraints,
we only restrict the time of infection and do not utilize information about
the known infectors for each infected host. Finally, for each host the entry
time is taken as the beginning of its time window of transmission and the
removal time is the latest date of sampling (Table 1). We find that STraTUS
fails to provide a solution on this dataset. Indeed, a weak transmission
bottleneck needs to be considered in order to infer the transmission history.

For this DTI instance, using sharpSAT (Thurley, 2006) we find
that there are exactly 30,901,500 feasible vertex labelings. We generate
100,000 samples from this solution space and compute the infection recall
when compared to the known transmission chain. Fig. 6 shows the values
the infection recall for solutions with different number of transmission
edges and number of unsampled lineages. The infection recall is close
to 1 for the solutions that have no unsampled lineages. The number of
transmission edges also has a negative, albeit weaker correlation with the
infection recall.

For any given percentile threshold α we include all vertex labelings
whose percentile is at most α for both the transmission number and the
number of unsampled lineages. Based on the simulations, we focus on
percentile threshold α∗ = 0.01. For this threshold value, Fig. 6 shows the
consensus transmission tree inferred by TiTUS. The infection recall for
this tree is 0.9, i.e. we correctly infer 9/10 transmission from the known
transmission chain. We incorrectly infer the transmission B→F while the
known transmission to F based on epidemiological data is A→F. Fig. S14
shows similar behavior of the infection recall as a function ofα as observed
in our simulations. Moreover, this figure shows that our method is robust
around α∗ = 0.01.

7 Discussion
In this paper, we formulated the Direct Transmission Inference (DTI)
problem of inferring transmission trees for a given timed phylogeny and
epidemiological data while supporting a weak transmission bottleneck.
Weak transmission bottlenecks are common in the spread of diseases due to
pathogens with large inoculum sizes, high mutation rates, long incubation
times and chronic infections Leonard et al. (2017). Previous studies of
counting and sampling transmission trees for a given timed phylogeny
assume a strong transmission bottleneck (Kenah et al., 2016; Hall and
Colijn, 2019), and are not applicable to outbreaks of pathogens with a
weak transmission bottleneck, often failing to return any solution.

We proved that the decision version of the DTI problem is NP-
complete and the counting version #DTI is #P-complete. Leveraging
recent advances made in approximate counting and sampling of solutions
to SATISFIABILITY (Chakraborty et al., 2014, 2013, 2015; Soos
et al., 2009), TiTUS, which uses a SATISFIABILITY oracle to almost
uniformly sample from the solution space of DTI. In most cases,
uniformly sampled candidate solutions from the transmission tree space
will deviate considerably from the ground truth. To address this issue, we
proposed two criteria that can be used to prioritize the uniformly sampled
transmission trees. We demonstrated the performance and robustness of
our selection criteria on both simulated data and a real dataset of an HIV
outbreak (Vrancken et al., 2014).

Further, we also considered the problem of summarizing a given set of
candidate transmission tree solutions of a disease outbreak. We defined a
new distance metric weighted parent-child distance (WPCD) on the space
of transmission multi-trees that capture the transmission of multiple strains
between hosts during an outbreak. This distance is an extension of the

parent-child distance which is used in previous works to summarize cancer
phylogenies (Govek et al., 2018; Aguse et al., 2019). We presented a
polynomial time algorithm for finding the consensus transmission tree with
minimum total WPCD from the candidate solutions. The performance of
the consensus transmission tree of recalling the transmissions that occurred
during the outbreak is demonstrated both on simulated and real datasets.

There are several avenues for future research. First, the decision
version of the DTI problem can be used to prioritize a posterior
distribution of phylogenies, by checking if each phylogeny admits
a vertex labeling that induces a transmission tree that is compatible
with the given epidemiological data. A similar approach is employed
by Sledzieski et al. (2019) where they prioritize statistically likely timed
phylogenies that admit vertex labelings with fewer transmission edges. By
including biological relevant constraints such as a contact map and direct
transmission constraints, we expect to obtain high-fidelity phylogenetic
and transmission history reconstructions. Second, one limitation of the
proposed method is that it assumes that all the infected hosts in the
outbreak are sampled. This assumption is only applicable for small
outbreaks in regions with perfect surveillance and reporting system in
place. An extension of this method to include unsampled hosts would
be a useful. Third, akin to (Jombart et al., 2017), we plan to extend the
SCTT to simultaneously cluster the set S of transmission trees and infer
a representative consensus transmission tree for each cluster. Finally, we
plan to directly include the identified prioritization criteria as constraints
in the DTI problem.
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(a) (b) (c)

Fig. S7: The timed phylogeny shown in Fig. 1a has 3 possible vertex labeling solutions.

A.1 Background and Theory
In this section we provide the information we could not include in the main text. Fig. S7 shows all the feasible solutions to the representative DTI problem
desribed in the Fig. 1.

A.1.1 Transmission Tree Metric

In this section we show that WPCD is a distance metric. To show that WPCD is a distance metric, for any transmission tree Si, we define the function
qi : Σ× Σ→ N as

qi(s, t) =

{
wi(s, t), (s, t) ∈ E(Si),

0, otherwise.

Observe that, by construction, qi uniquely determines the transmission tree Si since for any edge (s, t) ∈ E(Si) we have wi(s, t) > 0. Further, the
WPCD between any two transmission trees S1 and S2 can be alternatively written in terms of q1 and q2 as follows,

d(S1, S2) =
∑

(s,t)Σ×Σ

|q1(s, t)− q2(s, t)|.

Proposition 1. WPCD is a distance metric on the space of transmission trees T .

Proof. First, we show that for any two transmission trees S1 and S2, d(S1, S2) = 0 if and only if S1 = S2. Clearly when S1 = S2, we have
d(S1, S2) = 0. Now, let us consider the case d(S1, S2) = 0. For any (s, t) ∈ Σ × Σ, |q1(s, t) − q2(s, t)| ≥ 0. Therefore, if d(S1, S2) then for all
(s, t) ∈ Σ× Σ we have q1(s, t) = q2(s, t) implying that S1 = S2.

By definition, WPCD is always nonnegative and symmetric.
We only need to show the triangle inequality, i.e. given trees S1, S2 and S3, we must show

d(S1, S3) ≤ d(S1, S2) + d(S2, S3).

We show this as follows,

d(S1, S3) =
∑

(s,t)∈Σ×Σ

|q1(s, t)− q3(s, t)|

=
∑

(s,t)∈Σ×Σ

|q1(s, t)− q2(s, t) + q2(s, t)− q3(s, t)|

≤
∑

(s,t)∈Σ×Σ

(|q1(s, t)− q2(s, t)|+ |q2(s, t)− q3(s, t)|)

=d(S1, S2) + d(S2, S3).

A.1.2 Sampling Scenarios

The weak transmission bottleneck has some interesting implications for the sampling of the within-host diversity of the infected hosts. Fig. S8 gives an
overview, with schematic representations, of 4 different scenarios that can occur for real outbreaks.
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S2,1

S2,2

H1

H2

(a) Unsampled Host

S1,1

S2,1

S2,2

H1

H2

(b) Unsampled Lineage

S1,1

S2,1

S2,2

H1

H2

(c) Unsampled Strain

S1,1

S1,2

S2,1

S2,2

H1

H2

(d) Complete Sampling

Fig. S8: Schematic representation of different sampling scenarios during an outbreak. Different hosts H1 and H2 are represented by rectangular
boxes and the samples taken from the hosts are indicated by blue or green circles inside the boxes respectively. Red lines represent the evolution of
pathogen lineages. Different scenarios described are (a) Unsampled Host scenario where host H1 is not sampled even though it is part of the outbreak
and infectsH2 with multiple strains (b) Unsampled Lineage where even though hostH1 is sampled with sample S1,1, the lineage that passes two strains
into host H2 remains unsampled (c) Unsampled Strain scenario where the host H1 is sampled and the right lineage is also sampled however the two
strains that are transmitted to host H2 are not sampled (d) Complete Sampling scenario where there is no incomplete lineage sorting (ILS) and all the
strains transmitted from H1 to H2 are sampled.

A.2 Complexity
In this section we show the hardness of the decision and the counting versions of the DTI problem using reduction the one-in-three SAT (1-in-3 SAT).

Problem 4 (1-in-3SAT). Given a Boolean formula φ =
∧k
i=1(yi,1∨yi,2∨yi,3) in 3-conjunctive normal form (3-CNF) with n variables and k clauses,

decide whether there exists a truth assignment θ : [n]→ {0, 1} so that each clause has exactly one true literal (and thus exactly two false literals).

A.2.1 Decision Problem

To relate literals to variables, we use the function ν : [k] × {1, 2, 3} → [n] such that ν(i, j) is the variable corresponding to literal yi,j . We define
σ(i, j) to be 1 if yi,j is a positive literal (i.e. yi,j = xν(i,j)), otherwise σ(i, j) = 0 if yi,j is a negative literal (i.e. yi,j = ¬xν(i,j)). A truth assignment
θ satisfies φ if for each clause i ∈ [k] there exists a j ∈ {1, 2, 3} such that σ(i, j) = θ(ν(i, j)).

Given φ, we construct a timed phylogeny T (φ) with leaf labeling ˆ̀, a contact mapC(φ) and time-stamps τ, τe, τr , as depicted in Fig. S9 and detailed
below. We set Σ = {⊥, x1, . . . , xn,¬x1, . . . ,¬xn c1, . . . , ck}. Let ε > 0 be a small positive constant. As for entry and removal time-stamps, we
set τe(⊥) = 0, τr(⊥) = ε, and τe(xi) = τe(¬xi) = ε and τr(xi) = τr(¬xi) = 3ε for each variable i ∈ [n]. For each clause ci, i ∈ [k] we
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τ = 0

τ = ε

τ = 2ε

τ = 3ε

time

· · ·

x1 ¬x1

T [x1]

xn ¬xn
T [xn]

n variable subtrees

¬yk,3 ck

T [yk,3]

¬yk,2 ck

T [yk,2]

¬yk,1 ck

T [yk,1]

· · ·

¬y1,3 c1

T [y1,3]

¬y1,2 c1

T [y1,2]

¬y1,1 c1

T [y1,1]

3k clause subtrees

Fig. S9: Construction of T (φ) for reduction from 1-in-3SAT to DTI. Let φ be an 1-in-3SAT formula with k clauses and n variables. T (φ) is built
with a root node r(T (φ)) can is connected to 3k clause subtrees {T [y1,1], T [y1,2], T [y1,3], · · · , T [yk,1], T [yk,2], T [yk,3]} and n variable subtrees
{T [x1], · · · , T [xn]}. We set τe(⊥) = 0, τr(⊥) = ε, and τe(xi) = τe(¬xi) = ε and τr(xi) = τr(¬xi) = 3ε for each variable i ∈ [n]. For each
clause ci, i ∈ [k] we set τe(ci) = τr(ci) = 3ε. We prove that there exits a truth assignment so that each clause of φ has exactly one true literal if and
only if there exists a vertex labeling for T (φ) that results in a transmission tree that is a spanning arborescence of the contact map C(φ) (Fig. S10).

⊥

x1 ¬x1 xn ¬xn

c1 ck

· · ·
· · ·

Fig. S10: Construction of C(φ) for reduction from 1-in-3SAT to DTI. Let φ be an 1-in-3SAT formula with k clauses and n variables. The host set
is Σ = {⊥, x1, · · · , xn,¬x1, · · · ,¬xn, c1, · · · , ck}. We have a directed edge from ⊥ to each of the variables {x1, · · · , xn,¬x1, · · · ,¬xn}. Each
each i ∈ [n], variable xi has an outgoing edge to ¬xi and similarly variable ¬xi has an outgoing edge to xi. Finally, each clause ci has three incoming
edges, one from each of the literals that form the clause, i.e. yi,1, yi,2 and yi,3.

set τe(ci) = τr(ci) = 3ε. Timed phylogeny T (φ) is composed of 3k clause gadgets and n variable gadgets, each corresponding to a subtree that is
directly attached to the root r(T (φ)). The root vertex has time-stamp τ(r(T (φ)) = 0. The leaves of T have identical time-stamps 3ε. For each variable
i ∈ [n], we have a subtree T [xi] whose root has time-stamp τ(r(T [xi])) = 2ε. The two children of r(T [xi]) have identical time-stamps 3ε, with one
child leading to two leaves labeled by positive literal xi and the other child leading to two leaves labeled by negative literals ¬xi. Similarly, for each
clause ci, i ∈ [k], we have 3 subtrees T [yi,1], T [yi,2] and T [yi,3]. The root of the subtree T [yi,j ] has time-stamp ε and two children, one of which
is the leaf labeled by xν(i,j) if yi,j = ¬xν(i,j) and ¬xν(i,j) if yi,j = xν(i,j). The other child node, denoted as vi,j , has time-stamp τ(vi,j) = 2ε

and has only one child which is a leaf labeled by ci. The contact map C(φ) is constructed as follows. The vertex set for the contact map is given by Σ.
We have a directed edge from⊥ to each of the variables {x1, · · · , xn,¬x1, · · · ,¬xn}. For i ∈ [n], each variable xi has an outgoing edge to ¬xi and
similarly variable ¬xi has an outgoing edge to xi. Finally, each clause ci has three incoming edges, one from each of the literals that form the clause, i.e.
yi,1, yi,2 and yi,3. For instance, if c1 := (x1 ∨ x2 ∨ ¬x3), then we have the directed edges (x1, c1), (x2, c1) and ¬x3, C1. Clearly, T (φ) and C(φ)

can be obtained in polynomial time from φ. An example of this reduction is shown in Fig. S11.

Lemma 1. For any vertex labeling ` of T (φ), ⊥ is the root host.

Proof. Under the direct transmission constraint, root host is given by the host that labels the root node of the timed phylogeny. The time stamp of the root
node of T (φ) is τ(r(T (φ))) = 0. The only host that has entry time before τe ≤ 0 is ⊥. Therefore, for any vertex labeling we have `(r(T (φ))) = ⊥,
which makes ⊥ the root host.

Lemma 2. For any variable x, either {(⊥, x), (x,¬x)} ⊆ E(S) or {(⊥,¬x), (¬x, x)} ⊆ E(S).

Proof. For any variable x, consider the subtree T [x]. By construction we have, τ(r(T [x])) = 2ε and the node only has two children labeled by x and
¬x. From the contact map we know that the only possible infectors for x has⊥ and¬x and similarly for¬x are⊥ and x. Given that τr(⊥) < τ(r(T [x])),
the only remaining choices for `(r(T [x])) are x and ¬x.

If `(r(T [x])) = x then we have {(⊥, x), (x,¬x)} ⊆ E(S) and if `(r(T [x])) = ¬x we have {(⊥,¬x), (¬x, x)} ⊆ E(S).

Lemma 3. For any clause ci = (yi,1 ∨ yi,2 ∨ yi,3), if (yi,j , ci) ∈ E(S) then `(r(T [yi,j ])) = yi,j and `(r(T [yi,j′ )) = ⊥ for j′ 6= j.

Proof. Consider the subtree T [yi,j ]. Let us denote the node that is child of r(T [yi,j ]) and parent of the leaf of T [yi,j ] labeled with ci as vj .
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τ = 0

τ = ε

τ = 2ε

τ = 3ε

time x1 ¬x1 x2 ¬x2 x3 ¬x3¬x2 c1 x3 c1c1¬x1

⊥

¬x1 ¬x2 ¬x3

x1 x2 x3 c1

2 2 4

1 1 2 3

Fig. S11: Example of reduction. Consider the 1-in-3SAT Boolean formulaφ = (x1∨x2∨¬x3).φ is satisfiable with truth assignmentθ(1) = 0, θ(2) = 0

and θ(3) = 0. Figures (on the left) shows a vertex labeling ` corresponding to θ. Since the vertex labeling admits a transmission tree (one the right), φ is
Exactly-1 satisfied with truth assignment θ.

Since S is a spanning arborescence of C(φ) we have either (yi,1, ci), (yi,2, ci) or (yi,3, ci) in E(S). Without loss of generality, let us assume that
(yi,1, ci) ∈ E(S).

The edges (v1, δT (v1)), (v2, δT (v2)) and (v3, δT (v3)) need to be transmission edges since τ(v1) = τ(v2) = τ(v3) < τe(ci). Since (yi,1, ci) ∈
E(S), we require `(v1) = `(v2) = `(v3) = yi,1. Looking at r(T [yi,2]) and r(T [yi,3]), since each clause consists of distinct variables, we can only
have `(r(T [yi,2])) = `(r(T [yi,3])) = ⊥. Consequently, the transmission edges (r(T [yi,2]), v2) and (r(T [yi,3]), v3) results in a edge (⊥, yi,1) in
E(S). By Lemma 2, this also means (yi,1,¬yi,1) ∈ E(S) and therefore `(r(T [yi,1])) = yi,1.

Lemma 4. For any literal yi,j in clause ci, (⊥, yi,j) ∈ E(S) if and only if (yi,j , ci) ∈ E(S).

Proof. Consider the subtree T [yi,j ]. Let us denote the node that is child of r(T [yi,j ]) and parent of the leaf of T [yi,j ] labeled with ci as v.
(⇒) If (⊥, yi,j) ∈ E(S), then by Lemma 2 we know that (yi,j ,¬yi,j) ∈ E(S). Therefore, `(r(T [yi,j ])) = yi,j . Given that `(r(T [yi,j ])) = yi,j ,

`(δT (v)) = ci and τ(v) = ε, the only feasible label for v is yi,j . Therefore `(v) = yi,j and (yi,j , ci) ∈ E(s).
(⇐) If (yi,j , ci) ∈ E(S), then since τ(v) < τe(ci), we have `(v) = yi,j . From Lemma 3 we know that `(r(T [yi,j ])) is either ⊥ or yi,j . If

`(r(T [yi,j ])) = ⊥, then we will have {(⊥, yi,j), (⊥,¬yi,j)}which is not possible due to Lemma 2. Therefore `(r(T [yi,j ])) = yi,j and consequently
(⊥, yi,j) ∈ E(S).

Proposition 2. There exists a vertex labeling ` of T (φ) under the direct transmission constraint such that the corresponding transmission tree S(`) is a
spanning arborescence of C(φ) if and only if φ is satisfiable with a truth assignment θ so that each clause has exactly one true literal.

Proof. (⇒) Let ` be a vertex labeling of T (φ) under the direct transmission constraint such that the corresponding transmission tree S is a spanning
arborescence of C(φ). We construct the corresponding truth assignment θ for φ as follows. From Lemma 2 we know that for any variable x, either
(⊥, x) ∈ E(S) or (⊥,¬x) ∈ E(S). We set θ(i) = 1 if (⊥, xi) ∈ E(S) and θ(i) = 0 if (⊥,¬xi) ∈ E(S). We claim that the this truth assignment
satisfies φ with exactly one literal for each clause.

We need to show that, for any clause ci = (yi,1 ∨ yi,2 ∨ yi,3), exactly one of (⊥, yi,1), (⊥, yi,2) and (⊥, yi,3) is in E(S). From Lemma 4 we
know that (⊥, yi,j) ∈ E(S) if and only if (yi,j , ci) ∈ E(S). Since S is a spanning arborescence, exactly one of (y(i, 1), ci), (yi,2, ci) and (yi,3, ci)

is in E(S). Therefore, exactly one of (⊥, yi,1), (⊥, yi,2) and (⊥, yi,3) is in E(S) which renders the clause ci satisfied with exactly one literal.
(⇐) Consider the truth assignment θ that satisfies φ with exactly one literal for each clause in φ. We build the vertex labeling ` for T (φ) as follows.

From Lemma 1 it is clear that ⊥ is the root host and therefore r(S) = ⊥. We set `(T [xi]) = xi if θ(i) = 1 and `(T [xi]) = ¬xi if θ(i) = 0. For
any clause ci in φ, if yi,j is true we set `(r(T [yi,j ])) = yi,j and if ¬yi,j is true we set `(r(T [yi,j ])) = ⊥. Finally, we set `(vi,j) = yi,j for all
j ∈ {1, 2, 3}. We need to show that constructed vertex labeling satisfies the direct transmission constraint and that the resulting transmission tree is a
spanning arborescence of the contact map C(φ). We do this by first showing that (i) each variable has a unique infector and (ii) all transmission edges
between the same pair of hosts have time intervals that overlap.

Consider all the variables that are assigned true by the truth assignment. The infector for all these variables is ⊥ since `(r(T (φ))) = ⊥ and
`(T [xi]) = xi if θ = 1 and `(r(T [yi,j ])) = ⊥ if ¬yi,j is true. This agrees with C(φ). The time intervals of the outgoing edges from r(T (φ)) and
r(T [yi,j ]),∀i ∈ [k], j ∈ {1, 2, 3} contain τ = ε. Therefore, all possible transmission edges from ⊥ overlap at τ = ε.

Consider the variables that are assigned false by the truth assignment. From Lemma 2 we know that for any such variable x, they are infected by ¬x.
This agrees with C(φ). Moreover, these variables do not label any of the interval vertices of the tree T and all the leaves of T are at the same time-stamp
τ = 3ε. Therefore, all possible transmission edges to any such variable x overlap at τ = 3ε.

Finally, consider any clause ci. All the internal vertices vi,j , j ∈ {1, 2, 3} are labeled by the same variable yi,j that renders the clause ci satisfied.
As a result, yi,j is a unique infector of ci and (yi,j , c) exists inE(C(φ)) by construction. Also, time-stamp of all vertices vi,j are the same τ = 2ε and
therefore, the transmission edges overlap at τ = 2ε.

A.2.2 Counting Problem

This section proves the #P-completeness of the #DTI problem.

Proposition 3. There exists a parsimonious reduction from #1-in-3SAT to #DTI.
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Proof. Consider the reduction shown in Section 4. Here we show that this reduction is parsimonious, i.e. it preserves the number of solutions in the
solution spaces of the two problems. We show a bijection between the solution space of a 1-in-3SAT and the solution space of the corresponding DTI
instance.

Consider the Boolean formula φ. For a given truth assignment θ that satisfies each clause of φ with exactly one true literal, we construct the vertex
labeling of T (φ) as following. We let `(T [xi]) = xi if θ(i) = 1 and `(T [xi]) = ¬xi if θ(i) = 0. We will show that this unique determines the
labeling for the rest of the internal vertices of T (φ). Consider the clause ci and the corresponding subtrees T [yi,1], T [yi,2] and T [yi,3]. Since the truth
assignment satisfies each clause with exactly one literal, without loss generality, assume that yi,1 is true. Then using Lemma 4, since (⊥, yi,j) ∈ E(S),
we have (yi,j , ci) ∈ E(S). For the nodes vi,j we have τ(vi,j) < τe(ci) and therefore `(vi,j) = yi,j ,∀j ∈ {1, 2, 3}. Finally, the vertex labels for
the roots of the clause subtrees `(r(T [yi,1])) = `(r(T [yi,2])) = `(r(T [yi,3])) = yi,1 due to Lemma 3. Proof of Proposition 2 shows that this vertex
labeling is a solution of the DTI problem.

From a given vertex labeling `, we construct the truth assignment as follows. We set θ(i) = 1 if `(r(T [xi])) = xi and θ(i) = 0 if `(r(T [xi])) = ¬xi.
Proof of Proposition 2 shows that this is a truth assignment that satisfies each clause with exactly one true literal.

The construction of θ from ` and ` from θ are inverses of each other. If we view these constructions as functions then they show a bijection in the
solutions spaces of #1-in-3SAT and #DTI. This shows that the number of solutions is preserved. Obviously, the reduction can be performed in polynomial
time. Therefore, the reduction is parsimonious.

A.3 Naive Rejection Sampling Algorithm
Here we descirbe the naive rejection sampling algorithm introduced in Section 5.2.1. Let h[v, s] denote the number of vertex labelings ` ∈ LREL in the
subtree Tv of T rooted at vertex v when `(v) = s. We define h[v, s] recursively as



1, if v ∈ L(T ), ˆ̀(v) = s,

0, if v ∈ L(T ), ˆ̀(v) 6= s,

0, if v 6∈ L(T ), τ(v) 6∈ I(s),∏
w∈δT (v)

∑
t∈ΓC(s)

h[w, t], if v 6∈ L(T ), τ(v) ∈ I(s),

where I(s) = [τe(s), τr(s)] and ΓC(s) = {s, δC(s)}. Let Σ∗ = {s1, . . . , sk} be the set of possible labels for the root vertex r(T ), i.e. Σ∗ = {s ∈
Σ | τ(r(T )) ∈ I(s)}. The number of vertex labelings |LREL| is given by

∑
s′∈Σ∗ h[r(T ), s′].

Using the count matrix h[u, s], we introduce a subroutine that takes a vertex v and host s as input, and uniformly samples a vertex labeling `u of
subtree Tu rooted at u subject to the restriction that `u(u) = s (Algorithm 3). The fraction ps of the vertex labelings ` where `(r(T )) = s equals
h[r(T ), s]/

∑
s′∈Σ∗ h[r(T ), s′]. Thus, to sample all vertex labelings uniformly at random, we draw a s ∈ Σ∗ according to the categorical probability

distribution defined by (p1, . . . , pk). Algorithm 4 is then used on T with `(r(T )) = s to sample minimum transmission host labeling ` of T uniformly
at random. This takes O(nm) time per sample.

For a given phylogeny and vertex labeling (T, `), it is possible to find the minimum number of transmission events in polynomial time (Sashittal and
El-Kebir, 2019). The direct transmission constraint is satisfied by the vertex labeling when the number of transmission events is m − 1, where each
transmission event corresponds to an edge of the transmission tree. We can therefore draw vertex labelings from LREL and only retain the solutions that
belong to L in polynomial time. Since we are uniformly sampling from LREL, the retained solutions will also be uniformly sampled from L. For the
counting problem we estimate the number of vertex labelings in L by the success rate of the sampling algorithm. Say after K draws of samples from
LREL, we retain K′ vertex labelings that belongs to L. In that case the estimate of the size of L, denote by 〈|L|〉, is given by

〈|L|〉 =

(
1−

K′

K

)1/K

From the law of large numbers, as K →∞ we have 〈|L|〉 → |L|. We now present the algorithms for naive rejection based sampling.
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Algorithm 1 EnumRelDTI(T, ˆ̀, u, s)

Output: Set Lu of vertex labelings ` of Tu where `(u) = s

1: if u ∈ L(T ) then
2: Let s be the unique host where ˆ̀(u) = s

3: return {{(u, s)}}
4: else
5: Let v1, . . . , vk be the children of v
6: L1, . . . ,Lk ← ∅, . . . , ∅
7: for v ∈ {v1, . . . , vk} do
8: for t ∈ Γ((u, v), s) do
9: Lv ← Lv ∪ EnumRelDTI(T, g, v, t)
10: end for
11: end for
12: Lu ← ∅
13: for `1, . . . , `k ∈ L1 × . . .× Lk do
14: Lu ← Lu ∪ {`1 ∪ . . . ∪ `k ∪ {(u, s)}}
15: end for
16: return Lu
17: end if

Algorithm 2 EnumRelDTI(T, g)

Output: Set L of optimal host labelings ` of T
1: Let Σ∗ be the set of hosts s where τ(r(T )) ∈ I(s)
2: L ← ∅
3: for s ∈ Σ∗ do
4: L ← L ∪ EnumRelDTI(T, ˆ̀, r(T ), s)

5: end for
6: return L

Algorithm 3 SampleRelDTI(T, h, u, s)

Output: Random, optimal host labeling ` of Tu where `(u) = s

1: Let δT (u) = {v1, . . . , vk} be the children of u
2: for v ∈ {v1, . . . , vk} do
3: K ←

∑
t∈ΓC(s) h[v, t]

4: for t ∈ Σ = {1, . . . ,m} do
5: if t ∈ ΓC(s) then
6: p(t)← h[v, t]/K

7: else
8: p(t)← 0

9: end if
10: end for
11: Draw host t∗ ∈ Σ randomly according to (p1, . . . , pm)

12: `v ← SampleRelDTI(T, g, h, v, t∗)
13: for w ∈ V (Tv) do
14: `(w)← `v(w)

15: end for
16: end for
17: `(u)← s

18: return `
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Algorithm 4 SampleRelDTI(T, h)

Output: Random, optimal host labeling ` of T
1: Let Σ∗ be the set of hosts s where τ(r(T )) ∈ I(s)
2: K ←

∑
s∈Σ∗ h[r(T ), s]

3: for s ∈ Σ do
4: if s ∈ Σ∗ then
5: ps ← h[r(T ), s]/K

6: else
7: ps ← 0

8: end if
9: end for
10: Draw s∗ ∈ Σ according to probabilities p1, . . . , pm
11: return SampleRelDTI(T, h, r(T ), s∗)

A.4 Consensus Transmission Tree Algorithm Proof
Theorem 4. Given a set S = {S1, · · · , Sk} of k transmission trees with edge weights wS1

, · · · , wSk
, the minimum weight spanning arborescence

of the corresponding weighted parent-child graph P defines a tree R that is a solution to the SCTT problem with the distance measure used is weighted
parent-child distance.

Proof. Consider the weighted parent-child graph P for the set of transmission trees S. Since P is a complete graph, the optimal consensus tree R is
necessarily a spanning arborescence of P . The weights of the edges in R are given by w∗ due to Proposition 1. The total WPCD of R from the set of
transmission trees S is given by d(R,S) =

∑
Si∈S d(R,Si) where

d(R,Si) =
∑

(s,t)∈E(R)

|qi(s, t)− w∗(s, t)|+
∑

s,t/∈E(R)

|qi(s, t)|

=
∑

s,t∈E(R)

(|qi(s, t)− w∗(s, t)| − |qi(s, t)|)+

∑
s,t∈Σ×Σ

|qi(s, t)|.

Consequently,

d(R,S) =
∑
Si∈S

∑
s,t∈Σ×Σ

|qi(s, t)|+
∑

s,t∈E(R)

wP (s, t),

where the first term is a constant with respect to R and minimizing the second term is equivalent to finding the minimum weight spanning arborescence
of P .
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A.5 Additional Simulation Results
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Fig. S12: (a) The number of vertices n in the timed phylogeny T for increasing number m of simulated hosts and bottleneck size κ. (b) Time taken to
generate 100,000 uniformly sampled solutions to the DTI problem using TiTUS for increasing values of simulated bottleneck size κ.

A.6 Additional HIV Data Analysis and Implementation Details

host transmission window known infector latest sample time entry time removal time

A ? - 14/05/90 B 7/11/05 τ(r(T )) 7/11/05
F 01/02/95 - 02/08/95 A 19/09/05 01/02/95 19/09/05
G 16/01/02 - 16/04/02 F 16/04/02 16/01/02 16/04/02
H 29/06/95 - 24/07/95 B 25/05/98 29/06/95 25/05/98
I 01/02/93 - 28/04/93 B 06/10/99 01/02/93 06/10/99
C 23/09/93 - 10/01/94 B 15/12/03 23/09/93 15/12/03
D 16/03/95 - 01/07/95 C 24/03/03 16/03/95 24/03/03
L 23/09/93 - 12/03/06 C 24/03/06 23/09/93 24/03/06
E 15/06/00 - 01/02/01 C 22/02/06 15/06/00 22/02/06
K 01/06/04 - 15/09/04 E 30/09/04 01/06/04 30/09/04

Table 1. This table shows the epidemiological information provided in the HIV dataset (Vrancken et al., 2014). The transmission window of a host is the expected
time-interval during which the host was infected.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996041doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996041
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2020/1/31 — 7:05 — page 18 — #18 i
i

i
i

i
i

18 Sashittal et al.

(a) (b)

Fig. S13: (a) Transmission number and (b) number of unsampled lineages of all the solutions generated using TiTUS on the HIV dataset vs different
infection recall values.

0.001 0.01 0.05 0.1 0.25 0.5 1
percentile threshold α

0.6

0.8

1.0

in
fe

ct
io

n
re

ca
ll

Fig. S14: The infection recall of the consensus transmission tree for solutions sampled using TiTUS on the HIV dataset for increasing values of the
percentile threshold α.
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