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Protein-protein interfaces play essential roles in a variety 
of biological processes and many therapeutic molecules 
are targeted at these interfaces.  However, accurate 
predictions of the effects of interfacial mutations to 
identify “hotspots” have remained elusive despite the 
myriad of modeling and machine learning methods tested. 
Here, for the first time, we demonstrate that nonlinear 
reweighting of energy terms from Rosetta, through the use 
of machine learning, exhibits improved predictability of 
ΔΔG values associated with interfacial mutations. 
 
Protein-protein interactions mediate many essential 
biological processes. Cellular signaling, spatial and temporal 
regulation, and metabolism are deeply rooted in the 
formation of higher order protein quaternary structures.1 
Complex formation is governed by the complementary 
structural and chemical features displayed by residues at the 
protein-protein interface, and mutations of these residues 
are highly correlated with dysfunction and disease.2 
Moreover, the development of new biomaterials and 
catalysis strategies are largely dependent on the binding 
affinity of the involved protein partners.3, 4 Therefore, a 
computational model capable of rapidly and accurately 
predicting the energy differences (ΔΔGs) associated with 
mutations would aid in the identification of protein-protein 
hotspots, providing insight in disease and design.5, 6 
 To date, several approaches have been developed 
towards the accurate prediction of protein ΔΔG values. 
These include the use of statistical and contact potentials7-

10, design of novel sampling schemes,11, 12 generation of 
weighted energy or score functions,13-16 and employment of 
supervised machine learning techniques.17-21 Additionally, 
within the Rosetta Modelling Suite, new sampling schemes, 

designed to mimic protein motions observed in solution, 
have afforded increased predictive accuracy.11, 22 Though 
these methods have shown some notable success, there is 
still a need for a single, generalizable, and facile approach 
capable of accurately predicting ΔΔG’s of mutations at 
protein/protein interfaces. 
 To this end, we envisioned that reweighting of energy 
terms from Rosetta through machine learning will provide a 
platform with improved ΔΔG prediction accuracy.  The full-
atom score function in Rosetta has been repeatedly 
improved through the introduction of new energy terms and 
optimization of term weighting. Although Rosetta-based 
simulations can generate accurate structural models, 
correlations between the canonical score functions and 
experimental data remain relatively poor23. This suggests 
that that while the underlying set of terms may produce 
models with small RMSDs relative to experimental 
structures, energetically, they require differential 
weightings for specific applications like ΔΔG prediction. 
Therefore, we designed the first reported Custom Score 
Function (CSF, named SRS2020), which is a score function 
devised purely through the reweighting of Rosetta energy 
terms for optimal prediction of an experimentally 
measurable variable of interest. This method allows for the 
traditional Rosetta score function to be used for structural 
refinement, while SRS2020 can be used to more accurately 
predict ΔΔGs. This notion is not entirely novel as protein and 
small molecule design strategies in Rosetta have used 
supplementary criteria in the form of classifiers and filters to 
perform selection based on criteria not encompassed within 
scoring24. However, the approach presented herein is 
simpler in that it requires no additional terms to be 
constructed. 

 

Fig. 1 Schematic of computational workflow for developing a custom score function to predict ΔΔG values of mutations at protein/protein interfaces. 
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 To test the utility of this approach, we focused on 
simulating the SKEMPI 2.0 database 
(https://life.bsc.es/pid/skempi2/) which is the largest 
curated database of protein-protein interfacial mutants. 
This database includes 348 different protein-protein 
complexes, and ΔΔG values for 6193 unique interfacial 
mutations of this protein set.25, 26 After removing complexes 
where the mutation location could not be accurately 
assigned due to ambiguities between the number of protein 
subunits and were left with 5366 unique mutant complexes. 
Fig. 1 illustrates the generalized version of our 
computational protocol employed within PyRosetta.27 First, 
wild-type complexes are cleaned (removal of solvent, 
ligands, or ions), renumbered, and subjected to initial 
minimization. Subsequently, mutations are introduced, and 
both the wild-type and mutant complexes are subjected to 
another round of structural optimization followed by the 
computation of Rosetta energies which in turn are fed into 
a variety of machine learning protocols. Sampling was varied 
both in the initial, structural stage where only wild-type 
complexes were considered, as well as in the mutational 
stage where both the wild-type and mutants were sampled 
under a uniform scheme. In the structural sampling stage, 
we assessed the impact of relaxing the input structure 
compared to using the structure directly from the SKEMPI 
2.0 server. Additionally, we tested the impact of local and 
global sampling during the mutational sampling stage, 
where either only the mutant residue was packed, or 
repacking was performed on the entire complex. Lastly, we 
computed energies for each sampling combination using 
both REF2015,28 the most recently published score function, 
and BETA_NOV16,29 the newest score function available in 
Rosetta. 
 We first focused on assessing the performance of the 
traditional Rosetta score function in predicting mutational 
ΔΔGs from the SKEMPI 2.0 database. As expected, 
differences in sampling impacted the correlation of Rosetta 
total energy scores with ΔΔG. Initial minimization of wild-

type complexes, prior to mutational sampling, was found to 
improve correlation between total Rosetta Energy Units 
(REUs), and experimental ΔΔG values for both the REF2015 
and BETA_NOV16 score functions. This was unsurprising as 
it is widely recognized that structures determined from 
crystallographic data require initial relaxation prior to 
sampling within Rosetta to produce more correlative 
simulations.30 Although we observe an improvement in the 
predictive capacity following minimization during initial 
structural sampling, which is likely due to the approximate 
five REU reduction in the average residue score, we observe 
only a minimal change in conformation (Supplementary 
Information, SI, Fig. S1). 
 Across all sampling and scoring schemes, we see a 
maximum average RMSD of 0.45 Å compared to input 
structures from SKEMPI 2.0. Additionally, score values 
derived from local packing only at the mutation site prior to 
minimization showed a higher predictive capacity than 
global repacking following mutation. A Wilcoxon t-test was 
performed to identify Rosetta energy terms that differed 
between these simulations. The difference in predictability 
between these models is likely due to the drastic differences 
in Lennard-Jones, Dunbrack, and solvation terms produced 
by these simulations (see SI). Lastly, it is notable that the 
most recent score function, BETA_NOV16, afforded a higher 
correlation with experimental data than the benchmarked 
REF2015 score function. This may be due to increased 
accuracy in weightings or the additional terms added in the 
BETA_NOV16 score function. 
 We sought to improve the predictive power of the 
models generated by both the REF2015 and BETA_NOV16 
score functions using machine learning. Given the results of 
the structure preparation comparisons, we elected to focus 
exclusively on improving the predictability of simulations 
where structures are initially relaxed and only locally 
sampled following mutation. Multiple linear regression 
(MLR) is a basic machine learning technique that uses 
 

 

Fig. 2 Models for predicting interfacial ΔΔG, REF2015 (red), BETA_NOV16 (purple). Rosetta total score in Rosetta energy units, or REU (A), multiple linear 
regression (MLR) of Rosetta energy terms (B), polynomial support vector regression (SVR, C), and gradient boosted random forest (GBT) regression (D). MAE: 
Mean absolute error in kcal/mol. 
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several explanatory variables to predict a single output. 
Here, those variables are the Rosetta energy terms 
generated during simulation which will be reweighted to 
optimize the correlation to experimental ΔΔG. As illustrated 
in Fig. 2, even this simple MLR approach (Fig. 2B) results in 
an improved correlation with experimental data compared 
to the traditional score functions (Fig. 2A). Using both five 
and ten fold cross validation, we determined that using an 
MLR improved testing set correlation by a factor of at least 
1.58 (SI, Table S1, S2). We also observed, again, that 
application of the BETA_NOV16 score function displayed a 
higher predictability than the REF2015 score function. 
Interestingly, the most important terms in the MLR scoring 
correlated well with the terms that differed between 
sampling schemes (SI, Table S3). While this improvement 
was encouraging, the usability of this reweighted score 
function is still poor as the Pearson correlation coefficient 
was only 0.51 and the mean absolute error (MAE) was 1.28 
kcal/mol.  
 In order to further improve our ΔΔG predictions, 
additional inputs were considered, as well as the 
introduction of more complex machine learning algorithms. 
Inputs were extracted from simulated structures as the 
change in energy following sampling. Several different 
values were computed to capture global vs. specific and 
local vs. distal differences. Global terms correspond to the 
change of the total values of the decomposed Rosetta 
energy terms across the whole mutant and wild-type 
complexes. Specific values refer directly to the differences 
between the decomposed Rosetta energy terms of only the 
mutated and wild-type residues. To distinguish local and 
distal terms, an 8 Å contacting shell was created around the 
mutation site. This was used for the calculation of local and 
distal terms, which correspond to the change in total 
decomposed scores within or beyond this sphere. In 
addition to alternative inputs, we employed more 
sophisticated machine learning algorithms: Kernel Ridge 
Linear Regression (KRR, see S10, S11), support vector 
regressions (SVRs), and Gradient Boosted Random Forrest 
Regression (GBT). Our reasons for choosing these methods 
are outlined in SI.  Training and testing sets were specifically 
designed to ensure that no mutational redundancy existed 
between the sets. Curation of training and testing sets in this 
manner allows for the greatest predictive power of 
generated models37. Additionally, more rigorous 
investigation describing the robustness of our models as a 
function of training and testing sets is found in SI Table S9. 
 
Table1. Machine Learning Models Using the SKEMPI Database 

 Method     R Value      MAE 

 FoldX      0.34      1.33 
 Pred1      0.45      1.14 
 BeAtMuSiC     0.46      1.09 
 Pred2      0.54      1.07 
 MLR      0.31      1.18 
 SVR       0.53      1.09 
 SRS2020     0.65      0.92 
Alternative methods for predicting ΔΔG using the SKEMPI database. R value 
is the Pearson correlation coefficient and MAE is mean absolute error in 
kcal/mol. 

 SVRs were performed using various kernels, including 
Polynomial (degrees 2, 3, 4, and 5), radial base function, and 
Sigmoid. Using these algorithms, correlation to ΔΔG from 
predictions by our CSF were improved and now performed 
similarly to many other literature models.14 (Fig. 2C and 
Table 1) SVR analysis also demonstrated that the 
BETA_NOV16 score function performed better than the 
REF2015 score function (Fig. 2C). For GBT, we found that 
after an exhaustive grid search of tuneable parameters, this 
technique was the most predictive of all models tested as it 
produced the highest correlation as well as lowest MAE. 
Interestingly, our GBT models were invariant to which 
Rosetta score function was used for simulation as 
BETA_NOV16 and REF2015 score functions tested 
identically. 
 To further identify any potential differences between 
these two models, feature importance analysis was 
performed. The two models were extremely similar and 
terms corresponding to phi-psi or rotameric preferences 
(Fig. 3, Struct. category) were found to be most important. 
These terms were followed by solvation (Solv.), van der 
Waals (Atr. and Rep.), the single value of Rosetta total 
energy (REU), electrostatic (Elec.), and hydrogen bonding 
terms (H-Bond). Considering that the database is primarily 
comprised of mutations to alanine, the typical reduction in 
size and increase in hydrophobicity associated with these 
changes likely explains the importance of solvation and 
nonpolar, attractive interactions over hydrogen bonding or 
electrostatics. A further breakdown of how SRS2020 
predicts specific subsets of the SKEMPI2.0 database is found 
in SI Table S9. 
 After identifying that the GBT-based CSF derived from 
BETA_NOV16 optimized structures was our best model, we 
have named it SRS2020 (information on using this code can 
be found on our github https://github.com/Sam-
Giannakoulias/RML_ddG/ or automated prediction can be 
performed with our Jupyter web app deposited there. Table 
1 compares our results to other machine learning models 
utilizing a subset of the SKEMPI database to predict ΔΔG. All 
values in this table represent five- fold cross validation of the 
exact same subset of single mutations from the SKEMPI 
database produced by the alternative methods and are thus 
directly comparable. SRS2020 represents not only the first 
reported CSF but is the most accurate predictor of ΔΔG in 
both correlation and in error, highlighting the potential 
utility of CSF-based approaches. SRS2020 was trained and 
regressed from the largest protein interaction data set 
available in the literature and has proven robust to 
alterations in sampling and scoring, demonstrating the 
strength of CSF approaches for specific applications. 
Furthermore, freedom from sampling optimization removes 
the need to find the perfect simulation and results in an 
incredibly rapid approach. Prediction of the ΔΔG values 
upon mutation for a twenty-residue interface can be 
predicted in less than ten minutes on a single CPU node 
using this protocol. 
 We intend to extend this methodology to encompass 
more complex sampling methods, such as the ensemble-
based Backrub approach.31 Although this CSF contains no 
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Fig. 3 Important features in GBT models derived from REF2015 (red) and 
BETA_Nov16 (purple). Feature importance (%) determined as described in SI. 

additional energy terms or metrics, one can also easily 
introduce a variety of bioinformatics terms to further 
strengthen these models. Additionally, even more complex 
machine learning methods such as Extreme Gradient 
Boosted Random Forrest Regressions (XGBoost) or neural 
networks (NNs)32 may be employed to further improve ΔΔG 
prediction. Finally, we hope to extend the SRS2020 model 
beyond the prediction of interfacial ΔΔG and use it to design 
protein-protein interfaces as well as peptides or 
peptidomimetics targeting such interfaces. 
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