
Structure of population activity in primary motor 
cortex for single finger flexion and extension 

 
Spencer A. Arbuckle1a, Jeff Weiler1a, Eric A. Kirk1b, Charles L. Rice1b, Marc Schieber2c, J. 

Andrew Pruszynski1a,d,e, Naveed Ejaz1a, Jörn Diedrichsen1a,f 

 
1. Western University, London, Ontario, Canada 
2. The Del Monte Institute for Neuroscience, University of Rochester, Rochester, New 

York, USA 
a. Brain and Mind Institute 
b. School of Kinesiology, Faculty of Health Sciences, Department of Anatomy and Cell 

Biology, Schulich School of Medicine & Dentistry 
c. Departments of Neuroscience, Neurology, Biomedical Engineering, & Center for Visual 

Science 
d. Departments of Physiology and Pharmacology, & Psychology 
e. Robarts Research Institute 
f. Departments of Statistical and Actuarial Sciences, & Computer Science 

 
 
Correspondence 
Jörn Diedrichsen, Brain and Mind Institute, University of Western Ontario, London, 
Canada. jdiedric@uwo.ca. 
 
Acknowledgements 
The work was supported by Canada First Research Excellence Fund (BrainsCAN) 
collaborative postdoctoral grant awarded to NE, JW, and SA, and a Discovery Grant 
from the Natural Sciences and Engineering Research Council (NSERC, RGPIN-2016-
04890) to JD. Functional imaging costs were partly supported by a Platform Support 
Grant from Brain Canada and BrainsCAN. SA and EK are supported by doctoral 
scholarships from NSERC (PGSD3-519263-2018 and CGSD3-519372-2018, 
respectively). JW is supported by a BrainsCAN Postdoctoral Fellowship. MHS was 
supported by NINDS grants NS27686 and NS102343. JP is supported by the Canada 
Research Chairs program. We thank Marcus Saikaley for help with human EMG data 
collection. 
 
Author contributions 
SA, NE, & JD designed the experiment; SA collected and analyzed the fMRI data; JW, 
EK, CR, NE, & SA collected the EMG data; SA, NE, & JW analyzed the EMG data; MS 
collected the spiking data; SA processed and analyzed the spiking data; SA prepared 
figures; SA, AP, & JD wrote the manuscript. 
 
Conflict of interest 
The authors declare no conflict of interest.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996124


2 
 

Abstract 
How is the primary motor cortex (M1) organized to control fine finger movements? 

We investigated the population activity in M1 for single finger flexion and extension, 
using 7T functional magnetic resonance imaging (fMRI) in human participants, and 
compared these results to the neural spiking patterns recorded in monkeys performing 
the identical task. fMRI activity patterns were distinct for movements of different fingers, 
but quite similar for flexion and extension of the same finger. In contrast, spiking patterns 
in monkeys were quite distinct for both fingers and directions, similar to what was found 
for muscle activity patterns in humans. Given that fMRI reflects predominantly input and 
recurrent activity, these results suggest an architecture in which neural populations that 
control flexion or extension of the same finger receive similar inputs and interact tightly 
with each other, but produce distinct outputs.  
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Introduction 
Dexterous movements of fingers require accurate coordination of different hand 

muscles. Hand muscles are innervated by motorneurons in the ventral horn of the spinal 
cord, which receive direct and indirect projections from the hand region of the 
contralateral primary motor cortex (M1) (Lemon, 2008). In monkey species that are able 
to better individuate their fingers, direct (monosynaptic) projections from M1 to ventral 
horn motor neurons are more pronounced (Heffner & Masterton, 1983; Bortoff & Strick, 
1993). Lesions to the corticospinal tract (Tower, 1940; Lawrence & Kuypers, 1968; 
Lawrence & Hopkins, 1976; Sasaki et al., 2004) or to M1 (permanent: Liu & Rouiller, 1999; 
Darling et al., 2009; reversible: Schieber & Poliakov, 1998) result in a significant loss of 
finger individuation. Such symptoms are also reported in human stroke patients who 
have damage to the hand area of M1 or the descending corticospinal pathway (Lang & 
Schieber, 2003; Xu et al., 2017). These results indicate that M1 is important for the fine 
control of individuated finger movements. 

What is less well understood is how this cortical control module for finger 
movements is organized. Here, we studied this question by investigating cortical 
activation patterns evoked during flexion and extension of individual fingers. Previous 
results in monkeys (Schieber & Hibbard, 1993; Schieber & Poliakov, 1998) have indicated 
that motor cortical neurons have complex tuning functions, often responding to 
movements of multiple fingers and to both flexion and extension movements. Therefore, 
there exists no clearly organized “map”, with separate regions dedicated to the control 
of a single finger. Thus, the structure of population activity in M1 must be organized by 
some other principle.  

One plausible principle is that the statistics of natural human hand use shapes the 
organization of neuronal populations in the hand region of M1. This idea predicts that 
movements that commonly co-occur in every-day life are represented in overlapping 
substrates in M1 (Graziano & Aflalo, 2007). Specifically, fingers with high correlations 
between their joint-angle velocities during everyday hand movements (Ingram, Körding, 
Howard, & Wolpert, 2008) have been shown to have more similar M1 activity patterns 
(Ejaz, Hamada, & Diedrichsen, 2015). The correlation structure of everyday movements 
nearly fully explained the relative similarities of M1 finger activity patterns, and fit the 
data better than a model that used the similarity of the required muscle activity patterns 
(i.e. predicting that movements that use similar muscles also should have similar activity 
patterns) or a somatotopic model (i.e. predicting that fingers are represented in an 
orderly finger map). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996124


4 
 

In this paper, we asked to what degree do these findings generalize to flexion and 
extension movements of the fingers. We measured the activity evoked in the hand area 
of M1 using high-field functional magnetic resonance imaging (fMRI) while human 
participants performed near-isometric single finger flexion and extension presses with 
their right hand. By extrapolating the model used in Ejaz et al. (2015) to this situation, we 
predicted that each movement should have its own, clearly separated representation in 
M1, as flexion and extension can never co-occur. Indeed, it has been recently suggested 
that the motor cortex has multiple representations of each finger, one dedicated to 
flexion and one to extension (Huber et al., 2020). 

We found, however, that the measured fMRI patterns for flexion and extension of the 
same finger were strikingly similar, much more similar than would be expected for two 
movements that cannot co-occur. To understand these results better, we re-investigated 
the representational structure of single-neuron activity in M1 of two macaque monkeys 
trained on the same flexion-extension task (data from Schieber & Rivlis, 2005; Schieber 
& Rivlis, 2007). The spiking patterns in monkeys were quite distinct for fingers and 
directions. Together, these results suggest a specific organization of finger movement 
representations in the primary motor cortex. 

Results 
M1 fMRI activity patterns differ strongly for different fingers, not for 
direction. 

We measured activity patterns evoked in M1 in human participants (n=9) while they 
performed a near-isometric finger flexion-extension task in a 7T MRI scanner. 
Participants’ right hands were clamped in a device that had force transducers mounted 
both above (extension) and below (flexion) each finger (Fig. 1A) to record forces 
produced at the distal phalanges. The device limited the overall degree of movement to 
a few millimeters, thereby making the task near-isometric. On each trial, participants 
were cued to press a single finger in one direction, while keeping the other fingers as 
relaxed as possible (Fig. 1B). They had to reach the required force level, hold it for 1 
second, and then simply relax their hand to let the force passively return to baseline. 
This aspect of the task instruction was critical to ensure that participants did not activate 
the antagonist muscles during release.  

Figure 1C shows the activity patterns measured in left M1 (contralateral to 
movement) for one participant during right-handed finger presses at 2N. As previously 
observed (Ejaz et al., 2015), the activity patterns did not consist of focal regions of activity 
dedicated to each finger. Rather, the spatial patterns were complex and involved multiple 
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overlapping regions within the M1 hand area. Furthermore, the inter-subject variability in 
the spatial organization of these patterns was considerable (see supp. fig. S1). 

 
Figure 1 | Measuring activity patterns for finger flexion and extension in human M1. (A) Human 
participants made isometric single finger presses in the flexion and extension directions on a custom-
built keyboard. Each finger of the right hand was clamped between two keys, and each key was 
associated with a force transducer either above (keyboard on top of hand) or below (keyboard under 
the hand) the key to monitor forces applied in the flexion and extension directions, respectively. (B) 
Visual feedback display shown to the participant. The white lines represent the produced force for each 
finger. Applying flexion to a finger key moved the associated line down (vice-versa for extension). The 
cue box (centred at target force) was initially presented as white at the trial start, and turned green to 
cue the participant to make the finger press (here, index finger extension). The box turned blue to 
instruct participants to maintain the current force. At the end of the press hold, the cue box disappeared 
and participants relaxed their hand. The associated timing of these events are included in the trial 
schematic. (C) Evoked fMRI activity maps (t-values) for participant #1 for each of the 5 fingers pressing 
in the extension and flexion directions at 2N. Maps are shown in the hand-knob region of the left 
(contralateral) hemisphere. The black dotted line shows the fundus of the central sulcus. For two 
additional participants, see supplementary figure S1. Average finger enslaving is shown in 
supplementary figure S2 (enslaving in the flexion direction are positive values, vice versa). 
 

One common observation across all participants, however, was that the activity 
patterns were different between different fingers (e.g. index flexion vs. fourth flexion), but 
rather similar for flexion and extension of the same finger (e.g. index flexion vs. index 
extension). To quantify these observations, we calculated a measure of dissimilarity 
(crossnobis distance, see Methods) between each pair of fMRI patterns. Large 
dissimilarity values indicate that the two patterns are quite distinct with little overlap. A 
value of zero indicates that the two patterns are identical, and the measured patterns 
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only differ by noise. We restricted the analysis to conditions with matched force levels 
across flexion and extension. The group-averaged representational dissimilarity matrix 
(RDM) is shown in figure 2A. Both within the finger flexion and extension conditions, 
there was a characteristic structure with the thumb activity pattern being the most 
distinct and neighbouring fingers tending to have more similar activity patterns. Across 
directions, activity patterns evoked by pressing the same finger in different directions 
were the most similar. This representational structure was quite stable across 
participants (average inter-participant Pearson’s r=0.790, 95% CI: [0.754-0.820]).  

 

 
Figure 2 | Representational structure of 
fingers and direction in human M1. (A) Group 
average of the fMRI representational dissimilarity 
matrix (RDM). (B) Predicted RDM from the 
kinematic model. To aid visual inspection, the 
values of the RDMs in A and B are plotted as the 
square-root of the dissimilarities. All statistical 
analyses of the RDMs are done on squared 
distances. (C) Model fits (Pearson’s correlation) 
of the kinematic (red) and muscle models to the 
M1 RDM for flexion, extension, and the full 
RDMs. The muscle model was specific to each 
participant and was estimated from the EMG 
data. The grey bars denote noise ceilings 
(theoretically the best possible fits). Each dot 
reflects one participant, and thin grey lines 
connect fits of each model to the same 
participant. Black bars denote the means, and 
black dashed lines denoted the mean paired 
difference. *significant differences between 
model fits (one-sided paired t-test, p<0.05); 
⟊significantly lower than the noise ceiling (two-
sided paired t-test, p<0.05); n.s. not significant 
(p>0.05). 
 

To obtain predictions for flexion and extension movements, we needed to adapt the 
natural usage model, proposed by Ejaz et al. (2015). This model used kinematic finger 
data, specifically the joint-angle velocities of the metacarpal (MCP) joints, recorded while 
subjects participated in their normal, every-day tasks (data from Ingram et al., 2008).  
Fingers were predicted to have more similar representations if their movement velocities, 
across flexion and extension, were positively correlated. For the current experiment, we 
split the data into periods of finger flexion and finger extension (see methods), resulting 
in 10 time series, and calculated the correlation between them (after taking the absolute 
value).  
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The estimated kinematic RDM (Fig. 2B) showed similar structures within flexion and 
extension movements. The thumb was the most distinct compared to the other fingers, 
and for the remaining fingers there was a clear similarity structure with neighbouring 
fingers more similar than non-neighbouring. This structure very closely mirrored those 
found for fMRI activity patterns: flexion and extension fMRI RDMs correlated strongly 
with the corresponding kinematic models for flexion (r=0.727 [0.635-0.800]) and 
extension (r=0.797 [0.684-0.873]) RDMs (Fig. 2C, red). Compared to the noise ceiling 
(grey bar in Fig 2C, which reflects the best possible model fit given measurement noise: 
see methods) the natural use model accounted for 79.9% and 84.9% of the variance in 
the flexion and extension RDMs, respectively.  

In contrast, the kinematic model completely failed to predict the relationships 
between activity patterns for flexion and extension. Because flexion and extension of the 
same finger can never co-occur, the kinematic model predicts that the movements are 
associated with quite distinct cortical activity patterns. The measured fMRI patterns, 
however, were rather similar for these two actions. As a result, the full kinematic model 
was not a good fit to the full fMRI RDM (r=0.086 [0.038-0.133]), much below the noise 
ceiling (r=0.875 [0.822-0.913]).  

Thus, although the statistics of movement co-occurrence was a good predictor 
for representational similarity between the activity patterns for different fingers (i.e. within 
flexion or extension), this simple model failed to predict the relative organization of the 
patterns for flexion and extension of the same finger. Even though flexion and extension 
of the same finger cannot co-occur, their fMRI activity patterns were highly similar. In 
the remainder of the paper, we explore a number of possible explanations for this finding 
and propose a candidate model of the organization. 

Similarities of cortical representations for presses in different directions 
cannot be explained by the patterns of muscle activity. 

We first considered the possibility that the structure of similarity between flexion and 
extension presses can be explained by the patterns of muscle activity required by these 
movements. Specifically, it is possible that participants co-contracted both agonist and 
antagonist muscles, or that they activated the antagonistic muscles when returning to 
baseline. Given the temporally sluggish nature of the blood-oxygen level-dependent 
(BOLD) signal measured with fMRI, either behaviour could cause the cortical activity 
patterns evoked during flexion to resemble activity patterns during extension (and vice 
versa). Therefore, we conducted a control experiment with the same participants outside 
the MR scanner, during which we recorded surface electromyography (EMG) from 14 
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sites of the hand and forearm in the participants (Fig. 3A), while they performed the same 
isometric finger flexion-extension task as in the fMRI session. Performance on the task 
was comparable to that during the fMRI scan. 

As an example, the participant-averaged EMG data from an electrode placed above 
the abductor digiti minimi (ADM) muscle (Fig. 3B) showed that the ADM muscle was 
recruited only during the flexion of the little finger. During extension of the same finger, 
the muscle was silent, both during hold and release. In general, we found very little 
evidence for co-contraction of the antagonist muscle. 

 
Figure 3 | Quantifying similarity of muscle activity patterns during finger flexion and extension. (A) 
Fourteen surface electrode sites. (B) Group averaged EMG (normalized to peak activity from this 
electrode) from the abductor digiti minimi (ADM) muscle during 2N little finger flexion (dark grey) and 
extension (light grey) trials, aligned to hold onset (0s). During extension movement (light grey trace, 
>1000ms), this flexor muscle was not recruited. Shaded areas reflect standard error of the mean. Traces 
were smoothed with a gaussian kernel (FWHM=25ms). (C) Average muscle activity across participants, 
normalized by peak activation across conditions (per participant), recorded from the 14 electrode sites 
during the flexion extension task. Each condition was measured under 3 force conditions. (D) Group 
average representational dissimilarity matrix (RDM) of the muscle activity patterns. As in figure 2, the 
RDM is plotted as square-root dissimilarities to aid visual inspection. Average finger enslaving is shown 
in supplementary figure S3 (enslaving in the flexion direction are positive values, vice versa). 
 

For a quantitative analysis, we averaged the muscle activity from the time of the go-
cue to the end of the hold phase. The EMG patterns averaged across participants (Fig. 
3C) already allow for two observations. First, the muscle activities for the same 
movement at different force levels were very similar and increased with increasing force. 
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The average correlation across force levels for each finger-direction combination was 
high, indicating the same muscles were consistently recruited to perform the same finger 
press across different force levels (within participant correlations: r=0.858 [0.805-0.898]). 
Second, quite distinct muscle groups were recruited to produce forces with the same 
finger in different directions. The average correlation between the pattern of muscle 
activity recruited to press the same finger in different directions was low (within 
participant correlations: r=0.245 [0.151-0.334]). 

We then derived a muscle-based RDM by calculating the crossnobis 
dissimilarity between normalized activity patterns for each condition. As for the fMRI 
analysis, we included the patterns for the matched force conditions only. The group 
averaged matrix RDM (Fig. 3D) was only moderately stable across participants (average 
inter-participant Pearson’s r=0.490 [0.380-0.586]), likely reflecting the fact that there was 
some degree of inter-individual variation in electrode placement.  

We tested to what degree the patterns of muscle activity, specific to each 
participant, could explain the cortical similarity structure between individual finger 
movements within the flexion or extension directions. For the flexion direction, the fit of 
the muscle model (r=0.622 [0.422-0.765]) was lower than that for the kinematic model in 
6 out of 9 participants (Fig. 2C), but the difference did not reach statistical significance 
(one-sided t-test kinematic>muscle: t8=1.636, p=0.0702). For the extension direction, the 
muscle model fit substantially worse (r=0.023 [-0.145-0.190]), significantly less than the 
kinematic model (one-sided t-test kinematic>muscle: t8=5.531, p=0.0003). These results 
generally confirm the results reported in Ejaz et al. (2015) and extend them to extension 
movements.  

Critically, however, the muscle activity model did not provide a good explanation for 
the similarity between flexion and extension patterns. The fit for the full muscle model 
(r=0.145 [0.056-0.233]) was as poor as for the kinematic model (two-sided t-test muscle 
vs. kinematic: t8=1.064, p=0.3186) and significantly below the noise ceiling (two-sided t-
test noise ceiling vs. muscle: t8=12.706, p=1.3849e-6). Thus, neither the co-occurrence 
of movements, nor the pattern of muscle activities can explain the high similarity of 
activity patterns for finger flexion and extension in M1. 

M1 spiking output differs equally for fingers and direction. 
An alternative explanation for this observation is that the overlapping fMRI activity 

patterns for flexion and extension reflect shared inputs to these cortical areas. The 
neuronal population that predominantly controls flexion of a finger should receive 
sensory input from that finger, just as the neural population that controls finger extension. 
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Furthermore, these two populations should be closely connected to facilitate tight 
coordination. Such common input or mutual interaction would be strongly reflected in 
fMRI measurements because the cortical Blood Oxygen Level Dependent (BOLD) signal 
reflects excitatory inputs and local synaptic signaling to a much larger degree than the 
spiking activity of output neurons (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 
2001). If this idea is correct, then the flexion and extension spiking patterns of the 
principal output neurons of M1 should be quite distinct. 

To test this prediction, we re-analyzed population spiking activity of M1 neurons 
during an equivalent single-finger individuation task in two trained non-human primates 
(Macaca mulatta, data from Schieber & Rivlis, 2005 & 2007). Indeed, we had designed 
the behavioural task for the fMRI to closely matched the task for the non-human 
primates, such that we could make strong comparisons across species and 
measurement modalities. Figure 4A shows the condition averaged firing rate traces from 
a single neuron from this data set. This neuron displayed strong preference (increased 
firing rates) for flexion of the middle finger and extension of the index finger. As previously 
reported (Schieber & Hibbard, 1993), most neurons in M1 demonstrated complex tuning 
across fingers and directions (Fig. 4B and supplementary figure S4).  

 

 
Figure 4 | Analysis of M1 spiking activity during monkey single finger flexion and extension. (A) 
Trial averaged firing rates from one cell (monkey C). Traces are aligned to press onset (0s). This cell 
demonstrates selective tuning to middle finger flexion and index finger extension. Firing rates were 
calculated for 10ms bins and smoothed with a gaussian kernel (FWHM=50ms). (B) Averaged firing rates 
for a subset of cells from monkey C, arranged by condition. Cell #13 is plotted in A. Firing rates are 
normalized to the peak rate per cell. (C) Average monkey RDM (square-root dissimilarities). For spike 
traces from three additional cells from monkey C see supplementary figure S4. 
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To compare the representational structure from spiking data to that obtained with 
fMRI, we calculated the mean firing rate for each neuron from the go-cue onset to the 
end of the hold phase during each trial. We then calculated dissimilarities between the 
population responses for different conditions (see Methods), similar to the analysis of 
the human EMG and fMRI data. The average RDM is shown in Figure 4C. Similar to the 
structure of representations in human M1, the thumb activity patterns for both directions 
were the most distinct, and neighbouring fingers had more similar activity patterns. In 
contrast to the fMRI data, however, the spiking patterns for flexion and extension of the 
same finger were quite distinct.  

To quantify this observation, we averaged dissimilarities between different fingers 
pressing in the same direction (finger-specific) and the same finger pressing in different 
directions (direction-specific). The finger and direction-specific dissimilarities were close 
in magnitude for both monkeys (Fig. 5A). Also, the human EMG patterns had roughly 
matched direction and finger-specific dissimilarities (Fig. 5B). In contrast, the same 
analysis on the human fMRI data showed a clear and significant difference between 
these two kinds of dissimilarities (Fig. 5C).  

For a statistical comparison, we then calculated the ratio between dissimilarities 
between different directions and dissimilarities between different fingers (Fig. 5D). The 
fMRI ratio was significantly lower than 1 (mean ratio=0.298 ±0.071 sem; one-sided one-
sample t-test ratio<1: t8=-4.747, p=0.0015), indicating stronger representation of fingers 
compared to direction. In contrast, both the spiking patterns (monkey C ratio=1.173, 
monkey G ratio=1.025) and the human muscle patterns (mean ratio=0.984 ±0.050 sem) 
differed similarly for different fingers and different directions, with the muscle ratios being 
significantly larger than those for human fMRI (two-sided paired t-test: t8=9.804, 
p=9.840e-6). Thus, we found a clear difference between the structure of fMRI patterns 
and the structures of spiking and muscle activity patterns. We suggest this difference 
comes about because fMRI (input activity) and single-cell electrophysiology (spiking of 
mainly output neurons) reflect two fundamentally different aspects of neuronal activity. 
The neuronal population controlling flexion and extension may receive very similar input 
(and therefore show similar fMRI activity patterns), while their output firing must be quite 
distinct to produce the different patterns of muscle activity required for fine finger 
control. 
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Figure 5 | Comparing strength of finger and direction representations across datasets. The 
average finger and direction-specific dissimilarities for the spiking (A), human EMG (B), and human fMRI 
(C) datasets. Each dot denotes one participant, and lines connect dots from the same participants. 
Black bars denote the means, and black dashed lines reflect the mean paired differences. ⟊ 
dissimilarities significantly larger than zero (one-sided t-test, p<0.05). *significant difference between 
finger and direction dissimilarities (two-sided paired t-test, p<0.05). (D) The ratio of the direction-to-
finger dissimilarities for each dataset. Values <1 indicate stronger finger representation. ⟊dissimilatrities 
significantly lower than one (one-sided t-test, p<0.05). *significiant differences between dissimiarity 
ratios (two-sided paired t-test, p<0.05). (E) Estimated spatial autocorrelations of finger (black) and 
direction (grey) pattern components in human M1, plotted as a function of spatial distance between 
voxels. No significant difference was observed between finger and direction tuning in M1. The thick 
lines denote the median spatial autocorrelation functions, and small lines are drawn for each participant 
for each pattern component. The vertical shaded bar denotes the distance between voxel size, for which 
correlations can be induced by motion correction. (F) Differences between average finger flexion and 
extension activity maps. We averaged across presses of any finger in the same direction, and calculated 
the differences. Maps are plotted on the same inset as in figure 1C.  

 

Differences between fMRI and spiking are not explained by different 
spatial scales of the measurements. 

There is another key difference between the fMRI and spiking data set that may 
explain the discrepancy. That is, fMRI samples a proxy of neuronal activity in a coarse 
manner, averaging across at least 200,000 cortical neurons per mm3 in M1 (Young, 
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Collins, & Kaas, 2013). Thus, even high-resolution fMRI is biased to functional 
organization at a coarse spatial scale (Kriegeskorte & Diedrichsen, 2016), and so our 
results could be caused by an organization where neurons tuned to different movement 
directions for the same finger (or combination of fingers) are clustered together, while 
neurons that control different finger or finger combinations are more spatially separated. 

To investigate this idea, we correlated the finger-specific and direction-specific 
activations for each pair of voxels within M1, and binned these correlations according to 
the spatial distance between voxel pairs (see Methods). If direction is encoded at a finer 
spatial scale than fingers, we would expect finger effects should be correlated over larger 
spatial distances. 

In contrast to this prediction, the spatial correlation functions for fingers and direction 
were quite similar (Fig. 5E). We estimated the full-width at half-maximum (FWHM) of the 
spatial autocorrelation functions. To account for outliers, we evaluated the median 
FWHMs. The median FWHM of the finger spatial kernel in M1 was 4.55mm 
(mean=4.87mm ±0.33), comparable to previous reports (Diedrichsen, Ridgway, Friston, 
& Wiestler, 2011; Wiestler, McGonigle, & Diedrichsen, 2011). The median FWHM of the 
direction spatial kernel in M1 was 6.57mm (mean=6.75mm ±1.18), and there was no 
significant difference between the two (two-sided paired Wilcoxon signed-rank test, 
finger vs. direction: p=0.2031; two-sided paired t-test finger vs. direction: t8=-1.417, 
p=0.1942). We also did not find evidence of a clear spatial gradient for flexion vs. 
extension movements, as was reported by Huber et al. (2020). Areas responding more 
to flexion or extension were spatially diffuse and could be found across the hand area of 
M1 (Fig. 5F). Therefore, at least at the spatial scale measurable with 7T fMRI, we did not 
find any empirical support for the idea that directions are represented at a different 
spatial scale than fingers in M1.  

Discussion 
Here we investigated how the population activity in M1 is organized for control of 

flexion and extension of single fingers. We analyzed M1 population activity measured in 
humans with 7T fMRI and spiking data from NHPs while participants made isometric 
single finger presses in either direction. Importantly, we ensured the behavioural tasks 
in both experiments were carefully matched to allow us to compare results across the 
two datasets.  

We first demonstrated that the representational structure of single finger presses in 
human M1 were relatively well explained by the statistics of every-day movements, 
replicating the flexion results reported in Ejaz et al. (2015) and extending them to single 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996124


14 
 

finger extension movements. The same model, however, failed to correctly predict the 
relationship between flexion and extension movements. Because flexion and extension 
of the same finger cannot temporally co-occur, the model predicted quite separate 
representations for the two actions. In our data, however, we observed the opposite 
effect – cortical M1 activity patterns measured with fMRI were very similar for the flexion 
and extension of the same finger, as compared to the quite distinct patterns for different 
fingers. These findings were specific to fMRI: In the electrophysiological recording, 
different movement directions were associated with distinct patterns of neuronal 
activity.  

The most likely explanation for this difference comes from the fact that fMRI and 
electrophysiological recordings measure different physiological processes. In cortical 
grey matter, the BOLD signal measured with fMRI reflects mainly excitatory postsynaptic 
potentials (EPSP), caused by input to a region or recurrent activity within a region 
(Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). This is because much of the 
metabolic costs associated with signal transmission arise from re-establishing resting 
membrane potential of neurons (Attwell & Laughlin, 2001; Magistretti & Allaman, 2015; 
Yu, Herman, Rothman, Agarwal, & Hyder, 2018). In contrast, single-cell recordings 
directly measure action potentials, and are usually biased towards the large output cells 
in M1 (Firmin et al., 2014).  

This consideration leads us to a new model of hand movement encoding in M1 (Fig. 
6). We hypothesize that neurons that contribute to the flexion of a finger receive similar 
sensory input as neurons that contribute to the extension of the same finger (dashed 
line, Fig. 6). This common input would manifest as similar patterns of fMRI activity for 
flexion and extension for the same finger. There is evidence in the literature to support 
such an organization. Single neurons tuned to torque production at the shoulder 
integrate information from the shoulder and elbow joints to facilitate rapid corrective 

 
Figure 6 | Summary model of M1 organization. Output 
neurons in M1 produce complex patterns of muscular activity. 
We refer to groups of neurons that, together, evoke a complex 
pattern of muscle activty that results in single finger movements 
as functional units (circles). Functional units that evoke 
movements of the same finger in opposite directions receive 
common inputs (dashed lines) and share strong recurrent 
connections (circular lines). The spiking output (solid lines) of 
these units, however, is directionally specific. The proximity of 
functional units tuned for the same finger and/or direction is 
unknown. 
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responses to mechanical arm perturbations (Pruszynski et al., 2011). Thus, these 
neurons receive common sensory input about the shoulder and elbow joints, but the 
output is largely specific to movements about the shoulder.  

Additionally, it is also likely that units controlling flexion and extension of the same 
finger directly communicate with each other (solid arrows, Fig. 6). Such coordination 
would be necessary to orchestrate fast alternation of finger movements or to finely 
control the grip force during object manipulation. The resultant recurrent cortical activity 
would again make the fMRI activity patterns for flexion and extension more similar (Fig. 
1C).  

If units controlling muscle patterns that produce flexion and extension of the same 
effector have to closely communicate with each other, it might be that they are spatially 
co-localized to support fast and efficient communication. This would predict that 
differences between fingers should be on a courser spatial scale than differences 
between directions, which may explain why differences between fingers were more 
clearly detectable with fMRI. We did not find any evidence for a difference in spatial 
organization of fingers and direction in the fMRI data. However, given that this 
comparison itself is limited by the spatial resolution of fMRI, we cannot rule out that 
differences in the fine-grained spatial organization also contributed to the observed 
effect.  

Although we experimentally studied the flexion and extension of single fingers, we 
do not suggest that isolated finger movements are explicitly represented in M1. Rather, 
M1 output neurons will produce a complex pattern of muscle activity. This complexity 
likely arises because the neuronal populations are optimized to produce combinations 
of muscle activities which elicit finger movements that are useful in everyday tasks 
(Poliakov & Schieber, 1999; Gentner & Classen, 2006; Ejaz et al., 2015). When we 
measure activity patterns related to movements of isolated fingers, we simply observe 
the specific combination of neuronal populations that need to be active to move a single 
finger (Schieber, 1990). The core of our hypothesis is that population of neurons that 
produce opposing muscular patterns communicate closely with each other and also 
receive similar sensory input. 

Our findings are at odds with the organization suggested by Huber et al. (2020). 
Using high-resolution functional imaging, the authors reported evidence of multiple 
single-finger representations along the lateral-medial axis of M1, arranged into two 
spatially distinct maps, one for flexion and one for extension. While we found clear 
evidence that each single finger press actives multiple patches in M1 (Fig. 1C), we did 
not find any evidence for a systematic spatial separation of flexion and extension maps 
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(Fig 5F). We do not think that this is an issue of experimental power: Although we used 
a slightly lower resolution in our study, we should have been able to detect the 
organisation proposed by Huber et al. (2020). Instead, the differences are likely explained 
by the fact that Huber et al. did not study flexion and extension of individual fingers, but 
relied on large spatial gradients detected between whole-hand grasping and retraction, 
which may have involved neuronal populations that are not normally engaged during fine 
finger movements (Muir & Lemon, 1983).  

Indeed, there are two lines of evidence that argue against a spatial separation of 
individuated flexion and extension actions. First, electrophysiological recordings from 
M1 also show that flexion and extension preference is not spatially clustered (Schieber 
& Hibbard, 1993). Second, partial inactivation of neurons in the hand area of M1 results 
in a complex loss of flexion and/or extension movements of different fingers (Schieber & 
Poliakov, 1998), demonstrating that different directions of movement are not likely to be 
encoded in spatially clustered action maps.  

There are of course many caveats when comparing results across different recording 
methodologies, experimental setups, and species. While we tried to make the 
behavioural tasks across human and macaques as similar as possible, species 
differences or the extensive training for the non-human primates may account for some 
of the differences.  

Overall, however, we believe that the comparison between fMRI and spiking 
provides some interesting insights into the organization of the hand region of the primary 
motor cortex. Cortical representations of single finger movements are not purely dictated 
by the kinematics of hand usage. We posit that the deviation from this organization 
appears to reflect a control process, where neurons tuned to movements of a specific 
finger receive common sensory input and share local recurrent processes. These tightly 
coordinated populations then produce the spiking output that needs to be quite distinct 
for the flexion and extension of the same finger.  
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Methods 
Human participants 

Nine healthy, participants were recruited for the study (5 males and 4 females, mean 
age=24.78, SD=4.68; mean Edinburgh handedness score=90.11, SD=11.34). 
Participants completed 3 experimental sessions. During the first training session, 
participants learned to perform the finger individuation task. In the scanner session, 
participants performed the finger individuation task while undergoing fMRI. In the EMG 
session, participants performed the finger individuation task while muscle activities were 
recorded. All participants provided informed consent before the beginning of the study, 
and all procedures were approved by the Office for Research and Ethics at the University 
of Western Ontario. 

Human finger individuation task 
In all three sessions, the five fingers of the right hand were individually clamped 

between two keys (Fig. 1A). Foam padding on each key ensured each finger was 
comfortably restrained. Force transducers (Honeywell-FS series, dynamic range=0-16N, 
resolution<0.02N, sampling rate=200Hz) above and below each key monitored the 
forces applied by each finger in extension and flexion directions. 

During the task, participants viewed a screen that presented two rows of five bars 
(Fig. 1B). These bars corresponded to flexion or extension direction for each of the five 
fingers of the right hand. The forces applied by each finger were indicated on the visual 
display as five solid white lines (one per finger). On each trial, participants were cued to 
make an isometric, single-finger flexion or extension press at one of three forces levels 
(1, 1.5, or 2N for extension; 1.5, 2, or 2.5N for flexion) through the display of a white 
target box (Fig. 1B). Extension forces were chosen to be lower than flexion forces, as 
extension finger presses are more difficult (Valero-Cuevas, Zajac, & Burgar, 1998; Li, 
Pfaeffle, Sotereanos, Goitz, & Woo, 2003) and can lead to more enslaving (i.e. co-
articulation) of non-instructed fingers (Yu, Duinen, & Gandevia, 2010). The forces were 
similar to the low forces required in the monkey task design. The finger displacement 
required to achieve these force thresholds was minimal, such that the finger presses 
were close to isometric. 

Each trial lasted 6000ms and consisted of four phases (Fig. 1B): a cue phase 
(1500ms), a press phase (2000ms), a hold phase (1000ms), and a 1500ms inter-trial 
interval. This trial structure was designed to mirror the NHP task (see NHP 
methods;  Schieber, 1991). During the cue phase, a white box appeared in one of the 
ten finger bars presented on screen, indicating the desired finger and direction. The 
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desired pressing force was reflected by the relative location of the cue within the finger 
bar. After 1500ms, the cue turned green. This instructed the participant to initiate the 
finger press. Participants had up to 2000ms after the cue turned green to reach the 
specified force. Once the pressing force was within the target box (target force ±12.5%) 
the cue turned blue. Participants were trained to hold the force constant within this 
interval for 1000ms. When this time had elapsed, the cue disappeared and the 
participants were instructed to release the press by relaxing their hand. Importantly, 
participants were instructed not to actively move the finger in the opposite direction. A 
new trial started every 6s. For the scanning session, periods of rest were randomly 
intermixed between trials (see below). The muscle recording sessions lacked these rest 
periods, but otherwise had the same trial structure. 

Trials of the 30 conditions (5 fingers x 2 directions x 3 forces) were presented in a 
pseudo-random order. Trials were marked as incorrect if the participant was too slow 
(i.e. did not initiate movement within 2000ms of the go-cue) or if the participant did not 
reach at least 0.5N force with the cued finger in the cued direction. Due to the pre-
training, the participants had low error rates in both the fMRI (mean error rate=1.48% 
±1.05% sem) and EMG (mean error rate=1.30% ±0.97%) sessions, and accurately 
produced the required forces (fMRI: mean peak force accuracy=108.37% ±2.67% of the 
target forces; EMG: mean accuracy=107.11% ±2.21%). Therefore, we included all trials 
in our analyses. 

We also did not exclude any trials based on finger co-activation. Overall, participants 
were able to individuate their fingers relatively well. During fMRI extension trials, the 
forces applied through the non-instructed fingers were, on average, 12.083% (±1.489%) 
of the forces applied by the instructed finger. During fMRI flexion, forces produced by 
on non-instructed fingers was 19.761% (±1.713%) of the force produce by the instructed 
finger. Most enslaving occurred during presses of the middle, fourth, and little fingers, 
all of which are difficult to individuate (Schieber, 1991). Note, however, that the presence 
of enslaving does not compromise the main finding of  our paper. To some degree, neural 
activity patterns related to flexion and extension of single fingers will always depend on 
the biomechanical coupling between fingers, either because the cortical activation 
patterns need to overcome that coupling, or because coupling does occur, which then 
influences the recurrent sensory input. Our main conclusions are based on comparisons 
between flexion and extension presses, and remain valid whether we study the actions 
of isolated fingers, or groups of fingers (see discussion).  

fMRI data acquisition 
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We used high-field functional magnetic resonance imaging (fMRI, Siemens 7T 
Magnetom with a 32 channel head coil at Western University, London, Ontario, Canada) 
to measure the blood-oxygen-level dependent (BOLD) responses in human participants. 
For each participant, evoked-BOLD responses were measured for isometric, single-
finger presses in the flexion and extension directions. 

There were 2 repeats of each condition during each imaging run (5 fingers × 2 
directions × 3 force levels × 2 repeats = 60 trials). Trial order in each run was randomized. 
In addition, 5 rest conditions of 6000ms were randomly interspersed between trials 
within each run. Each run lasted approximately 390 seconds. Participants performed 8 
such runs during the scanning session.  

During each run, 270 functional images were obtained using a multiband 2D-
echoplanar imaging sequence (GRAPPA, in-plane acceleration factor=2, multi-band 
factor=2, repetition time [TR]=1500ms, echo time [TE]=20ms, flip angle [FA]=45 deg). Per 
image, we acquired 32 interleaved slices (without gap) with isotropic voxel size of 
1.5mm.  The first 2 images in the sequence were discarded to allow magnetization to 
reach equilibrium. To estimate magnetic field inhomogeneities, we acquired a gradient 
echo field map at the end of the scanning session. Finally, a T1-weighted anatomical 
scan was obtained using a magnetization-prepared rapid gradient echo sequence 
(MPRAGE) with a voxel size of 0.75mm isotropic (3D gradient echo sequence, 
TR=6000ms, 208 volumes). 

fMRI image preprocessing and first-level analysis 
Functional images were first realigned to correct for head motion during the scanning 

session (3 translations: x,y,z; 3 rotations: pitch, roll, yaw), and co-registered to each 
participant’s anatomical T1-image. Within this process, we used a B0 fieldmap to correct 
for image distortions arising from magnetic field inhomogeneities (Hutton et al., 2002). 
No slice-timing correction was applied due to the relatively short TR. The data were not 
smoothed or normalized to a standard template. 

The minimally preprocessed data were then analyzed using a general linear model 
(GLM; Friston et al., 1994) using SPM12 (fil.ion.ucl.ac.uk/spm/). Each of the finger-
direction-force conditions were modeled with separate regressors per run, resulting in 
30 regressors per run (30*8 runs = 320 task regressors), along with an intercept for each 
run. The regressor was a boxcar function that started at the presentation of the go-cue 
and lasted for the trial duration, spanning the press, hold, and release periods of each 
trial. The boxcar functions were convolved with a hemodynamic response function with 
a delayed onset of 1000ms and a post-stimulus undershoot at 7500ms. Given the low 
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error rate (Supplementary Table 2), we did not exclude any trials from this analysis. We 
used the SPM FAST autocorrelation model with restricted-maximum likelihood 
estimation to model the long-range temporal dependencies in the functional timeseries 
(see Arbuckle et al., 2019 for details). This analysis resulted in one activation estimate 
(“beta-weights”) for each of the 30 conditions per run for each participant. 

Surface reconstruction and region of interest definitions 
Each participant’s T1-image was used to reconstrct the pial and white-grey matter 

surfaces using Freesurfer (Fischl, Sereno, & Dale, 1999). Individual surfaces were aligned 
across participants and spherically registrated to match a template atlas (Fischl, Sereno, 
Tootell, & Dale, 1999) using a sulcal-depth map and local curvatuer as minimization 
criteria. M1 was defined as a single region of interest (ROI) on the group surface using 
probabilistic cuto-architectonic maps aligned to the template surface (Fischl et al., 2008). 
We defined M1 as being the surface nodes with the highest probability for Brodmann 
area 4 and who fell within 2cm above and below the hand knob anatomical landmark 
(Yousry et al., 1997). To avoid cross-contamination between M1 and S1 activities along 
the central sulcus, voxels with more than 25% of their volume in the grey matter on the 
opposite side of the central sulcus were excluded. 

Multivariate fMRI analysis 
We used the cross-validated Euclidean (crossnobis) dissimilarity to quantify 

differences between fMRI activity patterns for each pressing condition within each 
participant (Walther et al., 2016). Cross-validation ensures the distances estimates are 
unbiased, such that if two patterns differ only by measurement noise, the mean of the 
estimated value would be zero. This also means that estimates can sometimes become 
negative (Diedrichsen, Provost, & Zareamoghaddam, 2016). Therefore, dissimilarities 
significantly larger than zero indicate that two patterns are reliably distinct.  

The distances are organized in a representational dissimilarity matrix (RDM). The 
RDM is a symmetric matrix (number of conditions x number of conditions in size) with 
off-diagonal values corresponding to the paired distance between two conditions. 
Values along the diagonal are zero, as there is no difference between a pattern paired 
with itself. 

The fMRI activity patterns were first-level GLM parameter estimates ("beta-weights") 
for voxels within the M1 ROI mask. Analyses were conducted using functions from the 
RSA (Nili et al., 2014) and PCM (Diedrichsen, Yokoi, & Arbuckle, 2018) MATLAB 
toolboxes. The M1 beta-weights were first spatially pre-whitened using multivariate 
noise-normalization with a regularized estimate of the spatial noise-covariance matrix to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.17.996124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.17.996124


21 
 

suppress correlated noise across voxels (Walther et al., 2016). Then, the mean pattern 
across-conditions was removed from each run independently. Finally, we calculated the 
crossnobis dissimilarity between pairs of fMRI activity patterns for different conditions: 

𝑑",$ = &𝑥" −	𝑥$*+
,
𝛴+
./0𝛴1

./0&𝑥" − 𝑥$*1 
where 𝑑 is the dissimilarity between activity patterns of conditions 𝑖 and 𝑗 in run 𝐴, and 
𝛴 is the voxel-wise noise covariance matrix. We calculated an RDM for the matched 
force conditions separately (1.5N and 2N presses, 10 conditions each), and then 
averaged the resulting RDMs within each participant. This yeilded one RDM per 
participant containing the dissimilarities between presses of the five fingers in either 
direction (10 conditions, 45 dissimilarity pairs). 

Estimating spatial tuning of fingers and direction 
For the spatial tuning analysis, we estimated the spatial covariance of tuning for 

fingers and directions. To do this, we first univariately prewhitened the fMRI activity 
patterns (multivariate prewhitening would partly remove the spatial tuning we are 
attempting to measure). To remove the influence of noise on the covariance estimate, 
we then partitioned the data in two according to odd or even number imaging runs. 
Within each partition, we averaged the fMRI activity patterns for each condition across 
the matched forces (1.5 and 2N). This yielded a vector of 10 activity values per voxel per 
partition (5 flexion, 5 extension), which we refer to as an activity profile. For each voxel, 
we then mean-centered the activity profile. 

Per partition (𝑘), we modeled the activity profile of each voxel (𝑦) using three 
components: a main effect of fingers (𝑓), a main effect of direction (𝑑), and a finger x 
direction interaction effect (𝑞): 

𝑦9 = 𝑓9 + 𝑑9 + 𝑞9 
We then used these components to reconstruct the activity profiles of each voxel, 

including finger or direction components accordingly. 
We first investigated the spatial tuning for fingers across voxels in M1. To do this, 

we reconstructed the activity profiles using only the finger component (𝑓). Across voxels, 
the reconstructed finger activity profiles explained, an average, 60% of the full activity 
profiles (evaluated as R2). We then estimated the covariance of the finger activity profiles 
between voxel pairs in M1. This was done in a cross-validated fashion, comparing voxel 
pairs across the two partitions. We then binned the covariances based on the spatial 
distance between each voxel pair. The first bin included immediately and diagonally 
neighbouring voxels (1.5 to 2.6mm), the second bin the second layer of direct and 
diagonally neighbouring voxels (>2.6 to 5.2mm), and so on, up to a total distance of 
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20.8mm. Finally, we normalized the binned covariances by the cross-validated voxel 
variances to obtain an estimate of the spatial autocorrelation function (ACF) for fingers 
in M1. 

We used the same procedure to estimate the ACF for direction. Importantly, we 
included both the direction (𝑑) and the finger x direction interaction (𝑞) components in 
the activity profile reconstruction. We included the interaction component as we 
hypothesized that the tuning of voxels to flexion and extension patterns would be 
different across fingers. Across voxels, these reconstructed direction activity profiles 
explained, on average, 40% of the variance of the full activity profiles. 

Finally, we estimated the smoothness of the finger and direction ACFs (Diedrichsen, 
Ridgway, Friston, & Wiestler, 2011). To do this, we fitted a function that decayed 
exponentially with the square of the distance (𝛿) between two voxels: 

𝐴𝐶𝐹(𝑣@, 𝑣@AB) = 	exp	(−
𝛿0

2𝑠0) 

Here, 𝑠 is the standard deviation of the ACF. If neighbouring voxels are relatively 
independent (i.e. low covariance), the value of 𝑠 will be small. While we can use 𝑠 to 
express the smoothness of the ACF, the smoothness can also be expressed as the full-
width-half-maximum (FWHM) of the Gaussian smoothing kernel that- when applied to 
spatially independent data- would yield the same ACF. The FWHM is thus more readily 
interpretable. The FWHM of this Gaussian kernel is calculated as: 

𝐹𝑊𝐻𝑀 = 2𝑠L2 log(2)	 
We applied this approach to the reconstructed finger and direction activity profiles 

separately to estimate the FWHM of fingers and direction M1. The goodness of fit 
(evaluated with R2) of the fitted exponential decays were not significantly different 
between the finger and direction models (mean R2 of finger ACF=0.978, mean R2 of 
direction ACF=0.980; two-sided paired t-test: t8=0.189, p=0.8547). 

EMG muscle recordings 
Participants’ skin was cleaned with rubbing alcohol. Surface EMG of distal muscles 

of the hand were recorded with self-adhering Ag/AgCl cloth electrodes (H59P-127 
repositionable monitoring electrodes, Kendall, Mansfield, Massachusetts, USA). 
Electrodes were cut and positioned in line with a muscle in a bi-polar configuration with 
an approximate 1cm inter-electrode distance. Surface EMG of proximal limb muscles 
were recorded with surface electrodes (Delsys Bagnoli-8 system with DE-2.1 sensors). 
The contacts were coated with a conductive gel. Ground electrodes were placed on the 
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ulna at the wrist and elbow. The signal from each electrode was sampled at 2000Hz, de-
meaned, rectified, and low-pass filtered (fourth order butterworth filter, 𝑓P=40Hz).  

Multivariate EMG analysis 
We used the cross-validated Euclidean (crossnobis) distance to quantify differences 

between patterns of muscle activities for each movement condition, similar to the fMRI 
analysis. This metric is invariant to scaling of the EMG signals from each electrode, and 
has been established in previous work (Ejaz et al., 2015). Briefly, we first calculated the 
average square-root EMG activity for each electrode and trial by averaging over the 
press and hold time windows (mean window= 1800ms, up to a max window of 3000ms). 
We then subtracted the mean value for each electrode across conditions for each run 
independently to remove any drifts in the signal. These values were then divided by the 
standard deviation of that electrode across trials and conditions to avoid arbitrary 
scaling. Finally, we calculated the crossnobis dissimilarity between pairs of EMG activity 
patterns for different conditions across runs. 

Monkey finger individuation task 
The behavioural task performed by two Macaca mulatta monkeys (monkeys C and 

G) has been described previously (Schieber, 1991; Schieber & Rivlis, 2007). Briefly, the 
monkeys were trained to perform cued single finger flexion and extension presses. Each 
monkey sat in a primate chair and, similar to the human device described above, their 
right hand was clamped in a device that separated each finger into a different slot (Fig. 
7A). Each slot was comprised of two microswitches (one in the flexion direction and one 
in the extension direction). One switch was closed by flexing the finger, the other by 
extending the finger. The absolute degree of movement required to close either switch 
was minimal (a few millimeters), and therefore the force required to make and hold a 
successful press was small- similar to the human finger individuation task. Therefore, 
like the fMRI task behaviour, these finger movements are very close to isometric presses. 

A series of LED instructions were presented to the monkey during each trial (Fig. 7B). 
A successful trial occurred when the monkey pressed the cued finger in the cued 
direction without closing any other switch. Similar to our human experiment design, the 
monkeys were trained to hold the cued switch closed for 500ms, before relaxing the 
finger (Fig. 7C). At the end of a successful trail, the monkey received a water reward. The 
monkey's wrist was also clamped in this device, and some trials required the monkey to 
flex or extend the wrist. Wrist trials were not included in the current analysis. Flexion and 
extension trials of each finger and wrist were pseudorandomly ordered. In the case of a 
behavioural error, trials were repeated until successful. Therefore, we excluded the 
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successful trials that followed error trials to avoid potential changes in the baseline firing 
rate of the recorded neuron. 

 
Figure 7 | Monkey finger individuation task. (A) The monkey hand configuration and device (illustration 
from Schieber, 1991). (B) Visual feedback for the NHP task. The columns represent 5 LED cues for each 
finger that instructed the monkey both what finger and what direction to press. (C) A trial schematic for 
the monkey finger individuation task. The monkeys had up to 700ms from the onset of the go cue to 
press the cued finger in the cued direction. They were trained to hold the press for 500ms before relaxing 
the finger. 
 

Spike rate calculation 
Single cells were isolated and spike times were recorded while monkeys performed 

the finger individuation task. The details of the recordings are reported previously 
(Schieber & Poliakov, 1998). Each trial was labeled with a series of behavioural markers, 
indicating the time of trial onset, presentation of condition cue, switch closure, and 
reward onset. For the spike rate traces plotted in Figure 4, we calculated the spike rate 
per 10ms bin, aligned to press onset, and smoothed the binned rates with a Gaussian 
kernel (FWHM=50ms). For the dissimilarity analysis (see below), we calculated the 
average spike rate over time per trial starting at go cue onset (when the monkey was 
instructed as to which finger and direction to press) until the end of the hold phase 
(500ms after switch closure). This time window encompassed a short period of time prior 
to the start of the finger press and the entire hold duration of the press (Monkey C: mean 
window= 739ms; Monkey G: mean window=773ms). 

Multivariate spiking analysis 

Similar to the human fMRI and EMG analyses, we computed crossnobis distances 
between spiking patterns for different conditions within each monkey. To cross-validate 
the estimated distances, we restricted our analysis to include cells for which we had at 
least two successful trials for each finger in both directions (238 cells in monkey C and 
45 cells in monkey G). After calculating the average spike rates, we arranged the spike 
rates into vectors per condition (Fig. 4B). In order to account for the Poisson-like increase 
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of variability with increasing mean firing rates, we applied the square-root transform to 
the average firing rates (Yu et al., 2009).  

For each cell per condition, we randomly split the square-root spike rates into one 
of two partitions, ensuring that each trail was approximately equally represented in each 
partition. We then averaged the spike rates within each partition. This yielded two 
independent sets of spiking patterns per monkey (10 patterns- 5 fingers x 2 directions). 
Per partition, we normalized each neuron’s spike pattern by dividing by the neuron’s max 
rate across conditions, and then re-weighted the spike rates per cell according to the 
number of trials per cell (cells with more trials were up-weighted, vice versa for cells with 
fewer trials). Finally, we calculated pairwise cross-validated Euclidean distances 
between the two sets of patterns. We repeated this RDM calculation procedure 1000x 
per monkey, each time using a different random partitioning of the data. We then 
averaged the RDMs across iterations to yield one RDM estimate per monkey. We note 
that results were qualitatively consistent across a range of different pre-processing 
approaches (e.g. using raw spike rates, z-scoring the firing rates, not applying trial re-
weighting). 

Kinematic finger model RDM 
As in Ejaz et al. (2015), we used the statistics of naturalistic hand movements to 

predict the relative similarity of single finger representations in M1. In the text we refer to 
this model as the kinematic model. To construct the kinematic model RDM, we used 
hand movement statistics from an independent study in which 6 male participants wore 
a cloth glove imbedded with motion sensory (CyberGlove, Virtual Technologies) while 
they performed everyday activities (Ingram, Körding, Howard, & Wolpert, 2008). These 
statistics included the velocities about joint angles specific to each of the five fingers of 
the participants’ right hands. Positive velocities indicated finger flexion, and negative 
velocities indicated finger extension. 

Because the movement in our finger pressing task was restricted to movements 
about the metacarpal (MCP) joint of each finger, we used the MCP joint velocities to 
predict cortical M1 finger similarity. First, we split the data for each joint velocity into two 
vectors: one for flexion and one for extension, taking the absolute of the velocities in this 
process. During periods of finger flexion, we set the extension velocity to zero, and vice 
versa. This resulted in 10 velocity vectors (5 fingers x 2 directions). Then, to account for 
differences in scaling, we normalized each velocity vector to a length of 1. Finally, we 
calculated the dissimilarities between pairs of these processed velocity vectors. We 
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averaged these RDMs across the six participants in the natural statistics dataset, yielding 
one kinematic model RDM. 

Statistical analysis of dissimilarities 
We summarized the RDMs by classifying dissimilarities into finger-specific and 

direction-specific dissimilarities for each participant and dataset. Finger-specific 
dissimilarities were the dissimilarities between conditions where different fingers were 
pressed in the same direction (10 pairs for flexion, 10 pairs for extension). Direction-
specific dissimilarities were the dissimilarities between conditions where the same finger 
was pressed in different directions (5 pairs total). Within each category, dissimilarities 
were averaged. To compare between the average finger and direction dissimilarities, we 
used two-sided paired t-tests. We report the mean and standard error of the 
dissimilarities where appropriate in the text. 

Statistical analysis of RDM correlations 
Pearson’s correlations between the vectorized upper-triangular elements of the 

RDMs were used to compare different RDMs. To calculate the stability of RDMs, we 
calculated the Pearson’s correlations between all possible pairs of the participants’ 
RDMs. This yielded 36 correlations (one per unique participant pair). We Fisher-Z 
transformed these correlations and calculated the mean and standard error. We used 
these values to calculate the lower and upper bounds of the 95% confidence interval, 
assuming normality. Finally, the mean and confidence bounds were transformed back 
to correlations. We report these values in the text as r=mean [lower bound - upper 
bound]. The same method was applied to correlations between measured RDMs and 
model predictions. T-tests were performed on Fisher-z transformed correlations. 

Estimating noise ceiling for model fits 
Since the dissimilarities between fMRI patterns can only be estimated with 

noise, even a perfect model fit would not result in a perfect correlation with the RDM of 
each participant. Therefore, we estimated the noise ceiling, which places bounds on the 
expected model correlations if the model is a perfect fit. We first calculated the average 
correlation of each participant’s RDM with the group mean RDM (Nili et al., 2014), 
treating the mean RDM as the perfect model. The resulting average correlation is an 
overestimate of the best possible fit, as each RDM is correlated with a mean that includes 
that RDM (and hence also the measurement error of that RDM). To then estimate a lower 
bound, we calculated the correlation between a participant’s RDM and the group mean 
RDM in which that individual was removed.  
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Supplementary figures 

 
Figure S1 | fMRI activity maps. Maps are shown in the hand-knob region of the left (contralateral) 
hemisphere during 2N presses for participants 2 (A) and 3 (B). The black dotted line shows the fundus 
of the central sulcus. There is considerable inter-subject variability of the spatial arrangement of these 
patterns. 

 
 

 

Figure S2 | Finger enslavement in fMRI task. Finger 
enslaving (i.e. forces applied by non-instructed finger) during 
the fMRI task. Enslavement is expressed as a % of the force 
that was applied by the cued finger. Positive (negative) values 
indicate flexion (extension) forces. 
 

 
 

 

Figure S3 | Finger enslavement in EMG task. Finger 
enslaving (i.e. forces applied by non-instructed finger) during 
the EMG task. Enslavement is expressed as a % of the force 
that was applied by the cued finger. Positive (negative) 
values indicate flexion (extension) forces. 
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Figure S4 | M1 spiking activity during monkey single finger flexion and extension. Trial averaged 
firing rates from three cells (monkey C). Traces are aligned to press onset (0ms). These cells 
demonstrate a range of tunings, some finger-specific, some direction-specific, and some mixed. Firing 
rates were calculated for 10ms bins and smoothed with a gaussian kernel (FWHM=50ms).   
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