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Abstract 12 

Plant pathogens are a great threat to food security. To combat them we need an 13 

understanding of how they work. Integrating large-scale omics datasets such as genomes 14 

and transcriptomes has been shown to provide deeper insights into many aspects of 15 

molecular biology. For a better understanding of plant pathogens, we aim to construct a 16 

platform for accessing genomic and gene co-expression networks for a range of pathogens 17 

and reference species. Currently we have integrated genomic and transcriptomics data from 18 

10 species (Fusarium graminearum, Ustilago maydis, Blumeria graminis, Neurospora 19 

crassa, Schizosaccharomyces pombe, Saccharomyces cerevisiae, Escherichia coli, 20 

Arabidopsis thaliana, Mus musculus and Homo sapiens). 21 

Here we introduce OmicsDB::Pathogens (http://pathogens.omicsdb.org), a publicly available 22 

web portal with an underlying database containing genomic, and transcriptomic data and 23 

analysis tools. It allows non-bioinformaticians to browse genomic data and inspect and 24 

compare biological networks across species. 25 
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The information is modelled in a graph-based database, enabling flexibility for querying and 26 

future extensions. Tools such as BLAST and Cytoscape.js are available together with the 27 

option of performing GO enrichment analysis. The database also enables the user to browse 28 

information such as Orthologs, Protein domains and publications citing a given gene. 29 

Herein we describe how to use this platform for generating hypotheses for the function of a 30 

gene. 31 

 32 

Availability and Implementation  33 

Currently, Omicsdb  supports networks for 10 organisms and is freely available for public 34 

use at http://pathogens.omicsdb.org 35 

 36 

Introduction 37 

Plant pathogens are a great threat to the ever-growing population and the following need for 38 

food. To combat them, an understanding of their mode of action and of how the pathogenic 39 

processes work is essential. To be able to obtain useful knowledge from genomes, it is 40 

necessary to be able to correctly assign functions to gene products. Manual annotation is not 41 

a feasible option to annotate the ever-growing number of available genomes. Scientists, 42 

therefore, must rely more and more on predictions.  43 

In-silico methods have gained popularity for automated annotation of gene functions, though 44 

for it to be useful, it is important that the accuracy of the predictions, and number of genes 45 

that can be annotated is high.  46 

The guilt by association hypothesis is based on the observation that genes that participate in 47 

similar biological processes or are involved in similar regulatory pathways tend to display 48 

similar expression profiles (Wolfe et al., 2005). An increasingly popular method to utilize this 49 

observation is using gene co-expression networks. Networks are a convenient way of 50 

representing biological data and allow for the utilization of graph theory. By analysing the 51 

structure of the networks, it is possible to identify communities within the network, where the 52 

genes are more closely related to each other than to the rest of the network and are 53 

enriched for specific biological processes. 54 

The two main applications for co-expression network analysis are 1) To use a bait-gene from 55 

a known pathway or with a known function, as a query, and identify possible genes within 56 

the same pathway or with a similar function (Itkin et al., 2013) and 2) to suggest the 57 

biological process or pathways given gene is involved in, based on the functions of its 58 

neighborhood. With the increase in available biological networks, an increasingly important 59 
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usage is the identification of common network patterns across species, this allows for more 60 

reliable transfer of knowledge from and across model species. 61 

Inter-network comparisons serve multiple purposes, they can improve identification of 62 

functionally related orthologs across species (Hansen et al., 2014), and aid in the 63 

identification of conserved subgraphs within or across species (Stuart et al., 2003). 64 

  65 

The amount of data a researcher working within molecular biology needs to handle has 66 

grown exponentially during later years. Not just does that put a heavy load on the IT 67 

infrastructure, but also on the researcher that might not be a bioinformatics specialist. 68 

Handling and processing omics data are often a requirement these days, to be able to 69 

perform analysis on this kind of data, researchers need to be familiar with scripting 70 

languages such as Python or R. 71 

 72 

Curated databases have shown to be powerful tools for integration and analysis of data. 73 

This has led to an emergence of integrated web-based databases, changing the analysis of 74 

networks from being a task for specialist bioinformaticians, into a simple routine task for 75 

experimental molecular biologists, investigating specific genes or conditions. However, most 76 

of these databases focus on the major model species, such as Maize (Andorf et al., 2016), 77 

Budding yeast  (Kim et al., 2014) or fission yeast  (Vo et al., 2016). There exist very few 78 

options for researchers working on non-model species. 79 

Plant pathogens have until now had little representation in these databases. Electronic 80 

resources for Fusarium graminearum eFG (Liu et al., 2013) a model species in plant 81 

pathology (Zhang et al., 2019), contains functional annotation as well as annotations of 82 

transcription factors and curated and predicted pathogenic genes for fusarium. PHI-base 83 

(Urban et al., 2017) is a great resource for curated Pathogen-Host Interactions but is 84 

manually curated and thus limited in size. PhytoPath (Pedro et al., 2016), is a resource for 85 

genomic information related to plant pathogens. Other databases with microbial data that 86 

cover mainly model species are also available (Kim et al., 2014, 2015; Oughtred et al., 2019) 87 

  88 

To tackle this problem, we here present OmicsDB::Pathogens, an integrated database of 89 

networks from 8 species: 6 model species (Escherichia coli, Saccharomyces cerevisiae, 90 

Saccharomyces pombe, Arabidopsis thaliana, Mus musculus, Homo sapiens), and 4 plant 91 

pathogens (Fusarium graminearum, Ustilago maydis, Blumeria graminis, Neurospora crassa 92 

and Magnaporthe oryzae),  as well as orthologs from 158 other fungal pathogens, to ease 93 

the knowledge transfer to and from these. 94 

 95 
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OmicsDB:: Pathogens is a database developed to assist experimental molecular biologists in 96 

accessing and analyzing omics data. 97 

The database provides intuitive navigation, allowing the researchers to store, browse, 98 

analyse and compare their data, as well as handling metadata of both samples and 99 

workflows. Another important use of the database is that it allows comparisons between 100 

species that can allow the experimental researcher not just to infer possible functions of 101 

genes not previously studied experimentally in detail. It also makes it possible to rank genes 102 

of interest to study enabling more focussed research in sorting out gene function. We 103 

provide an extensive amount of already processed publicly available genomic and 104 

transcriptomic data. 105 

Results and discussion 106 

OmicsDB is a database that includes high throughput experimental data and information for 107 

multiple species. Since we store data from biological networks, it was decided to go for the 108 

graph-based database Neo4J for storing most of the data. Neo4J has previously been 109 

evaluated by Have and Jensen for several graph processing problems related to 110 

bioinformatics and compared with PostgreSQL, they found Neo4J to be faster in many 111 

cases, though they also conclude that graph-based databases are not necessarily the best 112 

choice for all problems (Have and Jensen, 2013).  Neo4J uses the property graph model, 113 

which means that nodes and edges can have key/value properties associated. Neo4J uses 114 

its own query language, Cypher for querying the graph, cypher allows queries to be 115 

formulated in terms of paths, which allows them to be concise and intuitive compared with 116 

equivalent SQL queries, which is often complicated by joins, and difficult to read.  Due to the 117 

simplicity of traversing edges, and accessing data through the Cypher language, we decided 118 

to use Neo4J for all data gene expression data, that is stored in an SQLite database, and flat 119 

files that are stored in an S3 compatible object storage, with their paths and metadata stored 120 

in Neo4J linked to the relevant organism. A simplified overview of our Neo4J data model can 121 

be seen in Fig. 1 An overview of the infrastructure and data processing steps can be seen in 122 

Fig. 2. The processed expression data is stored in a SQL database, with common identifiers 123 

shared between the other systems.  124 
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 125 

Fig 1. The part of our Neo4J data model. This shows how the different nodes are related. 126 

Properties are left out for simplicity. Gathering data across any node is easy, for example, if 127 

one wishes to know all publications related to a given Domain its possible to traverse the 128 

graph from Domain over Accession to Publication. We believe this gives a more intuitive way 129 

of accessing data than through a classical relational database.  130 

FASTA and GFF files, are stored using an S3 compatible object storage (Palankar et al., 131 

2008), together with their respective indexes. Accessing this information is easy since we 132 

can traverse the graph from a given Accession to the S3 data, and use the Accession 133 

together with the file index to drag out only what we need from the flat-file, while benefiting 134 

from the features of S3 buckets, especially scalability and accessibility across servers. 135 

To ease access to our data, we developed a web-based interface for OmicsDB::Pathogens 136 

(http://pathogens.omicsdb.org). An overview of the website is shown in Fig 3. The site is 137 

centered around gene information pages, where each page tries to summarize the 138 

knowledge about a given gene, Users can search for the genes of interest using keywords, 139 

gene identifiers or by performing a BLAST search against their sequence of interest. 140 
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 141 

Figure 2. Storage and pipelines included in the data processing and storage. Microarray and 142 

RNA-seq data are stored processed and normalized (not shown). The TPMs are then stored 143 

in an SQLite database. The TPMs is also processed to generate a co-expression network, 144 

stored in Neo4J. Peptide, CDS, cDNA, Genomes and GFF files are stored in an S3 145 

compatible object storage, together with their respective faidx and tabix indexes (Li et al., 146 

2009; Li, 2011). Peptide sequences are processed by eggNOG (Huerta-Cepas et al., 2016) 147 

to identify ortholog families, and by InterProScan to find conserved domains. Both orthologs 148 

and domains are stored in Neo4J, connected to their respective peptides. 149 

Basic functions of OmicsDB::Pathogens 150 

The main source of information is the gene page that offers important information regarding 151 

each gene. It provides different information for each gene. An overview can be seen in Fig 3. 152 

The top of the page (Fig 3A) shows the basic information: The gene model with intron and 153 

exon information. Gene Ontology annotations (Ashburner et al., 2000). Ortholog groups from 154 

EggNOG (Huerta-Cepas et al., 2016) and protein domains from InterProScan (Hunter et al., 155 

2009; Jones et al., 2014) and the coding DNA sequence and the protein sequence. Further 156 

down the page (Fig 3B) is a list of co-expressed genes and a visualization of the co-157 

expression network. As well as A bar chart of gene expression displaying the average of 158 

replicates for a given experiment (Fig 3C). 159 
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 160 

Fig 3. An example of the gene profile page. A) Shows the structural and functional 161 

information on the gene as well as ortholog information, possible pathways, and InterPro 162 

domains. B) Shows an example of a co-expression network. C) Shows the expression profile 163 

of a given gene. Both A, B and C are found on the same page in the browser. 164 

 165 

This page also serves as a gateway to explore the information within and across species. 166 

For the species without networks, this data is limited to protein domains, ortholog families, 167 

DNA and protein sequences. 168 

The network representation of gene interactions allows the users to query for the pattern of 169 

co-regulated orthologs across other species, to see if this regulated “module” is preserved. 170 

This function can ease the annotation transfer of “biological process” terms, relying not only 171 

on sequence similarity but also on the biological context. 172 

To give a quick overview of what types of proteins the genes in the network code for, shapes 173 

of the nodes are used. The default shape is round, but it will be given a different shape in the 174 

case of transcription factors, or if a protein is classified with one of the 1-6 Enzyme 175 
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commission classifications (Cornish-Bowden, 2014). The node representing the bait gene is 176 

displayed in red. An overview of the shapes can be found in Supplementary Table 1. To 177 

represent different types of relationships, the edges are colored using the following scheme, 178 

Green edges: co-expression, red edges: physical interaction, blue edges: genetic interaction. 179 

The physical and genetic interactions are from The BioGrid database (Oughtred et al., 180 

2019), the co-expression data is calculated using the Mutual Rank (MR) method (Obayashi 181 

et al., 2009) modified to 1/MR with a MR threshold of 50. 182 

 183 

From the gene page is it possible to access other pages with information. Ortholog pages: 184 

Each EggNOG ortholog family has a dedicated page, with aggregated information on this 185 

family. Including genes and species in the family, functional annotations as well as papers 186 

citing the family. This enables users to easily check at a glance what information is available 187 

from other species. As well as how diverse the family is by visualizing the distribution of 188 

members per species in a pie chart. An example of an ortholog page can be seen in Fig 4. 189 

Domain pages are similar to ortholog pages, but centred around a domain, for example, 190 

PF00331 or PS51760.191 

 192 

Fig 4. Each Ortholog has a unique page with multiple tabs. A) it shows all that has been 193 

assigned and the species they belong to. It is possible to sub select species using the pie 194 

chart. The other tabs include B) publications citing genes within this ortholog group. As well 195 

as C) orthologs that co-occur across the networks. Orthologs that often co-occur hints that 196 

they might participate in a similar process. 197 

The Gene Ontology(Ashburner et al., 2000)  has also been integrated, with pages for each 198 

term, displaying all genes annotated with a given ontology term, as well as the position of the 199 

term in the GO graph. It is thus possible to find networks in one species that resembles 200 
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those affiliated with a certain ontology in another species. Traditionally the user would have 201 

had to download and annotate both datasets. However here it can be done with the click of a 202 

button.  203 

Advanced functions 204 

OmicsDB also provides some tools enabling users to perform more advanced analyses. One 205 

example is cross-species network alignment. Cross-species comparisons of biological 206 

networks with interactions are still an emerging field, It allows for finding network patterns 207 

that between orthologous genes across species, hinting towards similar function. This has 208 

been used successfully in plants (Usadel et al., 2009; Movahedi et al., 2012; Hansen et al., 209 

2014).  Most work on gene function prediction using gene co-expression so far has been 210 

working on single or few species. Identifying conserved co-expression patterns across 211 

orthologs in different species can identify highly relevant candidate genes sharing similar 212 

functions or participate in the same pathway  (Movahedi et al., 2012; Hansen et al., 2014). 213 

An example of such a strategy with experimental confirmation is the study by Itkin et al., 214 

where comparative co-expression for tomato and potato was utilized, leading to the 215 

discovery of a gene cluster that is related to the steroidal glycoalkaloids pathway (Itkin et al., 216 

2013). 217 

It is also possible to use the surrounding network and look for enriched GO terms, using a 218 

hypergeometric test. This is done at the bulk analysis page. Where a list of genes can be 219 

analysed. A plot of the expression values for all genes in the list will be generated as well as 220 

the GO enrichment. It is also possible to export both GO enrichments as well as peptide and 221 

CDS sequences in fasta format.  222 

Use case: Vacuolar iron uptake 223 

Yeast Fet3/Ftr1 (YMR056W/YER145C) are genes for two proteins that are in yeast high-224 

affinity iron uptake at the plasma membrane (Askwith et al., 1994, 3; Stearman et al., 1996). 225 

The proteins physically connect to each other. Ftr1 is a transporter and Fet3 is an 226 

oxidoreductase. A similar system Fet5/Fth1 (YFL071W/YBR207W) exists at the vacuolar 227 

membrane and is involved in regulating vacuolar iron storage (Urbanowski and Piper, 1999) 228 

In Fusarium graminearum FGSG_02143 is known to be the plasma membrane Ftr1-like 229 

protein and the homologous protein FGSG_05160 is probably the Fth1-like protein located at 230 

the vacuole membrane. To test if this can be the case FGSG_05160 was used as bait and 231 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.18.979971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.979971
http://creativecommons.org/licenses/by-nd/4.0/


the result is displayed together with the networks for yeast Ftr1 and Fth1. The aligned 232 

network can be seen in Fig. 5. Red edges represent possible orthologs and black edges co-233 

expression within the species. The subcellular location for some genes products in Yeast 234 

has been marked. 235 

What can be seen is that the vacuolar and the plasma-membrane iron transport is more co-236 

regulated in the F. graminearum data than in the yeast data (direct strong co-regulation 237 

between FGSG_05160 and FGSG_02143). The pattern of co-regulation of the other proteins 238 

with orthologues in yeast also supports that FGSG_05160 is a vacuolar located Fth1-239 

orthologue. This has, however, to be confirmed by direct experiments. 240 

 241 

Fig 5. The alignment of the co-expression neighbourhoods from Yeast and F. graminearum, 242 

Using FGSG_05160 as a bait, and searching for counterparts in Yeast with similar co-243 

expression patterns. Black edges represent co-expression edges, red edges represent 244 

possible orthologs relationship. It can be seen that large parts of the network are mirrored 245 

across the organisms, hinting towards the genes carrying out the same functionality. 246 

 Conclusions and future directions 247 

In this study, we developed a system for handling biological omics data. We processed gene 248 

expression data, as well as generated co-expression networks for 10 species. 249 
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We established an interactive web interface omicsdb.org to provide access to the data as 250 

well as the analysis platforms for the public. We plan to continue to improve the quality and 251 

functionality of this database, by regularly updating with new publicly available data. 252 

Currently the database contains networks for 4 pathogens and 6 references, however, there 253 

is a growing need for understanding how plant pathogens work, to alleviate this need we will 254 

include new species as when they become available.  255 
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Materials and methods 256 

External tools 257 

BLAST+ (Camacho et al., 2009) has been integrated to enable the users to easily find their 258 

gene of interest, allowing the user to BLAST their bait sequence against our database. This 259 

is practical in case they have identifiers not present in our database, or the user working on 260 

species not yet included. 261 

 262 

Construction of gene co-expression data 263 

For the construction of co-expression database for plant pathogens, we selected 4 264 

pathogenic species (Fusarium graminearum, Ustilago maydis, Blumeria graminis, 265 

Neurospora crassa), based on the availability of gene expression data, as well as 6 266 

reference species (Escherichia coli, Schizosaccharomyces pombe, Saccharomyces 267 

cerevisiae, Arabidopsis thaliana, Mus musculus, Homo sapiens). 268 

Expression data were downloaded from Arrayexpress (Kolesnikov et al., 2015), and 269 

normalized using the following methods: For Agilent data, the R-package limma (Ritchie et 270 

al., 2015) were used . For Affymetrix, Affymetrix Powertools v. was used, running the RMA 271 

algorithm. For NimbleGen, DEVA V 1.02 (Roche) was used. RNA-Seq data were subjected 272 

to QC using FastQC (Andrews), reads were mapped using TopHat2 (Kim et al., 2013), 273 

counted using HTseq-count (Anders et al., 2015) and normalized using the VST algorithm 274 

implemented in DESeq2 (Love et al., 2014), run in R v. 3.4 (R Core Team, 2013). 275 

Genome annotations were derived from Pombase for S. pombe (Wood et al., 2012), SGD for 276 

S. cerevisiae (Cherry et al., 1998), and Ensembl for the remaining species. 277 

Transcription factor annotations were downloaded from  (Liu et al., 2013), Enzyme 278 

Commision numbers were obtained from Uniprot (The Uniprot Consortium, 2019). Biological, 279 

chemical and genetic interactions were derived from BioGrid (Oughtred et al., 2019). 280 

 281 

The Mutual Rank value of the weighted Pearson’s correlation coefficient was used as the 282 

measure of co-expression, as described by  (Obayashi et al., 2009). A threshold of 50 was 283 

applied. To make it comparable with protein interactions, the MR was normalized by taking 284 

1/MR ensuring that 1 was equivalent to the best value. Mutual Rank is calculated as  285 

 286 

MR(A,B) = √ (Rank(A→B) x Rank(B→A)) 287 
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 288 

With A and B represent genes. GFF files were stored in tabix format (Li, 2011) peptide and 289 

DNA sequences were stored in faidx format implemented in Samtools (Li et al., 2009). 290 

Functional Annotations 291 

Protein domains including PFAM domains  (Finn et al., 2014) and Panther (Mi et al., 2013) 292 

were identified using InterProScan v. 5.29-68.0 (Hunter et al., 2009; Jones et al., 2014),  293 

Ortholog groups were identified using EggNOG (Huerta-Cepas et al., 2016), which also 294 

provided predicted GO terms. For E. coli, S. pombe, S. cerevisiae A. thaliana, M. musculus 295 

and Homo Sapiens, experimentally validated GO terms could be downloaded from the 296 

GeneOntology website (The Gene Ontology Consortium, 2019). The Gene Ontology website 297 

also provides mappings from domains identified by InterProScan to their associated GO 298 

terms. These maps were used to further improve the annotations. 299 

Papers citing a given gene or gene family were retrieved from Uniprot (The Uniprot 300 

Consortium, 2019). 301 

For reference, Arabidopsis thaliana, Mus musculus and Homo sapiens were included, 302 

annotations were derived similarly to the pathogens. 303 

Network alignment 304 

The network alignment uses the “@NOG” ortholog families, if you provide a bait gene, it will 305 

query all other genes from this family, and compare how many orthologs are shared in the 306 

1st-degree neighbourhood. To calculate how much of the network around two genes is 307 

similar, the Jaccard index for the gene families shared across the networks is then 308 

calculated following 309 

 ���, ��  �  
|� � �|

|� � �|
 310 

Where A and B represent the gene families in the network surrounding your bait gene and 311 

the gene it is compared against respectively. The numerator is the intersection of gene 312 

families, and denominator represents the union of all gene families in the 1st-degree 313 

neighbourhood.  314 
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Ontology Enrichment 315 

Enrichment of Gene Ontology terms in sets of genes is calculated using the Hypergeometric 316 

distribution function, implemented in Scipy (Virtanen et al., 2020). For the calculation of 317 

background terms, following the true path rule, all ancestors of any given annotation are 318 

considered. 319 

Database implementation 320 

The system runs on Linux v. 18.04 LTS Bionic Beaver. The web-service was implemented in 321 

a Python-based web application framework, Flask v. 1.0.2, with SQLite and Neo4J 3.4 322 

(www.neo4j.com) as the backend databases for the expression data and everything else 323 

respectively. The website is being served using gunicorn and NGINX. The co-expressed 324 

gene networks as well as the directed acyclic graphs for the GO terms were visualized using 325 

Cytoscape.js v. 3.14 (Franz et al., 2016), gene expression plots were generated using dc.js 326 

(https://dc-js.github.io/dc.js/). For the HTLM page layout, the bootstrap framework was used 327 

(www.getbootstrap.com), and for general purpose usability features the Jquery.js library 328 

(https://jquery.com) was used 329 

BLAST+ (Camacho et al., 2009) was installed and a custom HTML interface was developed. 330 

Icons were obtained from Font Awesome v. 5 (www.fontawesome.com).  331 
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