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Abstract:  
Software to predict the change in protein stability upon point mutation is a valuable tool 
for a number of biotechnological and scientific problems. To facilitate the development 
of such software and provide easy access to the available experimental data, the 
ProTherm database was created. Biases in the methods and types of information 
collected has led to disparity in the types of mutations for which experimental data is 
available. For example, mutations to alanine are hugely overrepresented whereas those 
involving charged residues, especially from one charged residue to another, are 
underrepresented. ProTherm subsets created as benchmark sets that do not account 
for this often underrepresented certain mutational types. This issue introduces 
systematic biases into previously published protocols’ ability to accurately predict the 
change in folding energy on these classes of mutations. To resolve this issue, we have 
generated a new benchmark set with these problems corrected. We have then used the 
benchmark set to test a number of improvements to the point mutation energetics tools 
in the Rosetta software suite. 
 
Introduction: 
The ability to accurately predict the stability of a protein upon mutation is important for 
numerous problems in protein engineering and medicine including stabilization and 
activity optimization of biologic drugs. To perform this task a number of strategies and 
force fields have been developed, including those that perform exclusively on 
sequence (Capriotti et al.; Casadio et al.)(Kumar et al.)  as well as those that involve 
sophisticated physical force fields both knowledge based(Sippl)(Gilis and 
Rooman)(Potapov et al.) , physical models(Pitera and Kollman)(Benedix et al.)(Pokala 
and Handel), and hybrids(Guerois et al.) (Pitera and Kollman; Park et al.)(Kellogg et 
al.) (Quan et al.) (Jia et al.) . 
 
To facilitate the development of these methodologies and provide easy access to the 
available experimental information the ProTherm database(Uedaira et al.) was 
developed. This database collects thermodynamic information on a large number of 
protein mutations and makes it available in an easy to access format.  At the time of this 
writing it contains 26,045 entries.  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.18.989657doi: bioRxiv preprint 

https://paperpile.com/c/XZfVv9/CTPSR+C8csv
https://paperpile.com/c/XZfVv9/rhKsh
https://paperpile.com/c/XZfVv9/TmDGu
https://paperpile.com/c/XZfVv9/yOJnF
https://paperpile.com/c/XZfVv9/yOJnF
https://paperpile.com/c/XZfVv9/EcGSH
https://paperpile.com/c/XZfVv9/xycmg
https://paperpile.com/c/XZfVv9/c6H3N
https://paperpile.com/c/XZfVv9/4tjPa
https://paperpile.com/c/XZfVv9/4tjPa
https://paperpile.com/c/XZfVv9/V12OY
https://paperpile.com/c/XZfVv9/xycmg+CaYx
https://paperpile.com/c/XZfVv9/P0LWZ
https://paperpile.com/c/XZfVv9/P0LWZ
https://paperpile.com/c/XZfVv9/N7CTF
https://paperpile.com/c/XZfVv9/tqvmI
https://paperpile.com/c/XZfVv9/FABoU
https://doi.org/10.1101/2020.03.18.989657


Due to its ease of access the ProTherm has served as the starting point for a number of 
benchmark sets used to validate different stability prediction software packages, 
including those in the Rosetta software suite. However significant biases exist in the 
representation of different types and classes of mutations in the ProTherm, as it is 
derived from the existing literature across many types of proteins and mutations. The 
most obvious example of this is the large number of entries involving a mutation from a 
native residue to alanine as making this type of mutation is a common technique used 
to find residues important for protein function. Therefore a large number of the 
benchmark sets derived from the ProTherm, which did not account for this bias, have 
significantly under or overrepresented these classes of mutations. These findings 
suggest previous reports on the accuracy of stability prediction software does not 
accurately reflect these tools’ ability to predict stability changes across all classes of 
mutations.  
 
To address this issue we have generated a novel benchmark subset which accounts for 
this bias in the database (Supplemental Table 1). We then used this benchmark set to 
validate and improve upon an existing free energy of mutation tool within the Rosetta 
software suite, “Cartesian ddG,” first described in Park et al. 2016. (Park et al.). We 
have also brought in new algorithms originally developed for cryoEM refinement to help 
improve sampling around difficult mutations involving proline. (Wang et al.) 
 
Results: 
In order to benchmark our Rosetta-based stability prediction tools we classified the 
possible mutations into 17 individual categories as well as reported results on three 
aggregate categories. We analyzed five previously published benchmark sets to 
determine their coverage across the different classes of mutations and found them 
inadequate in a number of categories, especially involving charged residues (Figure 1 
A-E). For example, the number of data points for mutational types ranged from 0-24 for 
negative to positive, 0-50 for positive to negative, 3-28 for hydrophobic to negative, and 
3-44 for hydrophobic to positive entries across the benchmark sets tested. Mutations to 
and/or from hydrophobic residues dominated the benchmark sets ranging from 
75%-92% of the total entries. 
 
To compare the composition of these benchmark sets to that of the database we 
examined the curated ProTherm (ProTherm*)) provided by Kortemme et al. 
( https://guybrush.ucsf.edu/benchmarks/benchmarks/DDG) which is a selection of 
entries containing only mutations which occur on a single chain and provide 
experimental ΔΔG values. We find that significant biases still exist here, with several 
categories having fewer than 50 unique mutations. These include: positive to negative, 
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42; hydrophobic to negative, 43; and non-charged polar to positive, 47. Mutations 
involving hydrophobic residues are still overrepresented with 74% of all mutations in the 
database involving hydrophobic residues (Figure 1 F). 
 
To sample more broadly across all types of mutations and remove sources of bias in 
our algorithm training we created a new benchmark set of single mutations that are 
more balanced across mutational types and avoid other biases. To generate this set we 
performed the following operations: 

1) Removed any entries from the curated ProTherm* that occur on the interface of a 
protein complex or interact with ligands -- the energetics of these mutations 
would include intra-protein and inter-molecular interactions that would alter the 
desired intra-protein energetics of a free energy calculation.  

2) We removed entries of identical mutation on similar-sequence (> 60%) 
backbones.  For mutations occurring at the same position in similar sequences, if 
the mutation is identical (e.g. L->I) and the sequence identity > 60%, then that 
mutation is included only once in the database; if the mutation is not identical 
(L-->I in one protein and L-->Q in another) then the mutation is included.  

3) We populated each mutually exclusive mutation category with 50 entries except 
for the cases where insufficient experimental data points exist. 

4) When multiple experimental values (including identical mutations as identified in 
point 2 above) were available we chose the ΔΔG value taken at the pH closest to 
7.  

The resulting benchmark set contains 767 entries across a range of different types and 
classes of mutations (Figure 2).  
 
We tested Protocol 3 described in Kellog et al. (Kellogg et al.) on this benchmark set 
and found that prediction ability varied widely across different mutational classes (Table 
1). This suggests that reported correlation metrics of different protocols may be heavily 
influenced by the composition of their benchmark sets. It also suggests that certain 
classes of mutations may pose a more difficult prediction problem. 
 
To address some of these poor performing metrics a number of changes were made to 
the more modern Rosetta ΔΔG protocol, Cartesian ddG, from Park et al. 2016 (Park et 
al.) . These include changes to the preparation step of the input model and increased 
optimization of the backbone around residues that are being mutated to or from proline 
(Figure 3). To improve the preparation step (step 1), we tested Cartesian Relax (as 
opposed to traditional torsion space Relax) both with and without all atom constraints 
and found that correlations were better without constraints (data not shown). This likely 
has to do with the use of Cartesian minimization during step 4, and the importance of 
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preparing a structure with similar sampling methods to those used during mutational 
energy evaluation.  In considering the final energy for a mutation, we also compared 
taking the average of three experiments vs. a multi-run convergence criterion and 
settled on the convergence criterion method.  We also increased backbone sampling for 
mutations involving proline taking advantage of new methods developed for CryoEM 
refinement. (Wang et al.)   We have also refactored the Cartesian ddG code for 
efficiency and modifiability. 
 
In addition to Pearson’s R we analyzed prediction power by classification errors instead 
of by correlation. A mutation is classified as stabilizing if the change in free energy is ≤-1 
kcal/mol, it is classified as destabilizing if the change is ≥1 kcal/mol, and neutral if it falls 
between these values. Each mutation is assigned a value of 0 for destabilizing, 1 for 
neutral, and 2 for stabilizing. We then scored each entry by taking the absolute value of 
the difference between the assigned value for the experiment and the prediction. A 
value of 0 indicates the prediction was correct, 1 indicates the prediction was 
moderately incorrect, i.e. the mutation is destabilizing and the prediction was neutral, 
and 2 indicates the prediction was egregiously wrong.  
 
This new and optimized Cartesian ddG generally improves performance overall 
especially in the ability to accurately classify mutations as shown by the Predictive Index 
(Pearlman and Charifson) and by the large reduction egregious errors in classification 
(Tables 1, 2). For example, the number of mutations predicted as stabilizing when they 
are destabilizing or vice versa fell from an average of 53 with Protocol 3 to an average 
of 31.3 across 3 replicates. “Off by 1” errors are also lower (317.3 vs 292.7). This trend 
is much stronger than the improvement in correlations, and more importantly reflects the 
practical value of correctly classifying mutational categories.  For example in protein 
engineering, a protein designer’s practical interest is whether any given mutation is 
stabilizing at all, more than which of two mutations is more stabilizing. 
 
The overall level of accurate classification predictions increases from 51.7% to 57.5% 
from the protocol 3 to Cartesian ddG Rosetta methods. We also note that over all 
charged residues the category predictions accuracy was 47.9% for protocol 3 and 
increases to over 56.1% with cartesian ddG. The Cartesian ddG algorithm is more 
broadly useful across any type of protein mutation, while previous methods had uneven 
applicability. 
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Discussion: 
Here we describe a number of issues in previous benchmark sets used to assess the 
quality of protein stability prediction software. In particular we have found a lack of 
adequate experimental data being included for mutations involving charged residues.  
 
Using these updated benchmarks we show that protein stability prediction tools in 
Rosetta vary widely across different types of mutation classes. In addition, given that 
this problem is pervasive throughout the field, it is likely that the reported accuracy of 
many methods for stability prediction may not reflect the diversity of possible mutation 
types. We encourage other developers to assess their tools on our benchmark set or on 
one which has appropriately accounted for the biases that exist within the databases 
(Supplemental Table 1).  
 
Last we have refactored the Cartesian ddG protocol code and introduced new backbone 
sampling around mutations involving proline. These use Cartesian degrees of freedom 
and sampling instead of the Rosetta standard torsion space sampling (Rohl et al.) . By 
tuning these algorithms with the new benchmark set, and focusing on improvements in 
previously underrepresented categories of mutations (e.g. uncharged to charged), we 
are able to achieve an algorithm with improved correlation to experimental values and 
drastically improved ability to correctly classify (stabilizing/destabilizing/neutral) a 
mutation. These new algorithms show the importance of diverse datasets in algorithm 
training, and the possibility for cross-fertilization between structure prediction methods 
and computational protein engineering methods. 
 
 
 
Methods: 
Benchmark Set Pruning: 
To create our benchmark set, we began by making a copy of the curated ProTherm 

database(Ó Conchúir et al.)  and began removing entries that were unsuitable.  Because 
we wished to train a point mutation algorithm without the complexities of multiple 
mutation interactions, we excluded any entry which did not represent a single mutation. 
Because the trained algorithm is intended to represent ΔΔG of monomer folding and not 
binding interactions, we also removed entries on the interface of a protein-protein 
complex, or interacting with a non-water ligand. Interactions were defined as any atom 
in the mutated residue within 5 Å of an atom not on the same chain. To prevent 
overtraining, we wished to remove duplicate mutations.  To identify duplicates, we 
performed an all to all sequence alignment to find parent backbones with ≥60%  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.18.989657doi: bioRxiv preprint 

https://paperpile.com/c/XZfVv9/H9VP
https://paperpile.com/c/XZfVv9/Czd2
https://doi.org/10.1101/2020.03.18.989657


sequence identity.  Within these clusters of sequences, any entries in which the same 
native residue is mutated to the same target were treated as identical. When multiple 
experimental ΔΔG values were available for an identical mutation we chose the value 
taken at closer to neutral pH. 
 
 
Benchmark category population: 
We identified 20 categories of mutation type by combinations from 9 residue type 
classifications (Table 3). We then populated each category with up to 50 entries. 
Mutually exclusive categories, i.e. negative to hydrophobic, were populated by picking a 
random entry from the curated databank and adding it to the benchmark if its respective 
category contained fewer than 50 entries. This was repeated 50,000 times after which 
we went through the entire databank from beginning to end populating any categories 
which were not already satisfied. Broad and non-exclusive categories, such as small to 
large, were sufficiently populated by the experiments selected from the exclusive group. 
A few categories involving charged residues (positive to negative, negative to positive, 
non-charged polar to positive, hydrophobic to negative, hydrophobic to positive, and like 
to like charge) did not have enough data to hit 50 entries so every available unique 
experiment was added. 
 
 
 
 ΔΔG Prediction: 
To prepare models for ΔΔG calculations, structures were stripped to only the chain in 
which the mutation occurs. Rosetta local refinement (“Relax”) was then performed 20 
times and the model with the lowest Rosetta energy was selected as input.  ΔΔG 
predictions were then performed using protocol 3 described in Kellogg et al. 2010 or the 
modified version of the Cartesian ddG application described originally in Park et al. 
2016 and elaborated upon here. 
 
Modifications to the Cartesian ddG app include a change to the number of mutant 
models generated from a fixed number, 3, to a variable number based on the following 
convergence criterion: the lowest energy 2 structures must converge to within 1 Rosetta 
Energy Unit, or take the best of 5 models, whichever comes first. In order to address 
changes in the backbone resulting from mutations to and from proline we added 
additional fragment based sampling around mutations involving proline. By default 30 
fragments of 5 residues in length are sampled and the best scoring structure is carried 
forward for analysis. This uses the Cartesian Sampler system described in Wang et al. 
(Wang et al.) . 
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Figure 1. Benchmark Set mutational category statistics  
This figure shows the population of different mutation classes used to benchmark a 
number of methods predict the change in free energy upon mutation the citations for 
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these benchmark sets are as follows A. Guerois (Guerois et al.)  B. Potapov ((Potapov et 
al.)  C.  Kellog (Kellogg et al.) D. Jia (Jia et al.)  E. Quan (Quan et al.) . As well as the 
overall representation of the curated ProTherm (F). Classes involving charged residues 
are colored in red. All data sets are significantly biased in their types of mutations 
present. 
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Figure 2. Categorically Balanced Benchmark mutational category statistics  
This figure shows the metrics of our new benchmark set selected to provide a more 
balanced representation of different mutation classifications. Classes involving charged 
residues are shown in red.  
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Figure 3 Diagram of “Protocol 3” and Cartesian ddG. 
This figure diagrams the steps involved in the older protocol 3 as well as the Cartesian 
ddG protocol. Novel changes described in this paper include the removal of constraints 
during step 1 of the cartesian ddG protocol, the addition of Step 2.1 for mutations 
involving proline as well as the choice to repeat testing until the protocol converges on a 
lower energy score instead of a fixed number (3) of times.  
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 Protocol 3 Cartesian DDG 

Mutation Type Pearson's R 
Pearson's R 

Filtered 
Predictive 

Index 
Pearson's 

R 
Pearson's R 

Filtered 
Predictive 

Index 

small to large 0.54±0.000 0.68±0.000 0.57±0.001 0.53±0.060 0.67±0.073 0.59±0.053 

large to small 0.56±0.018 0.76±0.000 0.59±0.000 0.60±0.035 0.81±0.029 0.70±0.021 

positive to negative 0.40±0.000 0.79±0.000 0.28±0.000 0.58±0.014 0.81±0.044 0.69±0.026 

negative to positive 0.34±0.000 0.61±0.000 0.26±0.000 0.35±0.014 0.54±0.037 0.42±0.032 

negative to hydrophobic 0.27±0.000 0.55±0.000 0.27±0.000 0.56±0.038 0.66±0.042 0.60±0.0361 

hydrophobic to negative 0.83±0.000 0.87±0.000 0.84±0.000 0.77±0.021 0.83±0.025 0.84±0.018 

positive to hydrophobic -0.06±0.000 0.23±0.000 0.01±0.000 0.51±0.060 0.62±0.040 0.55±0.052 

hydrophobic to positive 0.57±0.000 0.73±0.000 0.63±0.002 0.54±0.040 0.74±0.044 0.73±0.023 

non-charged polar to 
positive 0.40±0.000 0.67±0.000 0.39±0.004 0.27±0.136 0.69±0.052 0.35±0.128 

positive to non-charged 
polar 0.32±0.000 0.67±0.000 0.52±0.000 0.46±0.019 0.77±0.036 0.67±0.012 

non-charged polar to 
negative 0.64±0.000 0.73±0.000 0.69±0.000 0.49±0.075 0.72±0.053 0.52±0.092 

negative to non-charged 
polar 0.13±0.000 0.44±0.000 -0.07±0.000 0.39±0.059 0.66±0.014 0.43±0.051 

non-charged polar to 
hydrophobic 0.70±0.000 0.70±0.000 0.64±0.001 0.64±0.048 0.78±0.006 0.57±0.038 

hydrophobic to 
non-charged polar 0.41±0.000 0.66±0.000 0.39±0.000 0.61±0.065 0.76±0.017 0.63±0.089 

non-charged polar to 
non-charged polar 0.76±0.000 0.76±0.000 0.66±0.002 0.66±0.029 0.78±0.013 0.74±0.028 

hydrophobic to 
hydrophobic 0.67±0.000 0.74±0.000 0.72±0.000 0.42±0.033 0.70±0.037 0.62±0.025 

charge to charge 0.31±0.000 0.73±0.000 0.36±0.000 0.22±0.057 0.67±0.064 0.29±0.072 

involves cysteine 0.25±0.000 0.63±0.000 0.27±0.000 0.05±0.015 0.42±0.040 0.11±0.034 

involves proline 0.02±0.000 0.54±0.000 0.33±0.000 0.44±0.048 0.73±0.024 0.50±0.033 

same size 0.36±0.000 0.38±0.000 0.37±0.000 0.36±0.013 0.46±0.011 0.46±0.007 

everything 0.25±0.000 0.47±0.000 0.48±0.000 0.45±0.009 0.45±0.009 0.58±0.004 

 
Table 1. Correlations and Predictive Index for Protocol 3 and our improved 
Cartesian ddG across different mutation categories. 
This table contains the Pearson’s R correlations for each class of mutations in our 
benchmark set for both Protocol 3 and Cartesian ddG. Each is repeated three times 
using the same inputs and the average and standard deviation are shown. Given the 
sensitivity to outliers of Pearson’s R we also report it as Pearson’s R filtered after 
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removing up to 5 outliers from each set. An outlier is defined as any single entry which 
when removed changes the correlation coefficient by 0.025 or greater. We also report 
the predictive index which is less sensitive to the absolute free energy of a prediction 
but rather whether it can be correctly classified. Cartesian ddG significantly outperforms 
protocol 3 both in the unfiltered Pearson’s R and in Predictive Index. 
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 Protocol 3 Cartesian ddG 

mutation class Same Class Off By One Off By Two Same Class Off By One Off By Two 

small to large 35.7±0.6 27.3±0.6 1±0 39.7±4.6 21.7±4.0 2.7±0.6 

large to small 55.0±0.0 31.0±0.0 5±0 50.3±2.5 37.3±2.5 3.0±0.0 

positive to negative 10.0±0.0 19.0±0.0 2±0 21.3±1.2 9.7±1.2 0.0±0.0 

negative to positive 12.0±0.0 26.0±0.0 8±0 25.7±1.2 17.0±1.7 3.3±0.6 

negative to hydrophobic 16.0±0.0 25.0±0.0 9±0 27.7±2.1 17.7±2.1 4.7±1.2 

hydrophobic to negative 21.0±0.0 17.0±0.0 1±0 25.0±1.0 13.7±1.2 0.0±0.0 

positive to hydrophobic 25.0±0.0 21.0±0.0 4±0 25.0±3.5 23.7±2.1 1.0±1.0 

hydrophobic to positive 27.0±0.0 7.0±0.0 3±0 28.7±1.5 7.3±1.5 1.0±0.0 

non-charged polar to positive 15.0±0.0 15.0±0.0 0±0 14.3±1.2 14.0±1.0 1.7±0.6 

positive to non-charged polar 29.0±0.0 19.0±0.0 2±0 33.0±3.6 15.3±4.0 1.3±0.6 

non-charged polar to negative 24.0±0.0 24.0±0.0 2±0 27.0±2.6 20.3±1.5 2.7±1.2 

negative to non-charged polar 22.0±0.0 18.0±0.0 10±0 24.3±2.1 22.7±1.2 2.3±0.6 

non-charged polar to 
hydrophobic 24.0±0.0 24.0±0.0 2±0 23.0±4.0 25.3±4.0 1.7±0.6 

hydrophobic to non-charged 
polar 28.0±0.0 21.0±0.0 1±0 32.0±1.0 16.0±0.0 2.0±1.0 

non-charged polar to 
non-charged polar 28.7±0.6 19.3±0.6 2±0 32.0±1.0 15.7±0.6 2.3±0.6 

hydrophobic to hydrophobic 38.0±0.0 11.0±0.0 1±0 36.3±0.6 13.0±1.0 0.7±0.6 

charge to charge 23.0±0.0 12.0±0.0 0±0 14.7±1.2 20.0±1.7 0.3±0.6 

involves cysteine 27.0±0.0 20.0±0.0 2±0 21.7±0.6 23.0±1.7 4.3±2.1 

involves proline 27.0±0.0 19.0±0.0 4±0 29.3±1.2 18.3±1.5 2.0±0.0 

same size 132.0±0.0 132.0±0.0 18±0 157.3±5.5 114.7±7.1 9.3±2.3 

everything 396.7±0.6 317.3±0.6 53±0 441.0±10.0 292.7±11.0 31.3±2.5 

Table 2. The ability of Protocol 3 and Cartesian ddG to correctly classify 
mutations. 
This table shows the ability of Protocol 3 and Cartesian ddG to correctly classify a 
mutation. Mutations are assigned a value of 0 for destabilizing, 1 for neutral, and 2 for 
stabilizing. The absolute value of the difference between the predicted class and the 
experimental class summed across the benchmark and the counts are reported here. 
The average of 3 replicates and their standard deviations are shown. Cartesian ddG 
correctly classifies far more entries 441 vs 396, and produces fewer mis classifications, 
especially “Off By Two” errors, 31.3 v 53. 
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Type and 1 letter codes Combination categories 

small GAVSTC positive to negative 
 

non-charged polar to 
hydrophobic 

large FYWKRHQE negative to positive 
 

hydrophobic to 
non-charged polar 
 

negative DE positive to non-charged 
polar 
 

non-charged polar to 
non-charged polar 

positive RK negative to non-charged 
polar 

hydrophobic to 
hydrophobic 

polar YTSHKREDQN non-charged polar to 
positive 

like to like charge 

non-charged polar 
YTSNQH 

non-charged polar to 
negative 

involves proline 
 

hydrophobic FILVAGMW negative to hydrophobic involves cysteine’ 

cysteine C hydrophobic to negative 
 

small to large 

proline P positive to hydrophobic 
 

large to small 
 

 hydrophobic to positive 
 

same size to same size 

Table 3: Residue category assignments and category combinations. 
On the left, we list the 9 residue groupings considered in this benchmark and annotate 
which residues go in each class.  At center and right, we list the 20 mutational types 
considered by combining these classes. 
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