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Abstract

Mutualistic plant-pollinator interactions are critical for the functioning of both
non-managed and agricultural systems. Mathematical models of plant-pollinator
interactions can help understand key determinants in pollination success. However, most
previous models have not addressed pollinator behavior and plant biology combined.
Information generated from such a model can inform optimal design of crop orchards
and effective utilization of managed pollinators like honey bees, and help generate
hypotheses about the effects of management practices and cultivar selection. We expect
that honey bee density per flower and male to female flower ratio will influence fruit
yield. To test the relative importance of these effects, both singly and simultaneously,
we utilized a delay differential equation model combined with Latin hypercube sampling
for sensitivity analysis. Empirical data obtained from historical records and collected in
kiwifruit orchards in New Zealand were used to parameterize the model. We found that,
at realistic bee densities, the optimal orchard had 65-75% female flowers, and the most
benefit was gained from the first 6-8 bees/1000 flowers, with diminishing returns
thereafter. While bee density significantly impacted fruit production, plant-based
parameters-flower density and male:female flower ratio-were the most influential. The
predictive model provides strategies for improving crop management.

Introduction 1

Mutualistic plant-pollinator interactions play a vital role in plant reproduction in both 2

natural systems and managed (i.e. agricultural) systems. Animal-mediated pollination 3
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is important for 87.5% of angiosperms globally [1], and 75% of the most important crop 4

species benefit significantly from this service [2], providing greater than US$170 billion 5

in economic value annually [3]. Functionally dioecious plants are especially reliant on 6

pollination, as insects must cross from one plant to another. Even in well-studied 7

systems, such as kiwifruit (Actinidia chinensis), the complexity of interacting variables 8

limits the ability of researchers to provide clear recommendations to growers, with 9

proposed stocking rates varying from 3-8 colonies per ha. 10

Mathematical modeling of plant-pollinator interactions can help understand key 11

determinants in pollination success [5]. Such approaches could be valuable tools for 12

designing optimal crop orchard layouts and for the effective use of managed pollinators 13

in agricultural systems. This may be especially important in dioecious crops that have 14

separate male and female plants which adds further complexity in conducting empirical 15

field trials when these plants respond differently to environmental variables. 16

Additionally, this modeling approach could be used to improve conservation practices 17

for native pollinators and natural plant communities. 18

In spite of this, pollination models have tended to focus on plant biology [6–9] or 19

insect behavior [10,11] but few have examined both simultaneously [12,13]. Including 20

variables such as flower phenology, the ratio of male to female flowers, pollinator 21

abundance, and flower handling behavior could assist in the generation of robust models. 22

Combining information from both pollinators and plants in the same framework more 23

realistically represents field conditions and enables us to directly compare their 24

importance. A significant challenge in developing good models is sufficient data for 25

parameterization. We chose kiwifruit as our model dioecious crop system as there are 26

four decades of empirical data, examining many aspects of both insect behavior and 27

plant biology [14]. 28

We expected that male-female kiwifruit flower ratio and pollinator density will 29

influence fruit yield, along with various parameters of pollinator behavior. To test the 30

relative importance of these effects, both singly and simultaneously, we used a system of 31

delay differential equations (DDEs) combined with Latin hypercube sampling for 32

parameter sensitivity analysis [15]. The model explicitly tracks pollinators 33

(parameterized here based on data from honey bees), with varying pollen loads as they 34

preferentially visit male and female flowers, as well as the current number of open 35

flowers over time. The delays incorporated into this model take into account the 36

lifespan of open flowers, as male and female flowers open and close throughout the 37

blooming period. 38

Materials and methods 39

Pollinator-flower model 40

We developed and analyzed a mathematical model of pollination dynamics. While the 41

model incorporates both male and female flowers as well as insect pollinators it assumes 42

homogeneous conditions across the field for both flower and pollinator densities. 43

Pollinator dynamics are modeled with differential equations that divide the population 44

into subcompartments based on their pollen load. Pollinators can have a high, medium, 45

or low pollen load (denoted as Pm1, Pm2, and Pm3 respectively) or be carrying no 46

pollen (denoted at Pf ). These states represent a division of empirical data on 47

single-visit deposition, which often follows an exponential [16] or steeper than 48

exponential decay [17]. 49

We assume that pollinators load up on pollen with a visit to a male flower and 50

deposit pollen with a visit to a female flower. A diagram depicting the movement of 51

pollinators between the compartments is shown in Fig. 1. Pollinators that have just 52
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visited a male flower have a high pollen load Pm1. These pollinators can either visit 53

another male flower and remain in compartment Pm1, or visit a female flower, deposit 54

some pollen and thus be transferred into compartment Pm2. Pollinators in compartment 55

Pm2 with a medium pollen load can either visit a male flower, acquire more pollen, and 56

be transferred into compartment Pm1, or visit a female flower, deposit some pollen, and 57

be transferred into compartment Pm3. Similarly, pollinators in compartment Pm3 with 58

a low pollen load can either visit a male flower, acquire more pollen, and be transferred 59

into compartment Pm1 or visit a female flower, deposit all their pollen, and be 60

transferred into compartment Pf . Pollinators without any pollen in compartment Pf 61

can either visit a female flower and remain in compartment Pf , or visit a male flower, 62

acquire a full load of pollen, and be transferred into compartment Pm1. 63

Fig 1. Model flow diagram of pollinator types. Solid lines depict visits to a male flower.
Dashed lines depict visits to a female flower.

The rate that pollinators visit male and female flowers is a crucial part of the model 64

dynamics. We consider a pollinator visitation rate that depends on the search rate (α), 65

the handling time (β) and the densities of open male (m) and female (f) flowers. For 66

pollinator visitation rates, previous work suggests that saturating functions of flower 67

densities such as Holling type II functional responses are typical of oligolectic consumers 68

that use only a few plant species [6]. Following previous studies [6,18,19] we defined the 69

total pollinator visitation rate as: 70

Total pollinator visitation rate =
α(f +m)

1 + αβ(f +m)
(1)

which has the units of per time. This visitation rate includes visits to both male and 71

female flowers. The movement of pollinators between male and female flowers depends 72

on the proportion of male vs female flowers, as well as pollinator preferences. Previous 73

studies suggest that honey bees have a preference to visits flowers of the same sex as the 74

one they are currently on [20–23]. We define the preference parameter δ such that a 75

pollinator on a male flower can preferentially choose to next visit a female flower 76

(0 < δ < 1). Similarly, we define the preference parameter ε such that a pollinator on a 77

female flower preferentially next visits a male flower (0 < ε < 1). Pollinators have no 78

preference if δ = ε = 1. Then the movement of pollinators between flowers can be 79

written as the following expressions: 80(
m

f +m

)δ
fraction on male flowers that move to a male flower (2a)

1−
(

m

f +m

)δ
fraction on male flowers that move to a female flower (2b)(

f

f +m

)ε
fraction on female flowers that move to a female flower (2c)

1−
(

f

f +m

)ε
fraction on female flowers that move to a male flower (2d)

The pollinator dynamics are described with the following system of ordinary differential 81
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equations: 82

dPm1

dt
=

(
α(f +m)

1 + αβ(f +m)

)
︸ ︷︷ ︸

Total visitation
rate


(

1−
(

f

f +m

)ε)
(Pm2 + Pm3 + Pf )︸ ︷︷ ︸

moves from
female to male

−

(
1−

(
m

f +m

)δ)
Pm1︸ ︷︷ ︸

moves from
male to female


(3a)

dPm2

dt
=

(
α(f +m)

1 + αβ(f +m)

)
︸ ︷︷ ︸

Total visitation
rate


(

1−
(

m

f +m

)δ)
Pm1︸ ︷︷ ︸

moves from
male to female

−
(

1−
(

f

f +m

)ε)
Pm2︸ ︷︷ ︸

moves from
female to male

−
(

f

f +m

)ε
Pm2︸ ︷︷ ︸

moves from
female to female

 (3b)

dPm3

dt
=

(
α(f +m)

1 + αβ(f +m)

)
︸ ︷︷ ︸

Total visitation
rate


(

f

f +m

)ε
Pm2︸ ︷︷ ︸

moves from
female to female

−
(

1−
(

f

f +m

)ε)
Pm3︸ ︷︷ ︸

moves from
female to male

−
(

f

f +m

)ε
Pm3︸ ︷︷ ︸

moves from
female to female


(3c)

dPf
dt

=

(
α(f +m)

1 + αβ(f +m)

)
︸ ︷︷ ︸

Total visitation
rate


(

f

f +m

)ε
Pm3︸ ︷︷ ︸

moves from
female to female

−
(

1−
(

f

f +m

)ε)
Pf︸ ︷︷ ︸

moves from
female to male

 (3d)

In order to incorporate the number of open male and female flowers we consider the 83

total number of flower buds in the field to be fixed and assume the rate they open 84

follows a normal distribution. Let Bm and Bf denote the total number of male and 85

female flower buds. Initially all flower buds are closed. The rates that the male and 86

female flowers open is modeled with 87

dM

dt
=

Bm√
2πσ2

m

e
−

(t− tm)2

2σ2
m (4a)

dF

dt
=

Bf√
2πσ2

f

e
−

(t− tf )2

2σ2
f (4b)

where tm and tf are the times of peak flower opening rate and σm and σf are the 88

variations in the rates of opening. We assume that each flower is only open for a fixed 89

amount of time. Male flowers are open for τm days and female flowers remain open for 90

τf days. The number of currently opened male and female flowers can be determined 91
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with these fixed delays as follows: 92

m(t) =

{
M(t)−M(t− τm) if t > τm

M(t) elsewhere
(5a)

f(t) =

{
F (t)− F (t− τf ) if t > τf

F (t) elsewhere
(5b)

Example simulated dynamics of open flowers over time are depicted in Fig 2.

(a) (b) (c)

Fig 2. Example simulations of open flowers over time following equations (5) starting
with 1500 of each male and female flower buds Bm = Bf = 1500 (modeling 5 meters by
5 meters orchard field) for (a) σm = 1, σf = 1, tm = 7, tf = 8, τm = 5, τf = 6 and (b)
σm = 2, σf = 4, tm = 7, tf = 8, τm = 5, τf = 6 and (c) σm = 3, σf = 3, tm = 4, tf = 5,
τm = 4, τf = 5.

93

The incorporation of equations (5) into the system of differential equations for the 94

pollinators model (3) results in a system of ordinary differential equations when 95

t ≤ min{τm, τf}, before any open flowers begin to close, followed by a system of delay 96

differential equations with a single delay τ = min{τm, τf} when 97

min{τm, τf} ≤ t ≤ max{τm, τf}, and then by a system of delay differential equations 98

with two fixed delays, τm and τf . This model tracks the number of open male and 99

female flowers (m, f) and the number of pollinators of each type (Pm1, Pm2, Pm3, Pf ) as 100

they visit male and female flowers. The total number of different visits to female flowers 101

is an important factor for pollination. The different classes of bees represent different 102

pollen deposition potentials; we used empirical data to calculate the chance that each 103

visit from each class of bee will produce a fully pollinated fruit. We then use the 104

number of different visits and the chance of fruit set of each visit to determine the total 105

number of fully pollinated fruit per hectare. 106

Pollination measurement 107

We define the visit that results in transitioning a pollinator from group Pm1 to Pm2 as a 108

type one visit, the visit that results in transitioning a pollinator from group Pm2 to Pm3 109

as a type two visit, and the visit that results in transitioning a pollinator from group 110

Pm3 to Pf as a type three visit. We then define fruit set for a day t denoted by P (t) as 111

P (t) = 1− (1− p1)v1(t) × (1− p2)v2(t) × (1− p3)v3(t) (6)

where vn(t) for n = 1, 2, 3 represents the total number of type n visits that each flower 112

has received at the time of closing (day t), and pn represents the percent chance that a 113

single visit will fully pollinate a flower to set fruit, for each visit type n. The total 114

predicted yield is the fruit set for each day multiplied by the number of female flowers 115

March 13, 2020 5/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.03.18.996736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.996736
http://creativecommons.org/licenses/by/4.0/


closing on that day, summed over all the days, 116

The total predicted yield =
∑
t

DFC(t) ∗ P (t). (7)

where DFC(t) denotes the daily number of female flowers closing at day t. The total 117

predicted yield proportion over all days is the number of flowers closing on each day 118

multiplied by the fruit set for that day divided by the total number of female flowers, in 119

our calculation we use the number of total female flower buds, 120

The total predicted yield proportion =

∑
tDFC(t) ∗ P (t)

Bf
. (8)

Parameterization 121

All model parameters are listed in Table 1. In order to parameterize the visitation rate 122

Eq. (1) we assume the pollinators are active in the field for only 4 hours per day. For 123

the search rate α we assume a pollinator encounters 2 flowers per min, or 480 visits per 124

day, assuming they forage only 4 hours a day. For the handling time β it has been 125

observed that the average time a pollinator spends on a flower is 16 sec, or 0.0011 126

days [24]. We use an odds ratio to parameterize the preference parameters, δ and ε. 127

From the literature values, we calculated that pollinators on male flowers have a 0.957 128

probability of switching to a female flower and those on female flowers have a 0.951 129

probability of switching to a male [14,22,23]. Assuming an equal density of male and 130

female flowers we take δ = ln (0.957)/ ln (0.5) and ε = ln (0.951)/ ln (0.5). Once flowers 131

begin to open, the peak day for flower openings occurs between days 2 and 9 [23, 25, 26] 132

and we assume tm = 6 and tf = 6 days. Flowers remain open for 3–7 days [27] and we 133

assume base values of 5 for τm and 4 for τf . Observed pollinator densities range from 134

0.2 –20 per 1000 flowers [27], and we assume a baseline value of ρ = 6 pollinators. We 135

assume the percent chance that a single type one visit (transitions a pollinator from 136

group Pm1 to group Pm2) will fully pollinate a flower to set fruit is p1 = 66%. A single 137

type two visit (transitions from Pm2 to Pm3) will fully pollinate a flower with assumed 138

p2 = 55% and a single type three visit (transitions from Pm3 to Pf ) will fully pollinate a 139

flower with assumed p2 = 22% [14]. For the total number of flowers we assume the 140

number of flower buds follows Bm = Bf = 600, 000 per ha. 141

Model simulations 142

All simulations were conducted using Matlab’s differential equations solvers ode45 and 143

dde23 with initial conditions such that 0% of pollinators were Pm1, Pm2, and Pm3, and 144

100% of pollinators were Pf at time t = 0 for an orchard of sample size of 1 ha. 145

Parameter values for the total number of flower buds Bm (male) and Bf (female) along 146

with the number of pollinators per 1000 female flowers ρ are used to determine the total 147

number of pollinators for each simulation. 148

Model simulations for the set of baseline values given in Table 1 are shown in Fig. 3. 149

Pollinators of type Pm1 and Pf fluctuate during the blooming period while the number 150

of pollinators of types Pm2 and Pm3 remain low (Fig. 3a). The accumulated number of 151

visits to female flowers at the time of closing is almost identical across visit types (Fig. 152

3e), and is driven by the number of open female and male flowers, since the number of 153

pollinators is fixed. Our model output measure (total predicted yield) is shown in Fig. 154

3f. Intuitively, type one visits have the highest fruit set rate while type three visits have 155

the lowest fruit set rate, even though the total number of these visits are similar (Fig. 156

3f). The results in Fig. 3(f) multiplied by the daily number of female flowers closing 157

yields the daily predicted yield. Then the summation of this yield returns the main 158

output for our model; the total predicted yield (see Eq. (7)). 159
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Table 1. Model parameters, base values and ranges used in simulations.

Parameter Meaning Units Base value Range References
α search rate 1/(day×flower) 480 120 – 3600 [14]
β handling time days 0.0011 0.00013– 0.0094 [20,28–30]
δ switch preference from male to female

flower
– 0.0634 0–1 [20–23], [14]

ε switch preference from female to male
flower

– 0.0725 0 –1 [20], [14]

Bm number of male buds flower 600000 300000–900000 [25,31]
Bf number of female buds flower 600000 300000–900000 [25]
tm peak day of male flower opening day 6 2 – 9 [23,25,26,32]
tf peak day of female flower opening day 6 2 – 9 [23,25,26,32]
σm spread of male flowering period 2.5 0.5–5.5 [23,25,26]
σf spread of female flower period 2 1–4 [23,25,26]
τm life span of male flowering day 4 3–5 [27]
τf life span of female flower day 5 3–7 [22,33,34]
ρ pollinators per 1000 flowers pollinators/flower 6 1 – 20 [27,31]
p1 percent chance to set fruit from single

type one visit
0.66 0.25– 0.75 [14]

p2 percent chance to set fruit from single
type two visit

0.55 0.1– 0.65 [14]

p3 percent chance to set fruit from single
type three visit

0.22 0– 0.5 [14]

Parameter sensitivity analysis 160

In order to better assess the predictions of our model we investigate the uncertainty of 161

the estimated parameter values using Latin Hypercube Sampling (LHS) with the 162

statistical Partial Rank Correlation Coefficient (PRCC) technique, which provides a 163

global parameter sensitivity analysis. LHS is a stratified Monte Carlo sampling method 164

without replacement giving a global and unbiased selection of parameter values [15]. 165

The PRCC technique is used to assess the importance of each parameter for a given 166

output measure. It is appropriate when the parameters have a nonlinear and monotonic 167

relationship with the output measures. Using a model orchard of 1 ha we used LHS to 168

sample the parameters listed in Table 1 and used PRCC to investigate the output 169

measure of the total predicted fully pollinated fruit per hectare (yield). Following [15] 170

we performed a z-test on the resulting PRCC values and verified that, in general, higher 171

magnitude PRCC values correspond with a stronger influence on the output measure. 172

Most of the parameters had nonlinear and monotonic relationships to the total 173

predicted yield. Additional investigation on parameter values that were nonmonotonic 174

was done by truncating the parameter space to monotonic regions, details are presented 175

in the appendix. 176

Results 177

We varied key model input parameters and investigated model predictions with 178

numerical simulations and sensitivity analysis. Model parameters are presented in Table 179

1. A major model output measure is the predicted yield, which is defined as the number 180

of female flowers per ha that became fully pollinated fruit. A second important model 181

output is the percentage of female flowers that became fully pollinated fruit. 182

To investigate the role of key plant parameters we varied the ratio of male to female 183
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flowers in the orchard by fixing the total number of flowers and varying the percentage 184

of flowers that are female, all other parameters were set to their base values shown in 185

Table 1. Increasing the fraction of flowers that are female (versus male) per hectare first 186

increases the total predicted yield (fruit per hectare), peaking near 0.66, and then 187

decreasing rapidly as female flowers make up the majority of the orchard (Fig. 4). 188

When the fraction of female flowers per hectare is low, nearly all female flowers produce 189

fruit: predicted fruitset reaches above 97%. However, the total yield (fruit produced) is 190

low due to the low quantity of female flower buds. On the other hand, when most 191

flowers are female, predicted fruitset decreases to 20% along with an associated decline 192

in yield. This is due to the fact that while the quantity of female flowers is high, the 193

quantity of male flowers is low and the chances of successful pollination decreases 194

substantially. The model predicts a maximum fruit yield when female flowers make up 195

two thirds of the field with a fruitset (percent of open flowers that achieved successful 196

pollination) of 78.3%. 197

Other key plant parameters influence the timing of when male and female flowers are 198

open and receptive. The model assumes the rate that flowers open follow normal 199

distributions with key parameters specifying the peak day of flower openings for both 200

the male (tm) and female (tf ) distributions. Varying the peak day that male and female 201

flowers open influences the duration of time with both types of flowers open 202

simultaneously as well as the number of flowers open during these times (Fig. 5a). In 203

particular, differences between tm and tf shifts these distributions and affects the 204

overlapping time when both flower types are open. In Fig. 5 we hold tf = 6 days 205

constant and vary the peak day of male flowers opening from tm = 3− 9 days. 206

Predicted yield is maximized (with associated fruit set rates above 91%) when both 207

flower types open concurrently with the same peak opening day (Fig. 5b). 208

To investigate the role of key pollinator parameters, we varied pollinator density 209

based on data on observed honey bee densities. The total predicted yield increases 210

rapidly as the number of bees increases from one to six bees per 1000 female flowers 211

(Fig. 6). Here fruit set also increases from 39% with only one bee per 1000 female 212

flowers to over 90% with six bees per 1000 female flowers. While continuing to increase 213

the number of bees does increase fruit set rate and the total predicted yield, the 214

increase slows down substantially above six bees per 1000 female flowers. 215

Pollinator behavior parameters also play important roles in the model. The model 216

includes preference parameters for pollinators to switch the type of flower they are 217

visiting, based again on data from honey bee observations. For the baseline values, a 218

pollinator on a male flower preferentially chooses to visit a male flower next (δ), likewise 219

a pollinator on a female flower preferentially chooses to visit a female flower next (ε). 220

Total predicted yield increases as the pollinators increasingly prefer to switch between 221

male and female flowers in sequential visits (Fig. 7a). The yield increases substantially 222

when preference for switching is very small and saturates quickly after. The drastic 223

increase in yield begins to plateau close to the baseline parameter values for the switch 224

preferences, ε and δ (dashed lines in Fig. 7a). For a given switching probability, a 225

preference for moving from female to male flowers (ε) leads to a higher yield compared 226

with a preference for moving from male to female flowers (δ) (Fig. 7a). Another relevant 227

pollinator behavior is the speed of foraging. Our model includes two parameters for this: 228

the handling time and search rate. Our analyses indicate that of these two, the handling 229

time is the most influential; the total predicted yield decreases quickly as the pollinators’ 230

handling time increases (Fig. 7b). When the handling time increases from 10 sec to 60 231

sec, fruit set rates decrease from 100% to 50%. 232

The modeling framework enables us to vary key plant and pollinator parameters 233

simultaneously. For a given percentage of female flower buds that make up the orchard, 234

predicted yield increases as the number of bees per 1000 female flowers increases 235
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(Fig. 8). When the female flower buds percentage is high (between 50% and 90%), 236

maintenance of bee densities over 6 bees per 1000 female flowers will lead to better 237

pollination and therefore ensure a high predicted yield. 238

Parameter sensitivity analysis shows that the percentage of female flowers, the total 239

number of buds, and the bee density have the most significant effect on the total 240

predicted yield (Fig. 9) with a positive correlation. Bee density, the pollinators’ 241

preference to switch from female to male flowers (ε), the male flowering period (σm), 242

and the pollinator’s preference to switch from male to female flowers (δ) are the next 243

most important parameters that are positively correlated with the predicted yield, while 244

pollinator handling time is the only parameter with a strongly negative effect on the 245

total predicted yield. 246

Discussion 247

Flower density and the percentage of female flowers were highly influential parameters 248

in predicting final fruit yield. Also important was the width of the male blooming 249

window. Managed honey bees are the primary mode of kiwifruit pollination globally [2], 250

and several pollinator-related factors were found to influence yield, with bee density, 251

flower handling time, and preference for moving between flowers of different sexes all 252

highlighted by our sensitivity analysis. 253

Kiwifruit flowers may take up to 40 honey bee visits to be fully pollinated [35], but 254

this is partially due to the large numbers of bees which deposit little or no pollen. We 255

found that increasing bee density will increase fruit production, but that there is a point 256

of diminishing returns after the first 6-8 bees per 1000 female flowers and buds. This 257

finding broadly agrees with the literature, which reports that densities of around 3-6 258

bees per 1000 flowers are sufficient for full pollination [36–38], with sustained higher bee 259

numbers being unusual, though sustained densities of 14 bees per 1000 flowers have 260

been reported in cages [37] and densities of 30-60 bees per 1000 flowers may occur for a 261

very brief period of time in rare circumstances [4, 22]. We found that a longer flower 262

handling time was negatively correlated with fruit production in this model. Although 263

empirical data show that honey bee flower handling time is not correlated with pollen 264

deposition [14], the rate of flower visitation is a well-known factor in limiting the 265

effectiveness of pollinators independently of pollen deposition. [39]. 266

Preference factors are less well-known, but highlighted here. Honey bees are able to 267

differentiate between male and female kiwifruit flowers without landing on them [22], 268

and they must travel from a male flower to a female flower to deposit viable pollen. 269

This chance of switching can potentially be affected by other pollinators in the field [40], 270

as well as the attractiveness of the male and female cultivars. Increasing the chance of 271

switching between plant sexes may be a critical factor for kiwifruit pollination, as the 272

baseline values in our model are right on the edge of a steep decline—if less switching 273

happens than currently reported in the literature (as indicated by the base parameter 274

values), there could be very significant, negative impacts on pollination. 275

When examining the interaction of bee density and the proportion of female flowers, 276

we found that, at typical bee densities ( < 12 bees per 1000 flowers), the optimum 277

proportion of female flowers was 65-75% of total flowers, representing a ‘sweet spot’ 278

between having more possibilities for fruit development and risk from insufficient 279

movement of bees between the two flower sexes. Current orchard plantings have an 280

approximately 50:50 ratio between male and female flowers [4], highlighting an 281

opportunity to increase yield by changing pruning practices to increase the proportion 282

of female flowers-an easily achievable intervention compared with changing pollinator 283

behavior. 284

Our model takes advantage of over 30 years of field-based data in New Zealand and 285
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other parts of the world and provides a way to quantitatively assess how different plant- 286

and insect-related factors interact and their importance for final fruit set. Our results 287

suggest that choosing cultivars which have their peak bloom on the same day, planting 288

and pruning to achieve approximately 70% female flowers in the orchard, having as 289

many flowers as the vine can support to full fruit size, and placing enough hives to 290

maintain more than 6 bees per 1000 flowers will optimize yield. There is the potential 291

for future work to improve the predictive power of this model by accounting for multiple 292

pollinators and spatial scale and pattern. 293
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(a) (b)

(c) (d)

(e) (f)

Fig 3. Model simulations presenting (a) number of pollinators during the bloom period,
(b) accumulated number of transitional visits of different types, (c) number of open
male and female flower during the bloom period, (d) daily number of transitional visits
of different types, (e) daily number of transitional visits of different types per female
flower at the time of closing, (f) predicted number of fully pollenated fruit for each type
visit and all visits for female flowers at the time of closing. All parameter values are
base values in Table 1 with initial conditions that pollinators haven’t collected any
pollen yet (i.e., Pm1 = Pm2 = Pm3 = 0 and Pf = ρ ∗Bf/1000)
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Fig 4. Total predicted yield (fruit per ha) as a function of the fraction of flowers that
are female. The total number of buds was kept constant at 1.2 million/ha and the
fraction of female flowers varied. Other parameters are baseline values in Table 1. The
fruitset (percentage of open female flowers that achieved full pollination) is listed under
each data point.

(a) (b)

Fig 5. Open male (colored) and female (black) flowers (a) and total predicted yield (b)
for varying peak day of male flower opening from day 3 to day 9. The total amount of
buds was kept constant at 1.2 million/ha with a male to female flower ratio of 1:1 and 6
bees per 1000 female flowers. Other parameters are baseline values in Table 1. The
percentage of open female flowers that achieved sufficient pollination to set fruit is listed
under each data point.
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Fig 6. Total predicted yield as a function of the number of bees per 1000 female
flowers. The bee density varies from 1 bee per 1000 female flowers to 20 bees per 1000
female flowers, and the total amount of buds was kept constant at 1.2 million/ha with a
male to female flower ratio of 1:1. Other parameters are baseline values in Table 1. The
percentage of open female flowers that achieved sufficient pollination to set fruit is listed
under each data point.

(a) (b)

Fig 7. Total predicted yield for varying pollinators’ preference of flowers (a) and for
varying pollinators’ handling time (b). Other parameters are baseline values in Table 1.
Pollinators prefer flowers of the same sex in sequential visits; preference values of 0
mean pollinators never switch and preference values of 1 mean pollinators choose their
next flower without regard to its sex. Blue dashed line in (a) depict baseline values of δ
(switch preference from male to female flower) and red dashed lines depict values of ε
(switch preference from female to male flower).
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Fig 8. Total predicted yield for varying the proportion of female flower buds and the
number of bees per 1000 female flowers. The total amount of buds was kept constant at
1.2 million/ha. Other parameters are baseline values in Table 1.

Fig 9. Sensitivity analysis of the Delay Differential Equation model using partial rank
correlation coefficient (PRCC) values for each parameter in the Latin hypercube
sampling. PRCC values marked as ns are not significant (P¿0.05). Flower traits are in
orange and pollinator traits are in blue.
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Supporting information 294

S1 Appendix. Many of the parameters have monotonic relationships with the output 295

measure (Fig. 10a) and the PRCC statistics for those are reliable. However, we note 296

that parameters σm, σf , tm, tf and the proportion of female flower buds in the field 297

exhibit nonmonotic behaviors. Therefore, we conducted additional LHE sampling by 298

truncating the ranges of these parameters to monotonic regions. Figures 10b and c 299

depict the monotonicity of the truncated parameter space. The resulting PRCC results 300

for the entire parameter space as well as the truncated parameter spaces are compared 301

in Fig 11. Parameters for the total number of buds, percentage of female buds, bee 302

density, and handling time are consistently identified as important parameters in all 303

cases. We note that in the truncated case we split the percentage of female flower buds 304

into the cases of 5–76% and 76–96%. In the first half this parameter shows a highly 305

influential positive relationship with predicted yield (large positive PRCC value) and in 306

the second half the parameter is inversely related to the predicted yield. This is as 307

expected as saturating the field with only female buds will eventually cause a decrease 308

in yield. These dynamics are observed in the monotonicity plots as well. 309
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(a)

(b)

(c)

Fig 10. Latin hypercube sampling monotonicity plots for the (a) original parameter
ranges listed in Table 1 with the percentage of female buds ∈ (5%, 95%), (b) truncated
parameter ranges including σm ∈ (.05, 2.27), σf ∈ (1, 2.8), tm ∈ (2, 6), tf ∈ (2, 6) and
percentage of female buds ∈ (5%, 76%), and (c) truncated parameter ranges including
σm ∈ (2.27, 5.5), σf ∈ (2.8, 4), tm ∈ (6, 9), tf ∈ (6, 9) and percentage of female buds
∈ (76%, 96%).
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(a)

(b)

(c)

Fig 11. Latin hypercube sampling Partial rank correlation coefficient values for each
parameter in the (a) original parameter ranges listed in Table 1 with the percentage of
female buds ∈ (5%, 95%), (b) truncated parameter ranges including σm ∈ (.05, 2.27),
σf ∈ (1, 2.8), tm ∈ (2, 6), tf ∈ (2, 6) and percentage of female buds ∈ (5%, 76%), and (c)
truncated parameter ranges including σm ∈ (2.27, 5.5), σf ∈ (2.8, 4), tm ∈ (6, 9),
tf ∈ (6, 9) and percentage of female buds ∈ (76%, 96%). Flower traits are in orange and
pollinator traits are in blue.
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