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Abstract  16 

This paper introduces active listening, as a unified framework for synthesising and recognising speech. The 17 

notion of active listening inherits from active inference, which considers perception and action under one 18 

universal imperative: to maximise the evidence for our (generative) models of the world. First, we describe 19 

a generative model of spoken words that simulates (i) how discrete lexical, prosodic, and speaker attributes 20 

give rise to continuous acoustic signals; and conversely (ii) how continuous acoustic signals are recognised 21 

as words. The ‘active’ aspect involves (covertly) segmenting spoken sentences and borrows ideas from 22 

active vision. It casts speech segmentation as the selection of internal actions, corresponding to the 23 

placement of word boundaries. Practically, word boundaries are selected that maximise the evidence for an 24 

internal model of how individual words are generated. We establish face validity by simulating speech 25 

recognition and showing how the inferred content of a sentence depends on prior beliefs and background 26 

noise. Finally, we consider predictive validity by associating neuronal or physiological responses, such as 27 

the mismatch negativity and P300, with belief updating under active listening, which is greatest in the 28 

absence of accurate prior beliefs about what will be heard next. 29 

 30 

 31 

Key words: speech recognition, voice, active inference, active listening, segmentation, variational Bayes, 32 

audition. 33 
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Introduction 34 

This paper could be read at three complementary levels: it could be regarded as a foundational paper 35 

introducing a generative model of spoken word sequences and an accompanying inversion (i.e., word 36 

recognition) scheme that has some biological plausibility; e.g., (Kleinschmidt and Jaeger 2015). 37 

Alternatively, one could read this article as a proposal for a speech recognition scheme based upon first 38 

(Bayesian) principles; e.g., (Rosenfeld 2000). Finally, one could regard this work as computational 39 

neuroscience, which makes some predictions about the functional brain architectures that mediate 40 

hierarchical auditory perception, when listening or repeating spoken words; e.g., (Hickok and Poeppel 41 

2007, Houde and Nagarajan 2011, Tourville and Guenther 2011, Ueno, Saito et al. 2011). In the latter 42 

setting, the generative model can be used to predict the effects of synthetic lesions, i.e., as the basis for 43 

computational neuropsychology. In other words, one could optimise the parameters of the active listening 44 

scheme described below to best explain empirical (electrophysiological or behavioural) responses of 45 

individual subjects. We hope to pursue this in subsequent work. The current paper focuses on the form of 46 

the generative model, the accompanying recognition or inference scheme, and the kinds of behavioural and 47 

neuronal responses it predicts. 48 

Speech recognition is not a simple problem. The auditory system receives a continuous acoustic signal and, 49 

in order to understand the words that are spoken, must parse a continuous signal into discrete words. To a 50 

naïve listener, the acoustic signal provides few cues to indicate where words begin and end (Altenberg 51 

2005, Thiessen and Erickson 2013). Furthermore, even when word boundaries are made clear, there exists 52 

a many-to-many mapping between lexical content and the acoustic signal. This is because speech is not 53 

‘invariant’ (Liberman, Cooper et al. 1967)—words are never heard out of a particular context. When 54 

considering how words are generated, there is wide variability in the pronunciation of the same word among 55 

different speakers (Hillenbrand, Getty et al. 1995, Remez 2010)—and even when spoken by the same 56 

speaker, pronunciation depends on prosody (Bänziger and Scherer, 2005). From the perspective of 57 

recognition, two signals that are acoustically identical can be perceived as different words or phonemes by 58 

human listeners, depending on their context—for example, the preceding words or phonemes (Mann 1980, 59 

Miller, Green et al. 1984), preceding spectral content (Holt, Lotto et al. 2000), or the duration of a vowel 60 

that follows a consonant (Miller and Liberman 1979). The current approach considers the processes 61 

involved in segmenting speech—and inferring the words that were spoken—as complementary. 62 
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The idea that speech segmentation and lexical inference operate together did not figure in early accounts of 63 

speech recognition. For example, the Fuzzy Logic Model of Perception (FLMP) (Oden and Massaro 1978, 64 

Massaro 1987, Massaro 1989) matches acoustic features with prototype representations to recognise 65 

phonemes, even when considered in the context of words and sentences. Similarly, the Neighbourhood 66 

Activation Model (NAM) (Luce 1986, Luce and Pisoni 1998) considers individual word recognition; it 67 

accounts for effects of word frequency, but does not address the segmentation problem. Later connectionist 68 

accounts, such as TRACE (McClelland and Elman 1986), assumed that competition between lexical nodes 69 

drives recognition, where competition is mediated by inhibitory connections between nodes: bottom-up 70 

cues determine recognition of phonemes and top-down cues take into account the plausible words in the 71 

lexicon. Shortlist B (Norris and McQueen 2008) reformulates this problem as one of an optimal Bayesian 72 

observer and incorporates word frequency effects.  73 

Implicit in these connectionist and Bayesian accounts is the idea that speech segmentation depends on 74 

words in the listener’s lexicon. For example, word recognition under TRACE assumes that speech will be 75 

segmented into words rather than combinations of words and non-words. However, it does not explain how 76 

alternative segmentations leading to valid word combinations are reconciled—for example, distinguishing 77 

“Grade A” from “grey day”. This example is problematic for the above accounts, because the two 78 

segmentations are phonetically identical, acoustically similar, and are both valid word combinations in 79 

English. Early accounts also ignored the problem of converting the acoustic signal into words or phonemes. 80 

Specifically, they assume that phonetic features (McClelland and Elman 1986) or acoustic features that 81 

underlies perceptual confusions in human listeners (NAM; Shortlist B) have already been successfully 82 

extracted from the signal. In short, accounts of inputs that are not continuous acoustic signals cannot explain 83 

findings that acoustically identical signals are perceived as different words or phonemes depending on their 84 

context (Miller and Liberman 1979, Mann 1980, Holt, Lotto et al. 2000). 85 

Here, we consider speech recognition as a Bayesian inference problem. We introduce a simplified 86 

generative model that maps from the continuous acoustic signal (i.e., a time varying auditory signal or 87 

spectral fluctuations containing particular formant frequencies) to discrete words using lexical, speaker, 88 

and prosodic information. Generating continuous states from a succession of discrete states is a non-trivial 89 

issue for a first principle (i.e., ideal Bayesian observer) approach. However, the requisite neuronal message 90 

passing can be solved by combining variational (marginal) message passing and predictive coding (a.k.a. 91 

Bayesian filtering). This allows one to simulate perception using generative models that entertain mixtures 92 
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of continuous and discrete states (Friston, Parr et al. 2017, Friston, Rosch et al. 2017).  93 

Previous Bayesian accounts (e.g., Shortlist B: Norris and McQueen 2008) have assumed that listeners use 94 

exact Bayesian inference. However, performing the calculations required for exact inference would be 95 

difficult for biological systems like ourselves, given the complexity of the speech generation process; see 96 

(Friston 2010, Bogacz 2017, Friston, FitzGerald et al. 2017). Appealing to variational inference (Beal 2003) 97 

affords a much simpler implementation, which has been applied to a variety of other domains in human 98 

perception and cognition (Brown, Friston et al. 2011, Brown, Adams et al. 2013, Parr and Friston 2017). 99 

Consequently, speech recognition becomes an optimisation problem that corresponds to minimising 100 

variational free energy—or, equivalently, maximising the evidence for a particular generative model. 101 

In this paper, we provide a computational perspective on the segmentation problem—addressing the 102 

challenge that there are often several ways in which a sentence can be parsed, and multiple segmentations 103 

engender valid word combinations. We therefore treat speech recognition as a problem of selecting the 104 

most appropriate segmentation among several alternatives. We assume that the listener selects the 105 

segmentation that is least surprising from the perspective of their generative model. In doing so, we cast 106 

segmentation as an internal action that selects among competing hypotheses for the most likely causes of 107 

the acoustic signal. Although this is a novel computational implementation of speech segmentation, it aligns 108 

with the basic idea that competing segmentations are held in working memory before a listener decides on 109 

the most appropriate segmentation, as supported by behavioural studies of word recognition in human 110 

listeners (Shillcock 1990, Davis, Marslen-Wilson et al. 2002). This idea is similar to that used in previous 111 

accounts such as TRACE and Shortlist B. Here, we address the problem of selecting among multiple 112 

segmentations of valid word combinations. Our approach accounts for contextual effects using priors; we 113 

show that alternative segmentations—such as “Grade A” and “grey day”—can be accounted for by 114 

appealing to these (e.g., semantic or contextual) priors. 115 

Conceptualising speech segmentation as an internal (covert) action appeals to the ‘active’ aspect of 116 

listening. It is distinct from ‘passive’ listening, which—if truly passive—would not require mental or covert 117 

actions. This conceptualisation is grounded in active inference, which has previously been applied to active 118 

vision (Grossberg, Roberts et al. 1997, Davison and Murray 2002, Ulanovsky and Moss 2008, 119 

Andreopoulos and Tsotsos 2013, Ognibene and Baldassarre 2014, Mirza, Adams et al. 2016, Parr and 120 

Friston 2017, Veale, Hafed et al. 2017). Here, we consider the covert placement of word boundaries from 121 
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the same computational perspective as has been used to model an observer whose task is to decide where 122 

to sample the visual scene by making overt saccades (Mirza, Adams et al. 2016, Parr and Friston 2017). 123 

The types of computations in this framework therefore appeal to general principles that the brain may use 124 

to solve a variety of problems. 125 

This paper comprises four sections, which each describe different elements of active listening. The first 126 

section reviews active inference and then describes a simplified but plausible generative model of how 127 

(continuous) sound waves are generated from a discrete word with particular (discrete) attributes. The 128 

attributes include lexical content, prosody, and speaker characteristics. The division of attributes into 129 

lexical, prosodic, and speaker attributes is logical from a generative perspective—and is consistent with 130 

neuropsychological studies showing selective deficits in the processing of these attributes (Miller and 131 

Liberman 1979, Peretz, Kolinsky et al. 1994). Indeed, these attributes have been considered fundamental 132 

characteristics in qualitative models of speech perception such as the ‘auditory face’ model (Belin, Fecteau 133 

et al. 2004)—and are known to interact to affect human speech perception (Nygaard, Sommers et al. 1994, 134 

Johnsrude, Mackey et al. 2013, Holmes, Domingo et al. 2018). We, therefore, assume these are the types 135 

of attributes that human listeners infer when trying to explain the (hidden) causes of an acoustic (speech) 136 

signal. This section describes how the generative model can be inverted to determine the most likely lexical, 137 

prosodic, and speaker attributes of a word, given a continuous sound wave.  138 

The second section deals with the speech segmentation problem, which becomes important when 139 

recognising words within sentences, rather than individual words. It considers the question: how do we 140 

determine the most likely onsets and offsets of words within a sentence? For example, how do we parse 141 

auditory input to disambiguate "Grade A" from "grey day"? To address this question, we use simple acoustic 142 

properties to identify plausible word boundaries. We then appeal to the ‘active’ element of active inference, 143 

considering the (implicit) placement of word boundaries as a covert ‘action’. This allows us to use 144 

established inference schemes to select among competing segmentations (i.e., hypotheses about different 145 

word boundaries). These inference schemes essentially ask: which of the possible segmentations minimise 146 

free energy or, equivalently, provide the greatest evidence for the listener’s (internal) model of how words 147 

are generated? It is at this point that the relationship between the generative model from the first section 148 

and ‘active’ speech segmentation becomes clear: these different elements work in unison when inferring 149 

words within a sentence. The generative model operates at the individual word level, whereas speech 150 

segmentation operates at the sentence level: the best speech segmentation will maximise the combined 151 
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evidence for attributes of constituent words. This section concludes with an illustration of the face validity 152 

of the active listening scheme by comparing speech recognition (i.e., lexical inference) with and without 153 

prior beliefs about the sequence of plausible words that could be encountered—demonstrating how different 154 

segmentations that contain valid English words can be disambiguated.  155 

The third section highlights an aspect of speech recognition that has not been simulated under previous 156 

accounts. We show that a quantity within active listening can predict neurophysiological responses of the 157 

sort measured by electromagnetic recordings (Hasson, Yang et al.) or functional magnetic resonance 158 

imaging (fMRI). In particular, the magnitude of belief updating in active listening appears to capture the 159 

fluctuations in evoked (or induced) responses that have been demonstrated empirically; e.g., the mismatch 160 

negativity (Garrido, Kilner et al. 2009, Morlet and Fischer 2014), P300 (Donchin and Coles 1988, Morlet 161 

and Fischer 2014), and N400 (Kutas and Hillyard 1980). Broadly speaking, this suggests that elements of 162 

speech perception are consistent with predictive coding (see (Poeppel and Monahan 2011) for a review). 163 

Formally, belief updating is related to the difference between prior beliefs about states in the generative 164 

model to posterior beliefs. In other words, the amount that beliefs change after sampling sensory evidence. 165 

This is variously known as Bayesian surprise, salience, information gain, or complexity. In this section, we 166 

illustrate the similarity between belief updates and violation responses, showing that the magnitude of belief 167 

updating depends upon prior expectations about particular words in the lexicon (Cole, Jakimik et al. 1980, 168 

Mattys and Melhorn 2007, Mattys, Melhorn et al. 2007, Kim, Stephens et al. 2012) and the quality of 169 

sensory evidence; e.g., when speech is acoustically masked by background noise (“speech-in-noise”) 170 

(Sams, Paavilainen et al. 1985, Winkler, Denham et al. 2009). We conclude by discussing how the model 171 

could be developed for future applications, and its potential utility in the cognitive neuroscience (and 172 

neuropsychology) of auditory perception and language.  173 

A generative model of spoken words 174 

Active inference is a first principle account of action and perception in sentient creatures (Friston, 175 

FitzGerald et al. 2017). It is based upon the idea that synaptic activity, efficacy and connectivity all change 176 

to maximise the evidence for a model of how our sensations are generated. Formally, this means treating 177 

neuronal dynamics as a gradient flow on a quantity that is always greater than (negative) log evidence 178 

(Friston, Parr et al. 2017). This quantity is known as variational free energy in physics and statistics 179 
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(Feynman 1972, Hinton and Zemel 1993). The complement (i.e., negative) of this quantity is known as an 180 

evidence lower bound (ELBO) in machine learning (Winn and Bishop 2005). A gradient flow is simply a 181 

way of writing down dynamics in terms of equations of motion that ensure a certain function is minimised—182 

in this case, variational free energy. The resulting dynamics furnish a model of neuronal fluctuations (and 183 

changes in synaptic efficacy and connectivity) that necessarily minimise free energy or maximise model 184 

evidence. In short, if one simulates speech recognition using active inference, one automatically provides 185 

an account of the accompanying neuronal dynamics. 186 

This approach to understanding and modelling (active) inference in the brain has been applied in many 187 

settings, using exactly the same schemes and principles. The only thing that distinguishes one application 188 

from another is the form of the generative model. In other words, if one can write down a probabilistic 189 

model of how some sensory input was generated, one can invert the model—using standard model inversion 190 

schemes—to simulate neuronal dynamics and implicit belief updating in the brain: See (Friston, Parr et al. 191 

2017) for a detailed summary of these schemes that cover models of both discrete and continuous states 192 

generating sensations. See also (Bastos, Usrey et al. 2012, Friston, FitzGerald et al. 2017) for a discussion 193 

of neurobiological implementation, in terms of attending process theories, for continuous and discrete state 194 

space models, respectively.  195 

In this section, we focus on the form of a (simplified) generative model that can be used to generate 196 

continuous acoustic signals associated with a particular word. A benefit of this active inference approach 197 

is that the generative model can be used to both generate synthetic speech (by applying the forward model) 198 

and recognise speech (by inverting the model). The goal is not to provide a state-of-the art speech synthesis 199 

system, but rather to use the generative model and accompanying inference scheme to simulate listening 200 

behaviour and neural responses. The work reported in this paper is a prelude to a model of natural language 201 

processing, in which the current generative model is equipped with higher levels to enable dyadic 202 

exchanges; namely, conversations that entail questions and answers that resolve uncertainty about shared 203 

narratives or beliefs. In this paper, we restrict ourselves to inference about sequences of words—and assume 204 

that simulated subjects are equipped with prior beliefs about which words are more or less likely in a short 205 

sentence or phrase. In a more complex (i.e., deep hierarchical) model, these beliefs would be available from 206 

a higher level. These prior beliefs are about the likely semantic content of spoken words; for example, based 207 

on previous words in a sentence (Dubno, Ahlstrom et al. 2000) or the topic of conversation (Holmes, 208 

Folkeard et al. 2018). Note that previous accounts of speech recognition, such as Shortlist B (Norris and 209 
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McQueen 2008), assume that priors reflect only word frequency, rather than priors that can be flexibly 210 

updated based on context. Technically, these kinds of context-sensitive priors are known as empirical 211 

priors—and are an integral part of hierarchical generative models. 212 

In this paper, we deal with the lowest level of the generative model; namely, given a particular lexical 213 

content, prosody and speaker identity, how would one generate a spoken word in terms of its acoustic 214 

timeseries. In the next section of this paper, we turn to the problem of segmentation (i.e., identifying word 215 

boundaries) and the enactive aspects of the current scheme. It will become apparent later on that these two 216 

(perceptual and enactive) aspects of active listening go hand-in-hand. 217 

Figure 1 summarises the modelling of a spoken word, from the perspectives of generation and recognition. 218 

The model considers: how is an acoustic signal generated given the causes of a spoken word, in terms of 219 

‘what’ word is spoken (lexical), ‘how’ it is spoken (prosody), and ‘who’ is speaking (speaker identity)? 220 

From the perspective of word generation, it takes lexical, speaker, and prosody parameters and generates 221 

an expected acoustic signal. The lexical state consists of frequency and temporal coefficients corresponding 222 

to words in the lexicon. The model includes two speaker states: fundamental frequency and formant scaling. 223 

It includes four prosody states: amplitude, duration, timbre, and inflection. Within each of these states, 224 

different factors correspond to different lexical items, or the fundamental frequency associated with 225 

different speakers, for example. 226 

The model starts by sampling parameters from a set of probability distributions, which are modelled as 227 

separate Gaussians. The means and covariances of the Gaussians have been specified in advance; they can 228 

be entered into the model explicitly (by hand) or they can be estimated empirically based on training 229 

samples of speech. Sampling parameters from distributions with particular means and variances accounts 230 

for the fact that the same lexical item spoken by the same speaker with the same prosody does not always 231 

produce an identical acoustic signal, and—conversely—because the distributions are allowed to overlap, a 232 

similar acoustic signal can be generated by different combinations of factors. The (discrete) lexical content 233 

of a word is sampled from a (categorical) probability distribution over words in a lexicon. This is based on 234 

how likely particular words are to be spoken. Ultimately, the selected parameters are combined, in a 235 

nonlinear way, to generate an acoustic timeseries corresponding to the articulated word.  236 

The acoustic timeseries is generated from a sequence of transients, whose properties are determined by the 237 
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selected parameters. Each word (i.e., lexical item) is associated with a matrix of frequency and temporal 238 

coefficients (for a discrete cosine transform) that can be used to generate a time-frequency representation 239 

of the spoken word (i.e., the spectrogram) when combined with speaker and prosody information. Each 240 

column of the time-frequency representation is used to generate a transient. These transients can be thought 241 

of as pulses or ‘shockwaves’ at the glottal pulse rate, which are modulated by the shape of the vocal tract. 242 

The instantaneous fundamental frequency is related to the average fundamental frequency of a particular 243 

speaker, but also varies smoothly over time based on inflections due to prosody. The prosodic inflection 244 

parameters encode: (1) the average fundamental frequency relative to the speaker average, (2) increases or 245 

decreases in fundamental frequency over time, and (3) the acceleration or deceleration of changes in 246 

fundamental frequency. The instantaneous fundamental frequency determines the spacing of the transients. 247 

The durations of the transients are determined by the formant frequencies, which depend on the lexical 248 

parameters and the speaker formant scaling parameter. The formant frequencies correspond to the 249 

frequency bins in the time-frequency representation. The number of transients that are aggregated to 250 

construct the timeseries is determined by the time intervals in the time-frequency representation. Figure 2 251 

provides an illustration of how a sequence of transients is generated. In the final step, the transients are 252 

summed together and scaled by an amplitude parameter. For mathematical detail, the equations 253 

corresponding to the generative model are shown in Figure 11 and are described in Appendix 1. For an 254 

algorithmic description, please see the demonstration (annotated Matlab) code—that reproduces the 255 

simulations below—which can be read as pseudocode (see Software note).  256 
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 257 

FIGURE 1 258 

A generative model of a word. This figure illustrates the generative model from the perspective of word generation 259 

(green panels) and accompanying inversion (orange panels), which corresponds to word recognition. For the equations 260 

describing these probabilistic transformations, please see Appendix 1.  261 

 262 

 263 
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 264 

FIGURE 2 265 

Fundamental and formant intervals. This figure illustrates the way in which an acoustic timeseries is generated by 266 
assembling a succession of transients separated by an interval that is inversely proportional to the (instantaneous) 267 
fundamental frequency. The duration of each transient places an upper bound on the wavelength of the formant 268 
frequencies—and corresponds to the minimum frequency, which we take to be the first formant frequency. 269 

 270 

 271 

In effect, the lexical parameters—which, under this generative model, determine the formant frequencies—272 

parameterise a trajectory through high-dimensional formant frequency space, which becomes apparent as 273 

the word unfolds. The prosody of the word determines the duration and inflection of the fundamental 274 

interval function, while speaker identity determines the average fundamental frequency—which relates to 275 

the interval between transients—and a formant scaling parameter that determines the duration of each 276 

transient. With such a model in place, one can, in principle, generate any word, spoken with any prosody 277 

by any speaker, by sampling the correct parameters from their appropriate distributions. In what follows, 278 

we briefly review the inversion of this model given an acoustic timeseries. 279 
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Model inversion or word recognition 280 

Now we have established a generative model that is capable of producing a spoken word, word recognition 281 

can be achieved by inverting the model. This section describes a plausible inversion scheme in the context 282 

of our particular generative model of spoken words. In principle, given any generative model it should be 283 

possible to use Bayesian model inversion to invert the timeseries, using generalised (variational or 284 

Bayesian) filtering; also known as predictive coding (Norris, McQueen et al. 2016). However, given we 285 

have assumed a deterministic generation of acoustic signals from parameters, we know that the posterior 286 

beliefs about parameters will take the form of Dirac delta functions, whose only parameter is a mode. This 287 

means that in practice, it is simpler to cache an epoch of the timeseries and use maximum a posteriori (Kim, 288 

Frisina et al.) estimates of the parameters, based upon least squares. One can then evaluate the posterior 289 

probability of discrete lexical, prosody and speaker states, using the respective likelihood of the (Kim, 290 

Frisina et al.) parameter estimates (and any priors over discrete states should they be available). This MAP 291 

scheme can be read in the spirit of predictive coding that has been amortised (Zhang, Butepage et al. 2018). 292 

In other words, the inversion scheme reduces to a nonlinear recognition function—a series of equations that 293 

map from epochs of the acoustic signal to parameters encoding lexical content, prosody and identity.  294 

Model inversion rests on the assumption that we have isolated the acoustic timeseries corresponding to an 295 

individual word. The next section deals with the segmentation problem, which involves enactive processes. 296 

For now, we will assume that we have identified an epoch of the acoustic signal that might plausibly contain 297 

one word—and that we wish to evaluate the probabilities of lexical, prosody, and speaker states within this 298 

epoch. 299 

In brief, the recognition scheme comprises the following steps (see Figure 1). The instantaneous frequency 300 

is estimated by first calculating ‘fundamental intervals’, which are the reciprocal of the instantaneous 301 

frequency. The fundamental intervals are calculated by bandpass filtering the acoustic signal around the 302 

prior value for the speaker fundamental frequency parameter; the positions of peaks in the filtered signal 303 

correspond to the fundamental intervals. Please see Figure 3 for an illustration of how the fundamental 304 

intervals are estimated and Figure 4 to see the fundamental frequency and formant frequencies projected 305 

onto the spectrum of a speech sample.  306 

 307 
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 308 

FIGURE 3 309 

Fundamental frequencies and intervals. This figure illustrates the estimation of fluctuations around the fundamental 310 
frequency during the articulation of (the first part of) a word. These fluctuations correspond to changes in the 311 
fundamental interval; namely, the reciprocal of the instantaneous frequency. The upper panel shows the original 312 
timeseries, while the middle panel shows the same timeseries after bandpass filtering. The peaks (i.e., phase crossings) 313 
then determine the intervals, which are plotted in terms of instantaneous frequencies on the lower left (as a blue line). 314 
The solid red line corresponds to the mean frequency (here, 109 Hz), while the broken red line corresponds to the 315 
centre frequency of the bandpass filtering (here, 96 Hz) which is centred on the prior for the speaker average 316 
fundamental frequency. The same frequencies are shown on the lower right panel, superimposed on the spectral energy 317 
(the absolute values of the accompanying Fourier coefficients of the timeseries in the upper panel). The ensuing 318 
fundamental intervals are depicted as red lines in the upper two panels. 319 

 320 
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 321 

FIGURE 4 322 

Fundamental and formant frequencies: Both plots show the root mean square power (i.e., absolute value of Fourier 323 
coefficients) following the Fourier transform of a short segment of speech. The frequency range in the upper plot 324 
covers the first 500 Hz. The first peak in power (illustrated by the blue vertical line) corresponds to the fundamental 325 
frequency, which is typically between 80 and 150 Hz for adult men and up to 350 Hz for adult women. The lower 326 
panel shows the same spectral decomposition but covers 8000 Hz to illustrate formant frequencies. The solid blue 327 
lines show the calculated formant frequency and its multiples, while the grey lines arbitrarily divide the frequency 328 
intervals into eight bins. These frequencies define the frequencies used for the spectral decomposition. 329 

 330 

Next, the inversion scheme essentially deconstructs transients (i.e., segments) from the epoch. The formant 331 

frequencies are estimated by evaluating the cross-covariance function over short segments; the length of 332 

the segments is the inverse of the first formant frequency and the segments are centred on each fundamental 333 

interval. This is based on the simplifying assumption that the spectral content of each transient, within each 334 

segment, is sufficient to generate the word. The formant frequencies are then used to project back to a time-335 

frequency representation. 336 
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To infer the lexical content, prosody and speaker, the parameter estimates from the nonlinear 337 

transformations above can be used to evaluate the likelihood of each discrete attribute. This likelihood is 338 

then combined with a prior to produce a posterior categorical distribution over the attributes in question. 339 

For the lexical content of the word, this just corresponds to an index in the lexicon. Here, the lexicon is 340 

assumed to be small for simplicity, although it would be trivial to extend the model to accommodate more 341 

comprehensive lexicons. The likelihood is based upon the mean and precision (i.e., inverse covariance) of 342 

the lexical parameters in the usual way, where the sufficient statistics of this (likelihood) model—for each 343 

word—are evaluated using some exemplar or training set of words. This completes the description of word 344 

recognition based upon the generative model above. For details of the equations used in model inversion, 345 

please see Appendix 2. 346 

In summary, the above transformations simply reverse the operations used for word generation in the 347 

previous section. The combination of prior expectations with the likelihoods of each attribute is a key 348 

feature of this inversion scheme that will allow the model to accommodate contextual effects on speech 349 

recognition. In other words, we are more likely to interpret speech consistent with our prior expectations. 350 

This will become evident in the simulations later in this paper. 351 

After the discrete parameters have been inferred from a continuous timeseries through model inversion, 352 

they could be entered back into the generative model to synthesise a new timeseries that would share some 353 

properties with the timeseries that was used to infer the discrete parameters. This simply involves projecting 354 

the lexical coefficients back into a time frequency representation, implementing the inverse discrete cosine 355 

transform to produce (after scaling with the timbre parameter and exponentiation) a series of (time 356 

symmetric) transients, which are aggregated to form the acoustic timeseries. This is essentially what is 357 

illustrated in Figure 1. Indeed, the processes of inversion and generation can be iterated (see below) to 358 

check the fidelity of the forward and inverse transformations that map between the acoustic timeseries and 359 

formant representation. 360 

Speech segmentation as an active process 361 

So far, we have a generative model (and amortised elements of a predictive coding scheme) that generates 362 

an appropriate time series, given discrete lexical (i.e., what), prosody (i.e., how) and speaker (i.e., who) 363 
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states (i.e., latent causes of the word). It can also be inverted to infer the attributes of a word given an 364 

acoustic timeseries. However, in our everyday lives, we usually hear series of words rather than words in 365 

isolation. In this section, we combine the generative model with an active segmentation process, to infer 366 

the most likely sequence of words given a continuous timeseries. 367 

This requires us to address the following problem: we have not specified how the onsets and offsets of the 368 

interval containing the word are generated (i.e., when). Clearly, there are some prior constraints on the 369 

generation of these intervals. For example, the offset of one word should precede the onset of the subsequent 370 

word. Furthermore, the intervals contained between the onset and offset must lie in some plausible time 371 

range. We also know that segmentations are more likely to contain words than non-words (Ganong 1980, 372 

Billig, Davis et al. 2013), and listeners have prior knowledge of the words that are possible in a language 373 

(‘possible word constraint’) (Norris, McQueen et al. 1997). In the current segmentations, we account for 374 

these simple constraints and, effectively, offload inference about word boundaries to the active part of active 375 

inference. The only acoustic cue we use is the contour of the amplitude envelope, which has previously 376 

been identified as a cue that human listeners use for speech segmentation (Lehiste 1960). 377 

In brief, we assume that boundary segmentations are not entirely specified by the acoustic signal, and 378 

conceptualise the segmentation problem as a problem of choosing which boundaries to select given several 379 

possible segmentations; in a similar way as we would select visual actions (e.g., saccadic eye movements 380 

or oculomotor pursuit) to fixate or track a visual object given multiple possible actions. In the current 381 

setting, this simply means identifying a number of plausible boundary intervals and finding the interval that 382 

provides the greatest evidence for our prior beliefs about the words we hear. This is the same principle used 383 

to explain motor and autonomic action under active inference (Friston, Mattout et al. 2011). For example, 384 

classical motor reflexes can be construed as minimising proprioceptive prediction error (i.e. minimising 385 

variational free energy or maximising model evidence) as described in (Adams, Shipp et al. 2013). Formally 386 

identical arguments have been applied in the setting of interoceptive inference where motor reflexes are 387 

replaced by autonomic reflexes that realise autonomic set-points or homoeostasis (Seth 2014).  388 

In the current context, we essentially treat the decision about speech segmentation as a covert action from 389 

a computational perspective, which shares similarities with the overt actions used in other settings. This 390 

can be implemented in a straightforward fashion by selecting boundary pairs (i.e., offsets and onsets) and 391 

evaluating their free energy under some prior beliefs about the next word. Ultimately, we want to select the 392 
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boundary pairs with the smallest free energy—which effectively selects the interval with the greatest 393 

evidence (a.k.a., marginal likelihood) of auditory outcomes contained in that interval. This follows because 394 

the variational free energy, by construction, represents an upper bound on log evidence (see Appendix 3 395 

for more details and the corresponding equations). Importantly, both posterior beliefs about latent states 396 

(i.e., lexical, prosody, and speaker) and the active selection of acoustic intervals optimise free energy. This 397 

is the signature of active inference. In this instance, the posterior beliefs obtain from the likelihood of the 398 

lexical, prosody and identity parameters, given the associated states.  399 

For words spoken in isolation, one can identify candidate boundaries using threshold crossings of the 400 

amplitude envelope (where the threshold is a low value, roughly corresponding to the noise floor). 401 

However, it is well known that a continuous stream of words does not always contain ‘silent’ (i.e., below-402 

threshold) gaps between words and, conversely, silence can occur between two syllables of the same word. 403 

We therefore include local minima of the amplitude envelope as candidate boundaries. It is important to 404 

note that these are only candidate boundaries—in other words, plausible hypotheses for segmentations of 405 

the acoustic signal. We will turn to the question of which interval is selected later, during which candidate 406 

segmentations are combined with (lexical) priors. In practice, this means that two syllables separated by a 407 

silent gap are not always classified as separate words—consistent with the knowledge that naturally spoken 408 

words often contain silent gaps that—to a naïve listener—could be confused with word boundaries. An 409 

example of the candidate boundary points is illustrated in Figure 5. Please see figure legend for details. 410 

Using this procedure to identify candidate intervals, one can select the interval that minimises free energy 411 

(or has the greatest evidence under prior beliefs about the next word). In other words, for each candidate 412 

interval, the likelihood of the lexical parameters is evaluated—for all plausible words—to create a belief 413 

over lexical content, in terms of a probability distribution. This posterior belief is then used to evaluate the 414 

log evidence (i.e., free energy) of each interval. The interval (and associated posterior beliefs) with the 415 

greatest evidence is selected. The offset of this interval specifies the onset of the next segment and the 416 

process starts again.  417 

Treating speech segmentation as a problem of (covertly) sampling among plausible intervals is interesting 418 

from a mathematical perspective. The free energy associated with a particular action is a trade-off between 419 

the accuracy of sensory observations under the generative model and the complexity of belief updating on 420 

the basis of those observations (see Appendix 3 for the equations). In the current setting, these quantities 421 
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can be evaluated explicitly, because the evidence has already been accumulated. Thus, the accuracy term 422 

simply scores the expected log likelihood of the auditory observations under posterior beliefs about the 423 

lexical categories that generated them. The complexity term scores the difference between the prior beliefs 424 

and the new beliefs based on auditory observations. This will become an important quantity later and, 425 

essentially, reflects the degree of belief updating associated with selecting one lexical parsing over another. 426 

Phrased another way, the goal of segmentation under active listening is to sample data in a way that requires 427 

the most parsimonious degree of belief updating, in accord with Ockham's principle (Maisto, Donnarumma 428 

et al. 2015). 429 

Figure 6 shows the consequence of this form of active listening by comparing segmentation and recognition 430 

with and without appropriate prior beliefs (please see the figure legend for details). The input to this 431 

simulation is a continuous acoustic signal that has alternative parsings, leading to different lexical 432 

segmentations. The timeseries in Figures 6A and 6E are identical, but the segmentation (as indicated by the 433 

colours) differs. The point of this simulation is to show that the selected segmentation depends on the 434 

distribution of the priors. When the artificial listener has no particular prior beliefs about which words will 435 

be heard (left panel), the priors are uniform, and recognition goes awry after the first two words (“triangle 436 

square”). The scheme inferred that the best possible explanation for the subsequent words was a series of 437 

shorter words (“a is red a is red”; Figure 6B). From Figure 6C, we can tell that the artificial listener was 438 

uncertain about the correct parsing—reflecting the fact that this signal was difficult to segment because 439 

there were several parsings that would be plausible in English (displayed as grey shaded regions). However, 440 

when the artificial listener was equipped with strong prior beliefs that the words they would hear would be 441 

shape words (the words “triangle” and “square”), it recovered the correct parsing (“triangle square triangle 442 

square triangle square”; Figure 6F). Note that the acoustic boundaries for these two lexical segmentations 443 

differ—highlighting that speech segmentation and lexical inference go hand-in-hand, under this framework.  444 

 445 

 446 
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 447 

FIGURE 5 448 

Spectral envelopes and segment boundaries. This figure provides an example of how candidate intervals containing 449 

words are identified using the spectral envelope. The upper panel shows a timeseries produced by saying "triangle, 450 

square". The timeseries is high pass filtered and smoothed using a Gaussian kernel. The dotted red line in the upper 451 

panel shows the resulting spectral envelope, after subtracting the minimum. The broken line corresponds to a 452 

threshold: 1/16th of the maximum encountered during the (1250 ms) epoch. This envelope is reproduced in the lower 453 

panel (red line). Boundaries are then identified as the first crossing (black dot) of the threshold (horizontal blue line) 454 

before the spectral peak and the last crossing after the peak. These boundaries are then supplemented with the internal 455 

minima between the peak and offset (red dots). These boundaries then generate a set of intervals for subsequent 456 

selection during the recognition or inference process. Here, there are three such intervals. The first contains the first 457 

two syllables of triangle, the second contains the word "triangle". The third additionally includes the first phoneme of 458 

"square". In this example, the second interval was selected as the most plausible (i.e., free energy reducing) candidate 459 

to correctly infer that this segment contained the word "triangle". The vertical blue line corresponds to the first spectral 460 

peak following the offset of the last word, which provides a lower bound on the onset. 461 

 462 
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 463 

FIGURE 6 464 

Speech recognition and segmentation. Left panel: This panel shows the results of active listening to a sequence of 465 
words: a succession of “triangle, square, triangle, square….”. Its format will be used in subsequent figures and is 466 
described in detail here. Panel A shows the acoustic timeseries as a function of time in seconds. The different colours 467 
correspond to the segmentation selected by the active listening scheme, with each colour corresponding to an inferred 468 
word. Regions of cyan denote parts of the timeseries that were not contained within a word boundary. Panel B shows 469 
the accompanying spectral envelope (back line) and the threshold (red dashed line) used to identify subsequent peaks. 470 
The first peak of each successive word centres the boundary identification scheme of Panel A. The words that have 471 
been inferred are shown in the same colours as the upper panel at their (inferred) onset. Panels C–D show the results 472 
of simulated neuronal firing patterns and local field potentials or electroencephalographic responses. These are based 473 
upon a simple form of belief updating cast as a neuronally plausible gradient descent on variational free energy (please 474 
see main text). Panel C shows the activity of neuronal populations encoding each potential word (here, 14 alternatives 475 
listed on the Y axis). These are portrayed as starting at the offset of each word. Effectively, these reflect a competition 476 
between lexical representations that record the selection of the most likely explanation. Sometimes this selection is 477 
definitive: for example, the first word (“triangle”) supervenes almost immediately. Conversely, some words induce a 478 
belief updating that is more uncertain. For example, the last word (“red”) has at least three competing explanations 479 
(i.e., “no”, “not” and “a”). Even after convergence to a particular posterior belief, there is still some residual 480 
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uncertainty about whether “red” was heard. Note that the amplitude of the spectral envelope is only just above 481 
threshold. In other words, this word was spoken rather softly. Panel D shows the same data after taking the temporal 482 
derivative and filtering between 1 and 16 Hz. This reveals fluctuations in (simulated) depolarisation that drives the 483 
increases or decreases in neuronal firing of the panels above. In this example, the sequence of words was falsely 484 
inferred to be a mixture of several words not actually spoken. This failure to recognise the words reflects the fact that 485 
the sequence was difficult to parse or segment. Once segmentation fails, it is difficult to pick up the correct sequence 486 
of segmentations that will, in turn, support veridical inference. These results can be compared with the equivalent 487 
results when appropriate priors are supplied to enable a more veridical segmentation and subsequent recognition. 488 
Right panel: This panel shows the results of active listening using the same auditory stream as in the left panel. The 489 
only difference here is that the (synthetic) subject was equipped with strong prior beliefs that the only words in play 490 
were either “triangle” or “square”. This meant that the agent could properly identify the succession of words, by 491 
selecting the veridical word boundaries and, by implication, the boundaries of subsequent words. If one compares the 492 
ensuing segmentation with corresponding segmentation in the absence of informative priors, one can see clearly where 493 
segmentation failed in the previous example. For example, the last word (i.e., “square”) is correctly identified in dark 494 
blue in Panel F. Whereas, in Panel B (without prior constraints), the last phoneme of the word “square” was inferred 495 
as "red" and the first phoneme was assigned to a different word (“is”). The comparative analysis of these segmentations 496 
highlights the ‘handshake’ between inferring the boundaries in a spectral envelope and correctly inferring the lexical 497 
content on the basis of fluctuations in formant frequencies. 498 

 499 

 500 

These two examples are analogous to the “Grade A” versus “grey day” example that we considered in the 501 

introduction. As in our simulated example, there is no consistent acoustic cue that differentiates “Grade A” 502 

from “grey day”—and, therefore, priors play an essential disambiguating role. The active segmentation 503 

would identify these two (and perhaps additional) possible segmentations, and the percept would be the one 504 

that was most similar to the priors. In other words, these two segmentations would be distinguished by 505 

different prior beliefs, which could originate from a higher (semantic or contextual) level—for example, 506 

whether the topic of conversation was about the weather or a student’s exam results. In a comprehensive 507 

treatment, these would be empirical prior beliefs generated by deep temporal models of the sort described 508 

in (Kiebel, Daunizeau et al. 2009, Friston, Rosch et al. 2017). For simplicity and focus, we assume here 509 

that priors about sequential lexical content—of the sort that could be formed by lexical and semantic 510 

predictions—are available to a subject in the form of categorical probability distributions. 511 

Belief updating and neuronal dynamics 512 

Figure 6 includes a characterisation of simulated word recognition in terms of neuronal responses (Figure 513 
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6C–D, G–H). These (simulated) neuronal responses inherit from the neuronal (marginal) message passing 514 

scheme described in (Friston, Parr et al. 2017, Parr, Markovic et al. 2019). They reflect belief updating 515 

about the lexical category for each word; the simulated neuronal responses are simply the gradient flow on 516 

free energy that is associated with belief updating in active listening. The prediction error is the (negative) 517 

free energy gradient that drives neuronal dynamics. Mathematically, the prediction error is the difference 518 

between the optimal log posterior and current estimate of this. As detailed in Appendix 3, log expectations 519 

about hidden states can be associated with depolarisation of neurons or neuronal populations encoding 520 

expectations about hidden states, while firing rates encode expectations per se.  521 

Figure 6 reproduces these simulated neuronal responses following the processing of each word. These 522 

responses are shown in terms of spike rates, as would be recorded with single unit electrodes (Figure 6C, 523 

G) and depolarisation that would be measured with EEG (Figure 6D, H). Under this formulation, neuronal 524 

activity starts off from some prior expectations and evolves, via a gradient flow on free energy (i.e., 525 

prediction error) to encode posterior expectations. Because depolarisation corresponds to the rate of change 526 

of these beliefs (expressed as log expectations) they show peak responses during the greatest degree of 527 

belief updating from priors to posterior expectations. After filtering, the simulated depolarisations look like 528 

evoked responses that are typically observed in human studies (as discussed in more detail below). 529 

Summary 530 

The message from the simulations in Figure 6 is that proper segmentation and subsequent inference about 531 

lexical content obtain only with particular priors. If we remove prior constraints entirely, the synthetic 532 

listener failed to identify the correct intervals; it falsely inferred the presence of words that were not uttered 533 

and ‘missed’ words that were spoken. It is worth mentioning that the absence of priors would be extremely 534 

unlikely in realistic contexts, because our knowledge of language generates expectations about plausible 535 

words in any given sentence (e.g., due to syntactic and semantic constraints, as well as simple effects of 536 

word frequency) and contextual knowledge (e.g., knowing the topic of conversation, or being in a particular 537 

setting) will also supply empirical priors. Indeed, the effect of priors on speech segmentation is well-538 

established in human speech perception. The common observation that word boundaries are difficult to 539 

ascertain in an unknown language is an intuitive example that priors based on lexical knowledge help to 540 

determine speech segmentation. In addition, the way that humans segment speech depends on previous 541 
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words in a sentence (Cole, Jakimik et al. 1980, Mattys and Melhorn 2007, Mattys, Melhorn et al. 2007, 542 

Kim, Stephens et al. 2012)—a simple demonstration that priors are flexibly applied in different contexts. 543 

The aim of this simulation was to demonstrate the role of priors in speech recognition under active listening. 544 

This simulation also shows that active listening goes beyond simply inferring the best explanation for a 545 

particular sensory signal: active listening also infers which signals to ‘sample’. By this, we mean that 546 

different segments (corresponding to plausible word boundaries) of the speech signal are evaluated, with 547 

the goal of ‘sampling’ or selecting one set of intervals. The action (here, covert placement of word 548 

boundaries, which can be considered more generally as active sampling) therefore goes hand-in-hand with 549 

perception. This is demonstrated in the left panel of Figure 6: Although the words recognised provide the 550 

best (Kim, Frisina et al.) explanation for acoustic sensations, both the words themselves and the placement 551 

of word boundaries are categorically different from the right panel of Figure 6, in which the model was 552 

equipped with different (uniform) prior beliefs. This ability to integrate different levels of beliefs and 553 

inference is consistent with a hierarchical architecture, as suggested by (i) experimental studies that have 554 

measured brain responses during speech perception (Davis and Johnsrude 2003, Vinckier, Dehaene et al. 555 

2007, DeWitt and Rauschecker 2012), (ii) studies that examine the weights participants assign to different 556 

cue types during speech segmentation; e.g., (Mattys, White et al. 2005), and (iii) cognitive accounts of 557 

speech processing (McClelland and Elman 1986, Gaskell and Marslen-Wilson 1997). In the next section, 558 

we turn to the electrophysiological correlates of this belief updating and ask what predictions this model of 559 

auditory inference can offer. 560 

Face validity: Simulating sentence recognition 561 

Here, we use the generative model and inversion scheme described above, under simple prior beliefs about 562 

a sentence, to illustrate the circular causality implicit in Bayesian belief updating. In brief, we will examine 563 

how prior beliefs underwrite word segmentation and how segmentation changes in the absence of 564 

appropriate priors. We then look at how the selected speech segmentation updates subsequent prior beliefs 565 

and how the ensuing Bayesian surprise may manifest electrophysiologically. To illustrate the effect of 566 

priors, we chose the following sentence: “Is there a square above?” This is a completely arbitrary sentence 567 

but is interesting because the formant frequencies in the word “square” have a bimodal (biphone) structure 568 

(Bashford, Warren et al. 2008), which means there is a fairly severe segmentation problem at hand. Will a 569 
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simulated subject segment “square” properly or—as in Figure 6—append the first phone to the previous 570 

word? If they do infer the words correctly, how do priors manifest in terms of belief updating? 571 

Figure 7 shows the results of integrating the active inference scheme above with strong (left panels) or 572 

uniform (right panels) prior beliefs. In this example, prior beliefs were definitive for the first three words 573 

(“is there a”) with more ambiguous prior for the last two words: for the fourth word, the possibilities 574 

included “square” and “triangle”. For the final word, the possibilities included “above”, “below” and 575 

“there”). These priors were selected because they are lexically congruent and represent a plausible belief 576 

that a listener might have about the content of a sentence. Please see the figure legend for technical details. 577 

The message from this simulation is that priors play a key role in resolving uncertainty and subsequent 578 

competition among neuronal representation. 579 

In the absence of precise prior constraints, the uncertainty associated with speech recognition is expressed 580 

as an increased amplitude of simulated electrophysiological responses. This can be seen most clearly by 581 

comparing the simulated electrophysiological responses in the lower right panel: the dotted lines reflect 582 

belief updating in the absence of specific priors, while the dashed lines are the same responses under 583 

informative priors. Figure 8 drills down on these differences by focusing on the responses to the third word. 584 

In so doing, the simulated waveform looks very much like a P300 that is frequently observed in 585 

electrophysiological studies (Donchin and Coles 1988, Morlet and Fischer 2014, Ylinen, Huuskonen et al. 586 

2016). To understand this more formally, the next section explains how these simulated 587 

electrophysiological responses were derived and how they can be interpreted in terms of belief updating 588 

and Bayesian surprise.  589 

To conclude this section, we will use this example to illustrate the fidelity of recursively generating and 590 

recognising words, under this generative model. Figure 9 shows the segmentation and word recognition 591 

following the presentation of the sentence above ("is there a square above"), without priors. The sentence 592 

was then generated using the recognised lexical, prosodic and speaker attributes. The synthetic speech was 593 

then presented to the active listening scheme, to recover the original utterance. This shows that the scheme 594 

can understand itself and perform rudimentary speech repetition. More formally, it illustrates the validity 595 

of the amortised inversion scheme. 596 
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 597 

FIGURE 7 598 

The role of priors in a word recognition: This figure uses the same format as Figure 6. In this example, the spoken 599 
sentence was “Is there a square above?” The left panel (A–D) shows the results of segmentation and word recognition 600 
under informative priors about the possible words. In other words, for each word in the sequence, a small number of 601 
plausible options were retained for inference. For example, the word “above” could have been “below” or “there”, as 602 
shown by the initial neuronal firing in Panel C at the end of the last word (red arrow). The right panel (E–H) shows 603 
exactly the same results but in the absence of any prior beliefs. The inference is unchanged; however, one can see in 604 
the neuronal firing (Panel G) that other candidates are competing to explain the acoustic signal (e.g., blue arrows). 605 
The key observation is that the resulting uncertainty—and competition among neuronal representations—is expressed 606 
in terms of an increased amplitude of simulated electrophysiological responses. This can be seen by comparing the 607 
simulated EEG trace in Panel H—in the absence of priors (solid lines)—with the equivalent EEG response under 608 
strong priors (solid lines in Panel D, reproduced as dashed lines in Panel H). In this example, there has been about a 609 
50% increase in the amplitude of evoked responses. A more detailed analysis of the differences in simulated EEG 610 
responses is provided in Figure 8.  611 
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 612 

FIGURE 8 613 

Mismatch responses and speech-in-noise: Panel A reproduces the results of Figure 7H, but focuses on the simulated 614 
electrophysiological responses of a single neuronal population responding to the third word (“a”). The upper row 615 
reports simulated responses evoked with (green lines) and without (blue dashed lines) priors (as in Figure 7), while 616 
the lower row shows the differences between these two responses. These differences can be construed in the spirit of 617 
a mismatch negativity or P300 waveform difference. Removing the priors over the third word (Panels C–D) isolates 618 
the evoked responses and their differences more clearly. The grey shaded area corresponds to a peristimulus time of 619 
500 ms, starting 250 ms before the offset of the word in question. Assuming update time bins of around 16 ms means 620 
that we can associate this differential response with a P300. In other words, when the word is more surprising—in 621 
relation to prior beliefs about what will be heard—they evoke a more exuberant response some 300 ms after its offset. 622 
Panels E–H reports the same analysis with one simple manipulation; namely, the introduction of noise to simulate 623 
speech-in-noise. In this example, we doubled the amount of noise; thereby shrinking the coefficients by about a factor 624 
of half. This attenuates the violation (i.e., surprise) response by roughly a factor of two (compare difference waveform 625 
in Panel D without noise—red arrows—with the difference waveform in Panel H without noise—blue arrow). 626 
Interestingly, in this example, speech-in-noise accentuates the differences evoked in this simulated population when 627 
the word is not selected (i.e., on the previous word). The underlying role of surprise and prior beliefs in determining 628 
the amplitude of these responses is addressed in greater detail in the final figure. 629 

 630 
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 631 

FIGURE 9 632 

Recursive recognition and generation: The upper part of this figure shows the recognition of words (Panel B) 633 
contained within an acoustic signal (Panel A). Here, the acoustic signal is parsed into the words “is there a square 634 
above”. The corresponding lexical states can be used to synthesise a new acoustic signal (Panel C) containing the 635 
same words. Here, we inverted the model a second time, to recover the words contained within the synthetic acoustic 636 
signal (Panel D). Happily, the recovered words from the synthetic signal (Panel D) match those from the original 637 
signal (Panel B). 638 
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Predictive validity: Belief updating and neurophysiology  639 

Figure 8 suggests that belief updating during word recognition depends sensitively on prior beliefs and 640 

implicit differences in the confidence with which a particular word is inferred. Here, we pursue the 641 

predictive validity of this active listening formulation, by looking in greater detail at belief updating under 642 

the model. In doing so, we highlight qualitative similarities to canonical violation responses measured with 643 

EEG and MEG that are well-established in the empirical literature (as discussed in more detail below). In 644 

brief, the message of this section is that evoked or induced responses in the brain will increase in proportion 645 

to the degree of belief updating following sensory input.  646 

Generally speaking, the idea that belief updating may underpin vigorous neuronal responses to surprising 647 

sensations is broadly consistent with experimental observations. Under predictive coding models of 648 

auditory perception, the mismatch negativity has been considered in light of precision weighted prediction 649 

error responses (Garrido, Kilner et al. 2009, Wacongne, Changeux et al. 2012, Heilbron and Chait 2018). 650 

In this literature, the mismatch negativity is related to deviants in elementary acoustic events, such as 651 

frequency (Näätänen, Gaillard et al. 1978, Giard, Lavikahen et al. 1995, Jacobsen, Schröger et al. 2003), 652 

intensity (Näätänen, Gaillard et al. 1978, Giard, Lavikahen et al. 1995, Jacobsen, Horenkamp et al. 2003), 653 

or timbre (Tervaniemi, Ilvonen et al. 1997, Tervaniemi, Winkler et al. 1997, Toiviainen, Tervaniemi et al. 654 

1998)—and its amplitude covaries with the probability of a deviant (Picton, Alain et al. 2000, Sato, Yabe 655 

et al. 2000, Sato, Yabe et al. 2003). Mismatch negativity responses have also been recorded in the context 656 

of spoken phonemes (Dehaene-Lambertz 1997, Näätänen, Lehtokoski et al. 1997). In the current 657 

framework, precision weighted prediction errors induced by acoustic deviations reflect the surprise and 658 

concomitant belief updating induced by heard (spoken) words. At a slightly longer latency, reorientation 659 

responses could also be construed as a reflection of belief updating at higher levels of hierarchical inference. 660 

For example, the P300 has been proposed to reflect contextual violations (Donchin and Coles 1988) and 661 

the N400 has been proposed to reflect semantic violations (Kutas and Hillyard 1980, Kutas and Hillyard 662 

1984, Van Petten, Coulson et al. 1999, Kutas and Federmeier 2000). The whole field of repetition 663 

suppression and adaptation in functional magnetic resonance imaging rests upon exactly the same notion; 664 

namely, an attenuation of neuronal responses that induce less belief updating, in virtue of being predictable 665 

or repetitious (Larsson and Smith 2012, Grotheer and Kovács 2014).  666 

In the current simulations, our agenda is to identify generic principles that may underpin neuronal responses 667 
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to surprising sensations under active listening. Our goal was not to simulate any particular type of ERP 668 

component, but merely to observe belief updating in the current framework. In the discussion section, we 669 

visit the finer details of the mismatch negativity and later endogenous (e.g., P300, N400) responses, which 670 

would be interesting avenues for future work. An advantage of the current setup is that we can expand upon 671 

the qualitative explanation for violation or surprise related responses using explicit, quantitative 672 

simulations. 673 

If we take the average change in depolarisation under expected firing rates (after belief updating), we 674 

recover a quantity that scores the degree of belief updating (see Appendix 4 for details)—a quantity that 675 

emerges in many guises in different disciplines. For example, in statistics, it is known as the complexity 676 

(see equation A.18), which scores the departure from prior beliefs required to provide an accurate account 677 

of some data (Penny 2012). In the visual neurosciences, this quantity is known as Bayesian surprise 678 

(Schmidhuber 1991, Itti and Baldi 2009) that underwrites the salience or epistemic affordance of locations 679 

in the visual scene that attract saccadic eye movements (Parr and Friston 2017). In robotics, this quantity is 680 

known as intrinsic motivation; namely the information gain associated with a particular move or action 681 

(Ryan and Deci 1985, Oudeyer and Kaplan 2007). In short, we have a link between the information theoretic 682 

quantity that reflects the degree of Bayesian belief updating and the average neuronal responses that 683 

perform belief updating.  684 

There are a number of reasons that one might consider this a sensible predictor of evoked responses in the 685 

brain, above and beyond the idealised dynamics described above. These reasons rest upon the statistical 686 

physics of belief updating in any sentient system making inferences about external states of affairs. The 687 

technical back story to active inference—that is, the free energy principle—allows one to associate the 688 

degree of belief updating and implicit changes in variational free energy in terms of a thermodynamic 689 

potential (Landauer 1961, Bennett 2003, Friston 2013). This means that for an ensemble of neurons (or 690 

neuronal processes) belief updating can be translated directly into thermodynamic free energy. The 691 

corresponding thermodynamic cost of belief updating may be reflected in nearly every sort of 692 

electrophysiological neuroimaging measurement. For example, the excursions of transmembrane potentials 693 

from their Nernst equilibrium in EEG (c.f., a mismatch negativity amplitude). Similarly, in fMRI, 694 

activations may reflect the metabolic costs of belief updating (Attwell and Iadecola 2002). 695 

The second line of argument is based upon the common sense observation that, in the absence of an 696 
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informative sensory cue, there can be no belief updating and no complexity cost or accompanying 697 

thermodynamic cost (Sengupta, Tozzi et al. 2016). In this instance, there will be, clearly, no evoked or 698 

induced response. This argument further suggests that the precision of continuous sensory (e.g., auditory) 699 

signals will determine the degree of belief updating and related violation responses, such as the mismatch 700 

negativity. In speech perception, reduced precision could correspond to speech-in-noise, for which this 701 

model predicts an attenuation of mismatch responses as noise levels increase. The basis of this effect rests 702 

upon the estimation of random fluctuations in sensory cues that, under predictive coding, shrink the 703 

posterior expectations of the lexical coefficients towards their prior mean. 704 

If we revisit the results in Figure 6 and Figure 7, and compare responses evoked with and without priors, it 705 

is immediately obvious that, on average, evoked responses in the absence of (accurate) priors have a larger 706 

amplitude. This is sensible because priors that are congruent with the words presented mean that the belief 707 

updating has a smaller complexity cost because the prior is closer to the posterior. In other words, there is 708 

less information gain because the (synthetic) subject already had accurate prior beliefs about the lexical 709 

content of the spoken words.  710 

To illustrate the sort of effect more quantitatively, we repeated the simulations reported in Figure 7 but 711 

introduced uncertainty about the third word by relaxing its priors. This allowed us to introduce differences 712 

in belief updating, from word to word, and show that simulated neuronal responses vary monotonically 713 

with information gain or Bayesian surprise. Figure 10 reports the results of this numerical analysis in terms 714 

of the variance of depolarisation over neurons encoding lexical expectations (blue line in the second panel) 715 

and the corresponding Kullback-Leibler divergence (red bars). Their monotonic relationship is apparent 716 

(see the third panel), although the relationship is not perfect due to filtering the simulated EEG data and our 717 

ad hoc measure of neuronal responses. At the (coarse-grained) level of the current treatment, this can be 718 

regarded as a simulation of neuronal responses to Bayesian surprise at a fairly high level in the auditory 719 

hierarchy (encoding the lexical content of a word).  720 

 721 
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 722 

FIGURE 10 723 

Bayesian surprise and evoked responses: this shows the same results as in Figure 7 but after removing priors from the 724 
third word (“a” in blue). The result is a more vigorous simulated event related response after the onset of the third 725 
word (green line in the bottom panel). A simple measure of these surprise-related responses can be obtained by taking 726 
the variance of the (simulated) responses over all populations as a function of time (c.f., evoked power). This is shown 727 
in the second panel as a solid blue line (normalised to a maximum of four arbitrary units). The red bars correspond to 728 
the degree of belief updating or Bayesian surprise, as measured by the KL divergence between prior and posterior 729 
beliefs after updating. The key conclusion from these numerical analyses is that there is a monotonic relationship 730 
between the evoked power and Bayesian surprise, as shown by the nearly linear relationship between Bayesian surprise 731 
and the maxima of evoked power in the third panel. In short, the greater the Bayesian surprise, the greater the belief 732 
updating and the larger the fluctuations in neuronal activity. 733 
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With this characterisation of mismatch responses, we can now return to the effect of noise, which highlights 734 

a key feature of active listening—that the quality of sensory evidence affects the magnitude of belief 735 

updating. In Figure 8, noise was simulated by decreasing the prior precision associated with the lexical 736 

coefficients at the auditory level of inference (namely, the prior precision in Equation A.20). This 737 

manipulation attenuates the mismatch or surprise response because the degree of belief updating has been 738 

reduced. The attenuation arises because there is less confidence placed in the evidence ascending from 739 

lower (sensory) levels of auditory processing. In other words, the attenuation of belief updating (and 740 

mismatch responses) in Figure 8 arises because the posteriors have been moved closer to the priors. This 741 

contrasts Figure 7, in which belief updating and mismatch responses were attenuated by one moving the 742 

priors closer to the posteriors. In subsequent work, we will revisit the effects of manipulating speech-in-743 

noise—and prior beliefs—to demonstrate their effects empirically and, crucially, how they interact in the 744 

genesis of difference waveforms. For the purposes of this paper, the basic phenomenology illustrated above 745 

will be taken as a validation of the belief updating scheme by appealing to the literature on the canonical 746 

mismatch and violation responses of this sort. 747 

Discussion 748 

Active listening considers the enactive synthesis or inference that might underwrite the recognition—and 749 

generation—of spoken sentences. The notion of active listening inherits from active inference, which 750 

considers perception and action under a universal imperative—to maximise the evidence for our 751 

(generative) models of the world. Here, the ‘active’ component is the (covert) parsing of words from a 752 

continuous auditory signal. Active listening entails the selection of internal actions (i.e., placement of word 753 

boundaries) that minimise variational free energy. Practically, word boundaries are selected so as to 754 

minimise surprise or maximise the evidence for an internal model of word generation. We have described 755 

the formal basis of this kind of active listening, using simulations of speech recognition to establish its face 756 

validity in behavioural terms. We then considered predictive validity, in terms of neuronal or physiological 757 

responses to violations and surprise, of the sort associated with the mismatch negativity, P300, and N400. 758 

In treating the segmentation of a continuous sensory stream into meaningful words as an active sensing 759 

problem, we imagine that several segmentation operations are applied by the auditory system in parallel 760 

and the interval that maximises model evidence or marginal likelihood (i.e., minimises variational free 761 
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energy) is selected for further hierarchical processing. From the perspective of hierarchical Bayesian 762 

inference, this follows the usual way of mapping from posterior density estimates, based upon continuous 763 

signals, to posterior beliefs about the discrete causes of those signals. This is generally cast in terms of 764 

Bayesian model selection. In other words, selecting some discrete explanation or hypothesis for the data 765 

that is most consistent with the estimated parameters of a generative model at the lower (sensory) level 766 

(Friston, Parr et al. 2017). The twist here is that this model selection has been framed in terms of action 767 

selection by treating the selection of word boundaries as an active process.  768 

The generative model of word production that we considered has been stripped down to its bare essentials. 769 

More complex models could be conceived that synthesise more natural speech. Expanding the parameter 770 

space would not only allow it to produce more natural speech, but also allow the model to explain more 771 

domains of auditory production and perception. We discuss some of these possibilities in the discussion 772 

that follows. Nevertheless, we have demonstrated with this simplified generative model that inversion of 773 

the model—which corresponds to speech recognition—is associated with belief updating that makes 774 

plausible predictions for neuronal dynamics. In this paper, we produced quantitative simulations of 775 

electrophysiological responses and showed that they depend on the prior knowledge of the listener—a 776 

phenomenon that has commonly been observed in human speech perception (Marslen-Wilson 1975, 777 

Marslen-Wilson and Welsh 1978, Cole, Jakimik et al. 1980, Mattys and Melhorn 2007, Mattys, Melhorn et 778 

al. 2007, Kim, Stephens et al. 2012). 779 

In borrowing ideas from active vision, we highlight parallels by which the brain could plausibly accumulate 780 

evidence among sensory modalities. The covert actions considered in this paper (i.e., the placement of word 781 

boundaries) follow in the spirit of overt (motor or autonomic) actions that have been used to simulate 782 

saccadic searches of the visual scene (Mirza, Adams et al. 2016, Parr and Friston 2017). We discuss the 783 

relationship between covert and overt actions in greater depth below. Intuitively, sensory observations in 784 

the auditory and visual modalities may appear to differ because speech unfolds over time, whereas visual 785 

experiments frequently use static stimuli that are spatially distributed. However, many parallels can be 786 

drawn between cortical processing in these modalities (O'Leary 1989), consistent with findings that sensory 787 

cortices can reorganise and subsequently process inputs from a different sensory modality (Sur, Garraghty 788 

et al. 1988, Shiell, Champoux et al. 2015). Shamma and colleagues (Shamma 2001, Shamma, Elhilali et al. 789 

2011) propose a unified computational framework for auditory and visual perception, suggesting that the 790 

neural processes proposed for vision could also operate in auditory cortex. In short, this is based on the idea 791 
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that the cochlea transforms temporally unfolding sound into spatiotemporal response patterns early in 792 

auditory processing. In other words, this is a ‘spatial’ view of auditory processing. Under this view, the 793 

computations for analysing auditory signals in time could be similar to the computations used for analysing 794 

visual signals in space; e.g., (Bar, Kassam et al. 2006). 795 

Active listening and Bayesian surprise 796 

Selecting intervals containing auditory cues that minimise free energy (i.e., maximise marginal likelihood 797 

or model evidence) follows from the basic premise of the free energy principle; namely, both action and 798 

perception are in the game of self-evidencing (Hohwy 2016). Having said this, there is something unique 799 

about the particular selective process (which are implicit in Equation A.19) that distinguishes it from overt 800 

actions, such as moving one’s head or making visual saccades to a location in a visual scene. This is because 801 

the corresponding selection of ‘where to look next’ is based upon anticipated data that would be sampled 802 

if one looked ‘over there’. However, predictive coding (in some amortised form) of speech segmentation 803 

here is based on evidence that has already accumulated under different interval or segmentation schemes. 804 

In other words, there is a distinction between overt actions—such as moving one’s eyes or moving one’s 805 

head—which changes observations in the future, and covert actions—such as covert visual attention, or 806 

selecting a particular segmentation of speech—which is based on sampling current observations. In the case 807 

of these covert actions, the sensory evidence (and subsequent posterior) can be computed explicitly to 808 

evaluate the free energy expected under a particular interval choice. In contrast, expected free energy based 809 

on overt actions has to be averaged under predicted sensory outcomes—known technically as a posterior 810 

predictive density. This means that evaluating the free energy for particular speech segmentation intervals 811 

is much simpler than evaluating the expected free energy under a posterior predictive density, conditioned 812 

upon a particular overt action. It is useful to bear this distinction in mind because it can resolve some 813 

apparent paradoxes.  814 

These paradoxes pertain largely to the question: does active inference minimise or maximise Bayesian 815 

surprise? In the current setting, covert actions associated with speech segmentation minimise Bayesian 816 

surprise, because Bayesian surprise relates to the complexity (i.e., cost) associated with belief updating 817 

based on current observations. In other words, because the free energy associated with covert actions can 818 

be evaluated explicitly, a listener can choose the covert action that requires the least belief updating (i.e., 819 
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that is closest to their priors), but still provides an accurate explanation for the auditory observations. This 820 

leads to a conceptualisation in which neuronal dynamics and implicit message passing aim to explain 821 

sensory input with minimal complexity and, therefore, minimum accompanying thermodynamic cost 822 

(Sengupta, Stemmler et al. 2013). On this view, large mismatch or violation responses indicate that an 823 

accurate explanation for sensory inputs required a costly update to posterior beliefs.  824 

The situation flips for overt actions, for which action selection depends on expected free energy—which is 825 

evaluated on the basis of predicted (i.e., unknown) outcomes in the future. Future sensory outcomes are 826 

random (i.e., unknown or hidden) variables and active inference maximises expected Bayesian surprise, 827 

which corresponds to expected information gain. In other words, it reflects the reduction in uncertainty in 828 

how the world is sampled. Actions that maximise Bayesian surprise will lead to the greatest reduction in 829 

uncertainty. This is why expected Bayesian surprise has to be maximised when selecting actions, where it 830 

plays the role of epistemic affordance (Parr and Friston 2017). As noted above, this is an important 831 

imperative that underwrites uncertainty reducing, exploratory behaviour; known as intrinsic motivation in 832 

neurorobotics (Schmidhuber 2006) or salience when ‘planning to be surprised’ (Sun, Gomez et al. 2011, 833 

Barto, Mirolli et al. 2013). An intuitive way of thinking about whether surprise should be maximised or 834 

minimised is to appeal to the analogy of scientific experiment. We may attempt to analyse empirical data 835 

that we have collected in a way that minimises how surprising it appears; for example, by giving greater 836 

weight to hypotheses consistent with our measurements. Having done so, we may want to design a future 837 

experiment, which would aim is to collect data that will tell us something new; in this case, we should 838 

design an experiment that we expect to maximise our (Bayesian) surprise (a.k.a., information gain). 839 

In future work, we will expand upon this distinction by using the current model to simulate conversations. 840 

The act of speaking is an overt action, and the basic principle of conversational turn taking has been 841 

simulated using active inference in the setting of bird song (Friston and Frith 2015). We hope to combine 842 

the current active listening implementation with an agent who is able to ask questions. In brief, the agent 843 

will actively listen to speech by minimising Bayesian surprise at the level of word recognition considered 844 

in this paper, and select words to speak (i.e., overt actions, here in the form of questions) that maximise 845 

expected Bayesian surprise to maximise information gain (i.e., resolve uncertainty). This leads to a first 846 

principle account of language ‘understanding’ that can be described in terms of self-evidencing: namely, 847 

minimising free energy through belief updating, and planning to take actions that minimise expected free 848 

energy. 849 
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Although evaluating the free energy of alternative data features (i.e., segments) that have already been 850 

sampled is more straightforward than evaluating the expected free energy when planning how to sample 851 

data, it is not as straightforward as reflexive action; e.g., (Adams, Shipp et al. 2013). Reflexive or 852 

elementary action, under active inference, changes the sensory data solicited, e.g., the stretch receptor 853 

signals that are attenuated by classical motor reflexes. However, this kind of reflexive action does not 854 

change internal brain states or the posterior beliefs that they parameterise. This means that the only part of 855 

free energy that can be minimised directly is the accuracy term (Equation A.18). This is why it is sufficient 856 

to minimise interoceptive and proprioceptive prediction errors when accounting for autonomic and motor 857 

action; very much along the lines of the equilibrium point hypothesis (Feldman and Levin 1995) and the 858 

passive movement paradigm (Mohan and Morasso 2011). However, in the active listening framework 859 

proposed here, the situation is a little more involved. This is because hierarchical inference means that 860 

committing to one data feature (i.e., interval) or another will change posterior beliefs. This means that to 861 

comply with the free energy principle, it is necessary to select data features (i.e., intervals) that not only 862 

maximise accuracy but also minimise complexity. This entails a more nuanced form of action selection, in 863 

virtue of the fact that it requires the (covert) selection of data features that have been (overtly) acquired. 864 

Even though the data have already been acquired, and selecting different data features does not change the 865 

auditory outcomes (acoustic timeseries), these processes are nevertheless ‘active’ from our perspective, 866 

because the agent has an epistemic imperative to sample auditory outcomes in a way that reduces 867 

uncertainty. In other words, the agent is in charge of the data features (i.e., segmentation). Thus, we can 868 

think of speech segmentation as a kind of action that is internal or attentional, related to how the acoustic 869 

timeseries is covertly sampled. The framework we have introduced in this paper highlights that—870 

mathematically—these covert actions can be considered in a similar way as overt actions.  871 

Acoustic envelope and spectral fluctuations 872 

Under active listening, the implicit generative model of an envelope, which is used to create a repertoire of 873 

intervals from which to select, is distinct from the spectral fluctuations (i.e., formant frequencies) generated 874 

by latent states (i.e., lexical and prosody). This formulation of speech recognition may explain why there 875 

are ‘envelope following responses’ in distinct parts of the auditory system, whose functional architecture 876 

can be distinguished from the tonotopic mapping of auditory cortex per se (Easwar, Purcell et al. 2015, 877 

Braiman, Fridman et al. 2018). This leads to an interesting picture of how the brain thinks words are 878 

generated that echoes the distinction between ‘what’ and ‘where’ in the visual hierarchy (Ungerleider and 879 
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Haxby 1994). In other words, there may be a homologous distinction between ‘what’ and ‘when’ in the 880 

auditory system that manifests as an anatomical separation of the pathways inferring ‘what’ is being spoken 881 

(i.e., tonotopic predictions and representations) and when this content is deployed (i.e., envelope following 882 

responses) (Romanski, Tian et al. 1999, Alain, Arnott et al. 2001). From the point of view of word 883 

generation, these two streams converge to generate the correct formants at the correct time. From the point 884 

of view of recognition or generative model inversion; this would imply a functional segregation of the sort 885 

seen in other modalities (Ungerleider and Haxby 1994, Friston and Buzsaki 2016); for example, the 886 

segregation into dorsal and ventral streams – or, indeed, parvocellular and magnocellular streams (Zeki and 887 

Shipp 1988, Nealey and Maunsell 1994). Interestingly, this sort of segregation into ‘what’ and ‘how’ 888 

pathways has already been proposed for the auditory system (Kaas and Hackett 1999, Belin and Zatorre 889 

2000). 890 

Active listening and electrophysiological responses 891 

In a general sense, we have shown that belief updating under active listening qualitatively resembles 892 

physiological responses to violations and surprise that are already in the literature. Our goal was not to 893 

simulate any particular type of ERP component or the empirical results from any particular study, but rather 894 

to explore belief updating in an artificial agent whose goal is to generate and/or recognise speech. So, can 895 

we interpret this belief updating in light of particular ERP responses? 896 

One canonical violation response is the mismatch negativity. The mismatch negativity is observed in classic 897 

‘oddball’ paradigms (Garrido, Kilner et al. 2009), in which a deviant sound follows a sequence of sounds 898 

that all share a particular acoustic property. Mismatch negativity responses have been observed when a 899 

sound deviates in frequency (Näätänen, Gaillard et al. 1978, Giard, Lavikahen et al. 1995, Jacobsen, 900 

Schröger et al. 2003), intensity (Näätänen, Gaillard et al. 1978, Giard, Lavikahen et al. 1995, Jacobsen, 901 

Horenkamp et al. 2003), or timbre (Tervaniemi, Ilvonen et al. 1997, Tervaniemi, Winkler et al. 1997, 902 

Toiviainen, Tervaniemi et al. 1998) from preceding stimuli. Crucially, the mismatch negativity has recently 903 

been interpreted in terms of predictive coding—specifically, it has been assumed to reflect precision 904 

weighted prediction errors (Garrido, Kilner et al. 2009, Wacongne, Changeux et al. 2012, Heilbron and 905 

Chait 2018)—which relates nicely to the current framework. The finding that the amplitude of the mismatch 906 

negativity covaries with the probability of a deviant (Picton, Alain et al. 2000, Sato, Yabe et al. 2000, Sato, 907 
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Yabe et al. 2003) is consistent with the idea that it reflects belief updating. Most previous studies of the 908 

mismatch negativity have used basic auditory stimuli, such as artificial pure or complex tones; it is therefore 909 

assumed to reflect deviations to low-level acoustic properties, rather than processes that are specific to 910 

speech. Nevertheless, observations of the mismatch negativity during phoneme perception (Dehaene-911 

Lambertz 1997, Näätänen, Lehtokoski et al. 1997) can be interpreted as reflecting acoustic violations that 912 

occur within speech. 913 

The P300 is often observed in similar ‘oddball’ settings as the mismatch negativity (Polich 2007). It has a 914 

longer latency than the mismatch negativity and has been related to higher-level context violations 915 

(Donchin and Coles 1988). It could, therefore, be interpreted as reflecting belief updating when the 916 

listener’s context changes. In the domain of speech, the P300 has been associated with word frequency 917 

(Polich and Donchin 1988). 918 

The N400 is commonly observed in response to meaningful speech, and has also been associated with word 919 

frequency (Kutas and Hillyard 1984, Van Petten and Kutas 1990, Van Petten, Coulson et al. 1999). Kutas 920 

and Hillyard (Kutas and Hillyard 1984) found that the amplitude of the N400 was inversely correlated with 921 

a word’s cloze probability—that is, participants’ ratings of the probability that a particular word would 922 

come at the end of the sentence in question. They found that the same effect transferred to words that were 923 

semantically related to high-probability words. They, therefore, concluded that the N400 relates to semantic 924 

activation. Modulations of N400 responses have been reported in a variety of semantic contexts (reviewed 925 

by (Kutas and Federmeier 2000))—including sentence-final words, the semantic congruency of words that 926 

occur mid-sentence, and the semantic relatedness of word pairs—and has been shown to build up as the 927 

semantic context becomes increasingly constrained throughout a sentence. Syntactic violations do not elicit 928 

an N400 response (Kutas and Federmeier 2009), but instead evoke a P600 (Osterhout and Holcomb 1992, 929 

Friederici, Hahne et al. 1996, Kuperberg, Sitnikova et al. 2003).  930 

An N400-like negativity, termed the frontocentral negativity (‘FN400’) has been related to speech 931 

segmentation by transitional probabilities (Balaguer, Toro et al. 2007, Cunillera, Càmara et al. 2009, 932 

François, Cunillera et al. 2017). For example, stronger FN400 responses were elicited from acoustic signals 933 

that comprised strong statistical relationships between syllables than syllables that were selected randomly 934 

(François, Cunillera et al. 2017). The FN400 also appears to increase in amplitude as the segmentation 935 

process becomes more prominent as new words are learned (Balaguer, Toro et al. 2007, Cunillera, Càmara 936 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.18.997122doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.997122
http://creativecommons.org/licenses/by/4.0/


Active listening 

 

40 

 

et al. 2009). 937 

Speech segmentation by prosodic cues has been associated with a different ERP: the closure positive shift 938 

(CPS) (Steinhauer, Alter et al. 1999). The closure positive shift is evoked around the time of a prosodic 939 

boundary, and has been reported to last until the onset of the next word (Bögels, Schriefers et al. 2011). It 940 

has been found in several different languages (see (Bögels, Schriefers et al. 2011) for a review) and even 941 

in hummed speech (Pannekamp, Toepel et al. 2005), which has no lexical content. 942 

So, which level of processing does belief updating in the current scheme reflect? This level could be 943 

intermediate between lower acoustic levels at which a mismatch negativity is generated, and the kind of 944 

violation responses associated with a change in context or semantics. Possibly, this could be something like 945 

the phonological mismatch negativity, which has been interpreted as reflecting acoustic-phonetic 946 

processing in response to the initial phoneme of a spoken word, occurring 270–300 ms after onset 947 

(Connolly, Phillips et al. 1992). Connolly and Phillips (Connolly and Phillips 1994) observed the 948 

phonological mismatch negativity when the final word of a sentence was semantically congruent, but the 949 

word (and the initial phoneme) differed from the word with the highest Cloze probability. An N400 was 950 

not observed in this condition and was instead observed when the word was semantically incongruent. 951 

Interestingly, the phonological mismatch negativity was not observed when a word was semantically 952 

incongruent, but the initial phoneme matched the word with the highest Cloze probability. These 953 

observations are consistent with the idea that the phonological mismatch negativity reflects acoustic-954 

phonetic processing. 955 

One advantage of the current framework is that it generates quantitative predictions that can be explicitly 956 

tested in future electrophysiological studies. The predictive validity we have considered here is a first step: 957 

the next step is to scrutinise the particular parameters of the simulation using empirical data. To study this 958 

in more detail, specific sequences of words and/or acoustic features could be posed to the model that 959 

generate particular violations. Belief updating in active listening—and, for comparison, parameters of other 960 

models (Aitchison and Lengyel 2017)—could be quantitatively compared to empirical electrophysiological 961 

results. This speaks again to future directions, in which the current framework will be extended to a 962 

hierarchical model that can simulate conversations. Speech has a deep temporal structure, with phrases 963 

evolving over longer time intervals than words or phonemes—and a more complete generative model of 964 

speech will have to incorporate this temporal hierarchy (Friston, Rosch et al. 2017). The idea of an 965 
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interlocutor asking questions to resolve uncertainty relates to a higher-level semantic processing of 966 

speech—and violations of semantic expectations might be associated with later electrophysiological 967 

responses, such as the N400. Consistent with the types of hierarchies that have often been suggested based 968 

on empirical data (Kumar, Stephan et al. 2007, Ding, Melloni et al. 2015), a deep generative model implies 969 

that belief updating occurs at multiple time scales, and we anticipate that this will give rise to more 970 

structured ERPs that include contributions from later components. 971 

Background noise during active listening 972 

In this paper, we simulated a simple case of speech-in-noise, in which we imposed random fluctuations (of 973 

constant amplitude) on the speech signal. We showed that noisier signals attenuate belief updating. We plan 974 

to extend this model to incorporate other types of noise, including fluctuating-amplitude maskers such as 975 

multi-speaker environments. This should allow one to investigate which aspects of the signal are most 976 

informative for minimising Bayesian surprise, when some parts of the signal (but not others) undergo 977 

energetic masking (Brungart 2001, Brungart, Simpson et al. 2001, Durlach 2006) or when informational 978 

masking (Durlach, Mason et al. 2003, Durlach, Mason et al. 2003, Kidd, R. Mason et al. 2007) comes into 979 

play. In other words, in the presence of noise, a listener needs to reduce their uncertainty about the words 980 

that were spoken by deciding which attributes of the acoustic signal they should attend to. 981 

One problem that the current segmentation algorithm would face—when adding background noise to 982 

speech—is that envelope minima may not always be present at word boundaries. In human listeners, 983 

segmentation at envelope minima could be achieved based on envelope following responses. Indeed, the 984 

magnitude of envelope following responses (i) has been linked to speech intelligibility in humans (Drullman 985 

1995, Muralimanohar, Kates et al. 2017, Vanthornhout, Decruy et al. 2018), (ii) is greater for attended than 986 

unattended speakers (Ding and Simon 2012, O'Sullivan, Power et al. 2014), and (iii) can be reconstructed 987 

from measurements of brain activity (Pasley, David et al. 2012, O'Sullivan, Power et al. 2014). These 988 

envelope responses could, therefore, reflect the success of speech segmentation. Other cues to segmentation 989 

have been reported in the literature—and may be particularly important when background noise is present. 990 

These cues include durations: a lengthening of syllables at the end of words (Klatt 1975, Beckman and 991 

Edwards 1990), and possibly also the beginning (Lehiste 1960, Lehiste 1972, Oller 1973, Klatt 1976, 992 

Nakatani and Dukes 1977, Gow Jr and Gordon 1995). They also include a shortening of the middle portion 993 
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of words (Lehiste 1973, Oller 1973, Harris and Umeda 1974, Klatt 1976). Other work has also reported 994 

metrical (stress) cues (Cutler and Norris 1988), allophonic variation (Christie Jr 1974, Nakatani and Dukes 995 

1977, Gow Jr and Gordon 1995), and fundamental frequency contour (Ladd and Schepman 2003) as 996 

segmentation cues. Although the current algorithm of finding envelope minima was sufficient for the 997 

current simulations, these other cues could be implemented into active listening in other contexts in which 998 

segmentation may be particularly challenging. While the current implementation retrospectively places 999 

word boundaries, future work could also consider that word boundaries are somewhat predictable from the 1000 

lexical statistics of the preceding sequences (Marslen-Wilson 1984)—for example, the offset of “trombone” 1001 

may be predicted upon hearing “trom”, given it is the only valid ending to the word in English. 1002 

Active listening and language production and perception 1003 

The active listening scheme can also be used as a foundation to gain a neuronal-level understanding of 1004 

language production and perception behaviours. For example, engaging in a two-way dialogue (Kuhlen, 1005 

Bogler et al. 2017), verbal fluency (Paulesu, Goldacre et al. 1997) and reading (Fiez and Petersen 1998, 1006 

Landi, Frost et al. 2013, Taylor, Rastle et al. 2013); see (Price 2012) for a detailed overview. Previous 1007 

investigations of these behaviours have been motivated by the desire to better understand the underlying 1008 

neuropsychology (Aring 1963, Hodges, Patterson et al. 1992, Warburton, Price et al. 1999, Thiel, Habedank 1009 

et al. 2005, Nardo, Holland et al. 2017, Hope, Leff et al. 2018). In other words, what are the causal 1010 

mechanisms associated with (language) behavioural modifications following neurological disorders? 1011 

Despite valiant efforts, none of the current computational accounts of language can fully explain these 1012 

behaviours (Rueschemeyer, Gaskell et al. 2018): examples include Directions Into Velocities of 1013 

Articulators model (Tourville and Guenther 2011), State Feedback Control model (Houde and Nagarajan 1014 

2011), and Hierarchical State Feedback Control model (Hickok 2014). Crucially, these approaches do not 1015 

simultaneously account for higher-order language processing (semantic, syntactic, etc.) and lower level 1016 

articulatory control (prosody, etc.); however, human language processing requires both. The active listening 1017 

scheme presented here departs from previous approaches: it explicitly considers the segmentation of 1018 

continuous signals (which come into play through the accuracy term in Equation (A.18) and relate to lower-1019 

level processing) and beliefs about the lexical content of those signals (key to the complexity term in 1020 

Equation (A.18) and relating to higher-level language processing). Not only do these two aspects exist in 1021 

the model, but they go hand-in-hand during word recognition. This makes the generative model described 1022 

here a prime candidate for developing a mechanistic and neurobiologically plausible account of (healthy 1023 
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and impaired) language behaviour. 1024 

The idea that a generative model for speech generation can be inverted for the purpose of recognising speech 1025 

touches upon a longstanding debate in the literature—are similar neural processes used to recognise speech, 1026 

as those that are used to produce speech? This is an interesting question, and one that the current formulation 1027 

does not address. Of relevance, the properties of spoken sentences that active listening uses to produce and 1028 

recognise speech are acoustic (e.g., fundamental and formant frequencies) rather than biological (e.g., vocal 1029 

chords and vocal tract) attributes (Guenther and Vladusich 2012). Thus, it does not necessarily follow from 1030 

this framework that an individual who is unable to speak is unable to comprehend speech. On the contrary, 1031 

we expect that an individual who is unable to speak could still generate an internal model that specifies the 1032 

causes of spoken words, which they have learnt by perceiving speech. Whether the experience of producing 1033 

speech contributes to the same model is an interesting question. In short, there may be an opportunity to 1034 

examine how computational lesions to the model impair speech perception and production. 1035 

Active listening and voice recognition 1036 

One strength of the current scheme is that it deals with both speech generation and recognition, and can be 1037 

iteratively applied to recognise the lexical content of simulated speech (see Figure 9). The simulated speech 1038 

that the model produces is discernibly artificial, but the key message here is that the model reduces the 1039 

problems of speech generation and recognition to their necessary parameters. The generative model 1040 

introduced in this paper lays the groundwork for a complete model of voice recognition. In other words, a 1041 

model that infers who is speaking. The current model includes states for the speaker attributes of their 1042 

average fundamental frequency and formant spacing. From a speech production perspective, a speaker’s 1043 

fundamental frequency relates to the rate of vocal fold vibration (known as glottal pulse rate), and formant 1044 

spacing is affected by the length and shape of the vocal tract—which are relatively fixed for a speaker, 1045 

although can be modified slightly by changing the positions of the articulators, such as the tongue and lips. 1046 

Previous research demonstrates that listeners use both fundamental frequency and speech formants to judge 1047 

the identity of people who are familiar (LaRiviere 1975, Abberton and Fourcin 1978, Van Dommelen 1987, 1048 

Van Dommelen 1990, Lavner, Gath et al. 2000, Lavner, Rosenhouse et al. 2001, Holmes, Domingo et al. 1049 

2018) and unfamiliar (Matsumoto, Hiki et al. 1973, Walden, Montgomery et al. 1978, Murry and Singh 1050 

1980, Baumann and Belin 2009, Gaudrain, Li et al. 2009). To extend the current model to recognise voices, 1051 
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the next step is to specify how combinations of fundamental and formant frequencies are used to infer 1052 

speaker identity. From the perspective of the generative model, fundamental and formant frequencies are 1053 

generated from hidden states that correspond to particular speakers. This approach differs from that 1054 

proposed by Kleinschmidt and Jaeger (Kleinschmidt and Jaeger 2015), who assume that listeners construct 1055 

a separate generative model for each talker they encounter. In the current implementation, we have focused 1056 

on fundamental and formant frequencies, because these attributes are most prevalent in the voice 1057 

recognition literature. However, they are not the only relevant speaker attributes (Cai, Gilbert et al. 2017, 1058 

Holmes, Domingo et al. 2018). More complex models of voice recognition could incorporate additional 1059 

speaker parameters, for example, relating to speaker-specific accent, stress, and intonation. 1060 

Active listening and music 1061 

Finally, the generative and inversion schemes presented here could also form the basis for models of other 1062 

complex auditory signals. Music, for example, shares several features with language (Patel 2010) and relies 1063 

on partly overlapping brain networks (Musso, Weiller et al. 2015), which makes it a natural choice for 1064 

future work. It is not difficult to imagine how the generative model in Figure 1 could be adapted to simulate 1065 

music in an active listening framework. For example, somewhat akin to determining the correct onsets and 1066 

offsets of word boundaries, we need to decide where a musical phrase—or longer section of music—begins 1067 

and ends.  1068 

Recent empirical findings have shown that mismatch responses to unexpected musical sounds are larger in 1069 

contexts with low than high uncertainty (Quiroga-Martinez, Hansen et al. 2019). This fits comfortably with 1070 

the proposed explanation of evoked responses as reflecting Bayesian surprise or salience, which would be 1071 

reduced when sensory signals are unreliable or imprecise. Since music is rich and multifaceted and relies 1072 

greatly on statistical learning (Pearce 2018), it would be an ideal means to understand how neuronal 1073 

dynamics change with uncertainty.  1074 

Summary 1075 

In summary, this paper introduces active listening—a unified framework for generating and recognising 1076 
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speech. The generative model specifies how discrete lexical, prosodic, and speaker attributes give rise to a 1077 

continuous acoustic timeseries. As the name implies, the framework also includes an active component, in 1078 

which plausible segmentations of the acoustic timeseries—corresponding to the placement of word 1079 

boundaries—are considered, and segmentation that minimises Bayesian surprise is selected. In the 1080 

simulations presented here, we demonstrate that speech can be iteratively recognised and generated under 1081 

this model. We show that the words that the model recognises depend on prior expectations about the 1082 

content of the words, as is the case for human listeners, and that simulated neuronal responses resemble 1083 

human electrophysiological responses. This work establishes a foundation for future work that will simulate 1084 

human conversations, voice recognition, speech-in-noise, and music—and which we anticipate will provide 1085 

key insights into neuropsychological impairments to language processing. 1086 

 1087 

Software note 1088 

The routines described in this paper are available as Matlab code in the SPM academic software: 1089 

http://www.fil.ion.ucl.ac.uk/spm/. The simulations reported in the figures can be reproduced (and 1090 

customised) via a graphical user interface by typing (in the Matlab command window) DEM and selecting 1091 

appropriate (speech recognition) demonstration routines. The accompanying Matlab scripts are called 1092 

spm_voice_*.m. 1093 
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 1103 

Appendices 1104 

Appendix 1: The generative model 1105 

This appendix covers technical details of the generative model introduced in Figure 1. Figure 11 is designed 1106 

to supplement Figure 1, and includes the equations corresponding to word generation (left column) and 1107 

word recognition (right column). This section first provides a summary of the technical details of the 1108 

generative model, then goes on to unpack each of the equations of the generative model in Figure 11. 1109 

Although these may seem complicated for a non-technical reader, they are simply a sequence of non-linear 1110 

transforms that specify the mapping from lexical, speaker, and prosody parameters to an acoustic timeseries. 1111 

In brief, each word (i.e., lexical item) is associated with a matrix of a discrete cosine transform coefficients 1112 

( Q) that generate a time-frequency representation (W) of the spoken word (i.e., the spectrogram), when 1113 

combined with speaker and prosody information. In this scheme, the lexical form and structure comprise a 1114 

discrete cosine transform with 8 basis functions over time and 32 over formant frequencies (see Figure 1115 

11C). The number of basis functions was selected as a compromise between the quality of the generated 1116 

acoustic timeseries and computational efficiency. Each column of the time-frequency representation 1117 

generates a transient: thus, the number of transients corresponds to the number of columns in the time-1118 

frequency representation.  1119 

The transients are emitted at an instantaneous fundamental frequency, which is inversely proportional to 1120 

the time intervals between successive transients (i). These time intervals are stored in a fundamental 1121 

interval variable (I). The instantaneous fundamental frequency is affected by the average fundamental 1122 

frequency of the speaker ( 0), corresponding to their average glottal pulse rate. It also depends on a discrete 1123 
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cosine transform (D) based upon (three) coefficients ( I) that encode inflection around the speaker’s 1124 

average fundamental frequency ( 0): (1) the average fundamental frequency relative to the speaker average, 1125 

(2) increases or decreases in fundamental frequency over time, and (3) the acceleration or deceleration of 1126 

changes in fundamental frequency. The ensuing time-frequency representation is then multiplied by an 1127 

inverse temperature ( T) parameter, which affects the quality of the sound and can be thought of as a timbre 1128 

parameter. Its exponential is, effectively, Fourier transformed to create a succession of transients that are 1129 

deployed over fundamental intervals. The resulting timeseries is then scaled by an amplitude parameter ( 1130 

A) to furnish the final (continuous) acoustic timeseries. 1131 

 1132 

 1133 
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 1134 

FIGURE 11 1135 

A generative model of a word. This figure illustrates the generative model from the perspective of word generation 1136 

(green panels) and accompanying inversion (orange panels), which corresponds to word recognition. This model maps 1137 

from hidden states (s; shown in box A), which denote the attributes of a spoken word (in this case lexical content, 1138 

prosody, and speaker identity), to outcomes (o; shown in box C), which corresponds to the continuous acoustic 1139 

timeseries. Box B shows how parameters are sampled for word generation. The centre panels illustrate the non-linear 1140 

mappings between model parameters and the acoustic spectrum (i.e., time-frequency representation). Box C specifies 1141 

how the transients are then aggregated to form a timeseries. Recognition (boxes D–E) corresponds to the inversion of 1142 

the generative model: a given time series is transformed to parameterise the time-frequency representation (box D) by 1143 

simply inverting or ‘undoing’ the generative operations. These parameters are used to evaluate the likelihood of 1144 

lexical, prosody and speaker states (box E). The equations displayed in this figure are unpacked in the text. 1145 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.18.997122doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.997122
http://creativecommons.org/licenses/by/4.0/


Active listening 

 

49 

 

In what follows, we unpack each of the equations in Figure 11, from the perspective of word generation 1146 

(left column of Figure 11). Note that word generation simply involves a sequence of non-linear 1147 

transformations, which specify the relationship between parameters and the acoustic timeseries.  1148 

Each discrete state generates a parameter that is sampled from a Gaussian distribution (Figure 11B) with a 1149 

mean ƞ and covariance Ʃ. The subscript notation indicates hidden state j and its i-th possible value: 1150 

~ (0, )

j j j

i i i

j j

i iN

  



= +


          (A.1)  1151 

The spectrum is constructed from frequency (U) and temporal (V) basis functions, which are combined with 1152 

a matrix of coefficients (θ Q) corresponding to lexical parameters. The spectrum is scaled with an inverse 1153 

temperature (i.e., precision;  T) parameter, which is then exponentiated to create a matrix of fluctuations 1154 

W of (formant) frequencies over time: 1155 

†exp( )T QW U V =          (A.2) 1156 

Each column of W is transformed into a transient as a function of time (using discrete cosine transform 1157 

matrix D):  1158 

i Q io D W=           (A.3) 1159 

The duration of the transients (λ) is determined by the speaker formant spacing (θ1)—such that a high 1160 

formant spacing value squashes (shortens) the transients, rendering the frequencies higher when placed in 1161 

the timeseries. Fs indicates the sampling rate of the audio timeseries: 1162 

1

SF =           (A.4) 1163 

The spacing (Δ) of the transients is inversely proportional to the speaker fundamental frequency parameter 1164 
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( 0), and is also affected by inflections due to prosody (θI): 1165 

0

SF I

ID


 =           (A.5) 1166 

A fundamental interval (I) variable stores the absolute positions of all of the transients: 1167 

1

t i

i tt
I

=

=
=            (A.6) 1168 

The timeseries (o) is constructed by summing the transients and multiplying this by the amplitude 1169 

parameter: 1170 

A
ii

o o=            (A.7) 1171 

For readers familiar with graphical formulations of generative models, Figure 12 illustrates the same model 1172 

in factor graph form (Forney 2001). This provides an alternative visual representation of the generative 1173 

model, and highlights inferences based on message passing. This perspective is used below to describe the 1174 

form of local (neuronal) message passing that underwrites simulated electrophysiological responses. 1175 

 1176 
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 1177 

FIGURE 12 1178 

A graphical formulation of the generative model. This figure illustrates the same model as described in Figure 11, but 1179 

uses a normal (Forney) factor graph form. This graphical notation relies upon the factorisation of the probability 1180 

density that underwrites the generative model. Each factor is specified in the panel on the left. Factor 1 is the prior 1181 

probability associated with the hidden states and takes a categorical form. Factor 2 is a normal distribution that 1182 

specifies the dependence of parameters on states. Each discrete state is associated with a different expectation and 1183 

covariance for the parameters. Factor 3 describes how the observed timeseries is generated from the parameters, and 1184 

this is decomposed into factors 4–9. These are Dirac delta functions that may be thought of as normal distributions, 1185 

centred on zero, with infinite precision (i.e., zero covariance). In the graphs on the right, factors are indicated by 1186 

numbered squares, and these are connected by edges (Hasson, Yang et al.), which represent the variables common to 1187 

the factors they connect. The upper right graph shows factors 1–3, and the lower graph unpacks factor 3 in terms of 1188 

factors 4–9. The process of generating data may be thought of in terms of a series of local operations taking place at 1189 

each factor from top to bottom (i.e., sample states from factor 1, then parameters from factor 2, then perform the series 1190 

of operations in factor 3 to get the timeseries). The recognition process can be thought of as bidirectional message 1191 

passing across each factor node, such that empirical priors and likelihoods are combined at each edge to form posterior 1192 

beliefs about the associated variable. Factor 5 is of particular interest here, as it determines the internal ‘action’ that 1193 

selects the interval for segmentation. 1194 

 1195 
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Appendix 2: Model inversion or word recognition 1196 

Next, we turn our attention to word recognition (right column of Figure 11). Inversion of the generative 1197 

model simply requires ‘undoing’ the sequence of events that we used for word generation. Like word 1198 

generation, word recognition simply requires a series of non-linear transforms—except, for word 1199 

recognition, we map from epochs of the acoustic signal to discrete lexical, speaker, and prosody parameters. 1200 

In brief, the recognition scheme comprises the following steps. The peak energy of the auditory timeseries 1201 

is identified by convolving its absolute values with a Gaussian kernel. A one second epoch, centred on the 1202 

peak, is selected as a signal to search for the onset and offset of the word (although in principle this epoch 1203 

could be any length). Onsets and offsets are identified based on threshold crossings of the amplitude 1204 

envelope. Here, the amplitude envelope is calculated from the absolute values of the timeseries convolved 1205 

with a Gaussian kernel. This is, for all practical purposes, equivalent to the absolute values of the Hilbert 1206 

transform, but is computationally more efficient. The threshold we use here is 1/16th of the maximum 1207 

envelope value across the window, after subtracting the minimum; this value was selected to be above the 1208 

noise floor.  1209 

The fundamental interval function is estimated using a discrete cosine transform (with three coefficients) 1210 

of the fundamental intervals. The fundamental intervals are defined as phase crossings following a Hilbert 1211 

transform and bandpass filtering around the prior for the speaker average fundamental frequency (e.g., 100 1212 

Hz, with a standard deviation of 8 Hz). 1213 

Equipped with the fundamental interval function, the formant frequencies are then estimated by evaluating 1214 

the cross-covariance function over short segments centred on each fundamental interval. The duration of 1215 

these segments corresponds to the inverse of the first formant frequency. The formant frequencies per se 1216 

are evaluated using a modified (by retaining even terms) discrete cosine transform at each slice, to evaluate 1217 

the spectral density over the acoustic range (in 256 frequency bins, where each bin is determined by the 1218 

formant spacing; for example, with a formant spacing of 32 Hz, the highest spectral density is 8000 Hz). 1219 

Following a log transform and normalisation, fluctuations in (log) spectral density are recovered with a 1220 

discrete cosine transform with 32 basis functions over (formant) frequencies and eight basis functions over 1221 

intervals. The inverse temperature (timbre) parameter corresponds to the standard deviation of these lexical 1222 

(formant frequency) parameters, which is used to normalise the lexical (32x8) parameter matrix. 1223 
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To infer the lexical content, prosody and speaker, the MAP parameter estimates above can be used to 1224 

evaluate the likelihood of each discrete attribute. As described in the main text, the likelihoods are combined 1225 

with a prior to produce a posterior categorical distribution over the attributes in question. For the prosody 1226 

parameters, each parameter is divided into eight bins and the likelihood of belonging to any particular bin 1227 

is evaluated under Gaussian assumptions as above; using a priori means and precisions of the discrete levels 1228 

of each prosody attribute (i.e., amplitude, duration, timbre, inflection). Similarly, the categorical speaker 1229 

identity is determined by a 16 x 16 discrete states space, covering fundamental and formant frequencies.  1230 

In what follows, we unpack each of the equations in Figure 11—this time, from the perspective of word 1231 

recognition (right column of Figure 11). 1232 

The amplitude parameter is the standard deviation of the timeseries (o): 1233 

( )A std o =           (A.8) 1234 

Each transient (oi) is defined as an interval of the timeseries, based on the positions of fundamental intervals 1235 

(I) and transient durations (λ): 1236 

i

i

I

i Io o




+

−           (A.9) 1237 

The spacing (Δ) of the transients corresponds to the difference between successive fundamental intervals 1238 

(I): 1239 

1i i iI I − = −           (A.10) 1240 

Inflection parameters are proportional to the speaker fundamental frequency (θ0) and are constructed using 1241 

discrete cosine transform matrix D. Fs indicates the sampling rate of the audio timeseries: 1242 

0 †

S

I

IF
D =            (A.11) 1243 
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The formant scaling parameter (θ1) is inversely proportional to the transient duration (λ): 1244 

1

SF =           (A.12) 1245 

The duration parameter (θ Δ) is proportional to the fundamental interval (I): 1246 

N SI F  =           (A.13) 1247 

The (squared) matrix of fluctuations of (formant) frequencies over time (W) is constructed from the 1248 

transients using discrete cosine transform matrix D: 1249 

2 † ( )i Q i iW D o o=           (A.14) 1250 

The timbre parameter (θ T) is the standard deviation of the log spectral decomposition: 1251 

( (ln ))T std vec W =          (A.15) 1252 

Lexical parameters (θ Q) are a matrix of coefficients that control the joint expression of formant frequency 1253 

and temporal basis functions. These are calculated from the frequency (U) and temporal (V) basis functions 1254 

and the log spectral decomposition, scaled by the timbre parameter: 1255 

†(ln )Q TU W V =          (A.16) 1256 

The parameters are used to evaluate the likelihood of lexical, prosody and speaker states, as shown in the 1257 

following equations: 1258 
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=

= − 
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       (A.17) 1259 

 1260 

Appendix 3: Speech segmentation as an active process 1261 

In the current framework, speech segmentation is treated as a covert action from a computational 1262 

perspective: We select boundary pairs (I0 and IT) and evaluate their free energy under prior beliefs about 1263 

the word. Formally, this can be expressed as minimising free energy both with respect to (approximate) 1264 

posterior beliefs about the attributes of the word (Q) and the intervals selected (I0, IT): 1265 

0

00

Log evidenceEvidence bound

Complexity Accuracy

arg min ( , )

( , ) arg min ( , )

( , ) [ln ( ) ln ( , )]

[ln ( ) ln ( | )] ln ( )

[ln ( ) ln ( )] [ln ( | )]

T

T

I

Q I

I

T I I

Q

Q

Q Q

Q F Q o

I I F Q o

F Q o E Q s P o s

E Q s P s o P o

E Q s P s E P o s

=

=

= −

= − −

= − − ln ( )P o −

     (A.18) 1266 

Choosing the interval with the smallest free energy effectively selects the interval that maximises the 1267 

evidence or marginal likelihood of auditory outcomes contained in that interval; namely, P(o). This follows 1268 

because the variational free energy, by construction, represents an upper bound on log evidence. In (A.18), 1269 

the free energy is expressed in terms of log evidence and an evidence bound. It is also expressed as the 1270 

difference between complexity and accuracy by rearranging the equation. Complexity is the Kullback-1271 

Leibler divergence between a posterior over latent states Q(s), and prior beliefs P(s), while accuracy is the 1272 

expected log likelihood of auditory signals contained in the interval in question. Importantly, both posterior 1273 

beliefs about latent states (i.e., lexical, prosody, and speaker) and the active selection of acoustic intervals 1274 
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optimise free energy. This is the signature of active inference. In this instance, the posterior beliefs obtain 1275 

from the likelihood of the lexical, prosody and identity parameters, given the associated states. From Figure 1276 

11, the optimal posterior beliefs satisfy (A.18) when (ignoring constants): 1277 

1
2

ln ( ) ln ( | ) ln ( | )

ln ( ) ln ( | )

ln ( )

( , ) ln ( )

j j j j

i i i i

j j j

i i i

j j j j

i i i i

Q s P s o P s

P s P s

P s

F Q o P o





 

= =

= +

= − 



= −

       (A.19) 1278 

Here,   is the prior precision of lexical parameters from Figure 11. The second equality on the first line 1279 

may seem a little counterintuitive, but rests upon the assumed relationship between the parameters and the 1280 

timeseries. The equality holds in virtue of the absence of random fluctuations in this mapping, such that a 1281 

given parameter deterministically generates time-series data. In other words, the implicit conditional 1282 

probability density describing the generation of the timeseries from the parameters (and the associated 1283 

posterior distribution over parameters) takes the form of a Dirac delta function. The last equality reflects 1284 

the fact that when the evidence bound in Error! Reference source not found. collapses to zero, free 1285 

energy becomes negative log evidence. The subscript notation indicates the value that a discrete state might 1286 

take (i.e. P(si) should be read as ‘the probability that the hidden state j takes its i-th possible value’). 1287 

From the equations above, it should be clear that we can identify a variety of candidate boundaries for 1288 

words and evaluate their free energy to select the final parsing of the acoustic signal. But where should 1289 

these candidate boundaries be placed? In an extreme case, we could place boundaries at every combination 1290 

of time points within the acoustic signal—but that would be computationally inefficient given that we can 1291 

reduce the scope of possibilities by using sensible priors. Here, we use the simple prior that word boundaries 1292 

are more likely to occur at local minima of the amplitude envelope—so these are the boundaries that we 1293 

choose to evaluate. 1294 

Practically, based upon the spectral content of speech, we estimate the amplitude envelope by removing 1295 

low frequencies up to about 512 Hz. The envelope is then simply the average of the ensuing absolute values, 1296 

smoothed with a Gaussian kernel (with a standard deviation of FS/16). This method is less computationally 1297 
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demanding than using the absolute values of the Hilbert transform, yet practically gives the same result in 1298 

this setting.  1299 

 1300 

Appendix 4: Belief updating and neuronal dynamics 1301 

The form of neuronal dynamics is calculated by constructing ordinary differential equations whose solution 1302 

satisfies Equation (A.18). Using ln=ν s  to denote the log of the approximate posterior expectation about 1303 

hidden states and introducing a prediction error (ε ) one obtains the following update scheme (Friston, 1304 

FitzGerald et al. 2017) (dropping the superscript j for clarity): 1305 

1
2

ln ( )

( )

ln ( )

( )

i i

i i

i i i i i i

i i

Q s

Q s

P s  



= −  −

=

=

v

s

ε v

v ε

s v

        (A.20) 1306 

Here,   denotes the softmax (normalised exponential) function and   is the prior precision of lexical 1307 

parameters from Figure 11. The prediction error (ε) is the difference between the optimal log posterior and 1308 

current estimate of this (v). The log posterior, via Bayes theorem, is equal to the sum of the log prior and 1309 

the log likelihood (minus a normalisation constant). As the likelihood is assumed to be normally distributed, 1310 

its log is quadratic in the difference (ε) between the mode and lexical parameters. The mode of this 1311 

distribution is different under each state, so the likelihood of a given parameter value varies with states. For 1312 

readers familiar with clustering procedures, this is like having a series of clusters (states) with different 1313 

centroids (i.e., modes of the likelihood).  1314 

The prediction error (ε) is the (negative) free energy gradient that drives neuronal dynamics. Intuitively, the 1315 

fourth line of Equation A.20 drives v to change until it is equal to the Bayes optimal posterior, at which 1316 
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point ε is zero. To account for the normalisation constant that would have appeared in Bayes theorem, the 1317 

conversion from v to s requires not only that we exponentiate (i.e., convert a log probability into a 1318 

probability), but that we normalise the result. This ensures that s comes to encode a vector of posterior 1319 

probabilities for each hidden state. 1320 

The sigmoid (softmax) function in Equation A.20 can be thought of as a sigmoid (voltage–firing rate) 1321 

activation function, which mediates competition among posterior expectations. Equation A.20 therefore, 1322 

provides a process theory for neuronal dynamics. Based on this equation, log expectations about hidden 1323 

states can be associated with depolarisation of neurons or neuronal populations encoding expectations about 1324 

hidden states ( iv ), while firing rates (
is ) encode expectations per se. The simulated responses in Figure 6 1325 

use a finite difference scheme that has the same solution as A.20: 1326 

1
2

( ) ln ( )

( ) ln ( )

( ) ( )

i i

i i i i i i

i i i

P s

d

 

  

   

=

= −  −

+ = + 

v s

ε v

s v ε

       (A.21) 1327 

where   is chosen to reproduce dynamics at a plausible, neuronal timescale.  1328 

When considering electrophysiological responses in terms of belief updating, our formal interpretation 1329 

relates to Equation (A.20), which suggests that depolarisation corresponds to the log posterior. The change 1330 

in depolarisation is the difference between the log posterior and prior expectations. The average of these 1331 

differences is the Kullback-Leibler divergence between the posterior and prior: 1332 
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    (A.22) 1333 
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