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Abstract

1. Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely and non-
invasively observe animals. The vast number of images collected from camera trap projects have prompted
some biologists to employ machine learning algorithms to automatically recognize species in these images,
or at least filter-out images that do not contain animals. These approaches are often limited by model
transferability, as a model trained to recognize species from one location might not work as well for the
same species in different locations. Furthermore, these methods often require advanced computational
skills, making them inaccessible to many biologists.
2. We used 3 million camera trap images from 18 studies in 10 states across the United States of Amer-
ica to train two deep neural networks, one that recognizes 58 species, the “species model,” and one that
determines if an image is empty or if it contains an animal, the “empty-animal model.”
3. Our species model and empty-animal model had accuracies of 96.8% and 97.3%, respectively. Further-
more, the models performed well on some out-of-sample datasets, as the species model had 91% accuracy
on species from Canada (accuracy range 36-91% across all out-of-sample datasets) and the empty-animal
model achieved an accuracy of 91-94% on out-of-sample datasets from different continents.
4. Our software addresses some of the limitations of using machine learning to classify images from
camera traps. By including many species from several locations, our species model is potentially appli-
cable to many camera trap studies in North America. We also found that our empty-animal model can
facilitate removal of images without animals globally. We provide the trained models in an R package
(mlwic2: Machine Learning for Wildlife Image Classification in R), which contains Shiny Applications
that allow scientists with minimal programming experience to use trained models and train new models
in six neural network architectures with varying depths.

1 Introduction

Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely observe wild
animals, but images from camera traps must be classified to extract their biological data (O’Connell, Nichols,
& Karanth, 2011). Manually classifying camera trap images is an encumbrance that has prompted scientists
to use machine learning to automatically classify images (Norouzzadeh et al., 2018; Willi et al., 2019), but
this approach has limitations.

We address two major limitations of using machine learning to automatically classify animals in camera
trap images. First, machine learning models trained to recognize species from one location and in one camera
trap setup might perform poorly when applied to images from camera traps in different conditions. This
“transferability problem” is thought to arise because different locations have different backgrounds (the part
of the picture that is not the animal) and most models evaluate the entire image, including the background
(Beery, Morris, & Yang, 2019; Miao et al., 2019; Norouzzadeh et al., 2019; Terry, Roy, & August, 2020; Wei,
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Luo, Ran, & Li, 2020). By including images from 18 different studies in North America, our objective was to
train models with more variation in the backgrounds associated with each species. Furthermore, by training
an additional model that distinguishes between images with and without animals, we provide an option that
could be broadly applicable to camera trap studies worldwide. Second, the use of machine learning in camera
trap analysis is often limited to computer scientists, yet the need for image processing exceeds the availability
of computer scientists in wildlife research. To facilitate the use of these models by biologists with minimal
programming experience, Machine Learning for Wildlife Image Classification (mlwic2) includes an option to
train and use models in user-friendly Shiny Applications (Chang, Cheng, Alaire, Xie, & McPherson, 2019),
allowing users to point-and-click instead of using a command line. This facilitates easier site-specific model
training when our models do not perform to expectations.

2 Materials and Methods

2.1 Camera trap images

Images were collected from 18 studies using camera traps in 10 states in the United States of America
(California, Colorado, Florida, Idaho, Minnesota, Montana, South Carolina, Texas, Washington, and Wis-
consin; Appendix S1). Images were either classified by a single wildlife expert or classified independently by
two biologists, with discrepancies settled by a third. An image was classified as containing an animal if it
contained any part of an animal. Our initial dataset included 6.3 million images but was unbalanced with
most images from a few species (e.g., 51% of all images were Bos taurus). We rebalanced the number of
images by species and site to ensure that no one species or site dominated the training process. Previous
work suggested that training a model with 100,000 images per species produces good performance (Tabak
et al., 2019); therefore, we limited the number of images for a single species from one location to 100,000.
When > 100,000 images for a single species existed at one location, we randomly selected 100,000 of these
images to include in the training/testing dataset. After rebalancing the data, we had a total of 2.98 million
images; 90% were randomly selected for training, while 10% were used for testing. Images used in this
study were either already a part of or were added to the North American Camera Trap Images dataset
(lila.science/datasets/nacti; Tabak et al., 2019). Images from Canada were not used for training but were
used to evaluate model transferability as an out-of-sample dataset.

Table 1: Mean recall and precision rates (along with 95% confidence intervals) for predicting species using
the species model on the 10% of images that were withheld from training.

Class name (scientific name) Number
of training
images

Recall Precision

Accipitridae family (Accipitridae) 1,511 0.91(0.67,1) 0.94(0.89,0.97)
American crow (Corvus brachyrhynchos) 2,522 0.67(0.61,0.73) 0.7(0.64,0.75)
American marten (Martes americana) 51,081 0.96(0.95,0.97) 0.96(0.94,0.97)
Anatidae family (Anatidae) 1,071 0.97(0.92,0.99) 0.97(0.92,0.99)
armadillo (Cingulata) 8,947 0.94(0.59,0.99) 0.95(0.94,0.96)
bighorn sheep (Ovis canadensis) 1,189 1(0.97,1) 1(0.97,1)
black bear (Ursus americanus) 111,426 0.97(0.91,0.99) 0.99(0.91,0.99)
black-billed magpie (Pica hudsonia) 2,770 0.98(0.95,0.99) 0.96(0.91,0.99)
black-tailed jackrabbit (Lepus californicus) 5,617 0.95(0.93,0.96) 0.93(0.91,0.95)
black-tailed prairie dog (Cynomys ludovicianus) 43,999 0.93(0.93,0.94) 0.95(0.94,0.96)
bobcat (Lynx rufus) 31,634 0.96(0.95,0.99) 0.97(0.96,0.98)
California ground squirrel (Otospermophilus
beecheyi)

30,301 1(1,1) 0.99(0.98,0.99)

California quail (Callipepla californica) 2,046 0.97(0.94,0.99) 0.99(0.97,1)
Canada lynx (Lynx canadensis) 15,119 1(0.99,1) 0.99(0.98,0.99)

Continued on next page
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Table 1 – continued from previous page
Class name (scientific name) Number

of training
images

Recall Precision

cattle (Bos taurus) 269,963 0.97(0.93,0.98) 0.98(0.77,0.99)
Clark’s nutcracker (Nucifraga columbiana) 2785 0.94(0.91,0.96) 0.92(0.87,0.95)
common raven (Corvus corax) 21,134 0.99(0.91,0.99) 0.99(0.98,1)
coyote (Canis latrans) 41,512 0.96(0.94,0.98) 0.97(0.96,0.99)
Cricetidae and Muridae families 1,254 0.93(0.87,0.96) 0.83(0.7,0.94)
dog (Canis familiaris) 1,136 0.82(0.7,0.98) 0.78(0.6,0.99)
domestic sheep (Ovis aries) 16,340 0.99(0.99,1) 0.99(0.99,1)
donkey (Equus asinus) 2,403 0.99(0.97,1) 0.94(0.9,0.96)
elk (Cervus canadensis) 112,389 0.97(0.95,0.98) 0.99(0.86,0.99)
empty (no animal) 907,096 0.97(0.93,0.98) 0.95(0.92,0.97)
fisher (Pekania pennanti) 7,697 0.98(0.97,0.99) 0.99(0.96,1)
golden-mantled ground squirrel (Callosper-
mophilus lateralis)

1,587 0.89(0.83,0.92) 0.86(0.81,0.91)

grey fox (Urocyon cinereoargenteus) 16,094 0.98(0.96,0.99) 0.97(0.95,0.99)
grey jay (Perisoreus canadensis) 3,776 0.97(0.87,0.98) 0.94(0.8,0.98)
grey squirrel (Sciurus carolinensis) 24,677 0.98(0.64,0.99) 0.98(0.64,0.99)
grizzly bear (Ursus arctos horribilis) 8,43 0.99(0.94,1) 0.99(0.94,1)
Gunnison’s prairie dog (Cynomys gunnisoni) 17,393 0.83(0.82,0.85) 0.93(0.91,0.94)
horse (Equus ferus) 3,644 0.94(0.53,0.97) 0.95(0.45,0.98)
human (Homo sapiens) 139,983 0.98(0.97,0.98) 0.98(0.97,0.99)
Marmota genus (Marmota spp.) 1,497 0.98(0.95,0.99) 0.95(0.91,0.98)
moose (Alces alces) 11,741 0.99(0.97,1) 0.99(0.97,1)
mountain lion (Puma concolor) 13,900 0.96(0.95,0.97) 0.97(0.96,0.98)
mule deer (Odocoileus hemionus) 91,068 0.98(0.95,0.99) 0.98(0.93,0.99)
opossum (Didelphimorphia) 5,782 0.94(0.76,0.98) 0.97(0.87,0.99)
other grouse (Tetraoninae) 4,237 0.97(0.91,0.99) 0.98(0.96,0.99)
other mustelids (Mustelidae) 2,467 0.89(0.85,0.92) 0.91(0.85,0.96)
other passerine birds (Passeriformes) 3,363 0.86(0.81,0.9) 0.88(0.75,0.94)
porcupine (Erethizontidae and Hystricidae) 6,608 0.97(0.82,0.99) 0.98(0.96,0.98)
prairie chicken (Tympanuchus cupido) 815 1(0.96,1) 0.98(0.93,1)
pronghorn (Antilocapra americana) 57,953 0.98(0.97,0.98) 0.99(0.98,0.99)
raccoon (Procyon lotor) 51,439 0.9(0.83,0.99) 0.93(0.91,0.99)
red fox (Vulpes vulpes) 43,433 0.98(0.96,0.99) 0.98(0.97,0.99)
red squirrel (Tamiasciurus hudsonicus) 21,586 0.85(0.84,0.96) 0.86(0.88,0.97)
river otter (Lontra canadensis) 1,821 0.96(0.92,0.98) 0.97(0.93,0.98)
snowshoe hare (Lepus americanus) 37,467 0.97(0.94,0.99) 0.97(0.95,0.98)
Steller’s jay (Cyanocitta stelleri) 1,844 0.91(0.8,0.98) 0.96(0.87,1)
striped skunk (Mephitis mephitis) 12,416 0.98(0.9,0.99) 0.97(0.96,0.98)
swift fox (Vulpes velox) 3,266 0.85(0.81,0.88) 0.95(0.92,0.97)
Sylvilagus family 6,385 0.93(0.82,0.99) 0.94(0.86,0.97)
vehicle (truck, ATV, car) 32912 0.97(0.96,0.98) 0.97(0.97,0.98)
white-tailed deer (Odocoileus virginianus) 88,531 0.93(0.83,1) 0.97(0.84,0.99)
wild pig (Sus scrofa) 243,344 0.98(0.98,0.99) 0.99(0.98,1)
wild turkey (Meleagris gallopavo) 15,686 0.94(0.88,0.99) 0.98(0.95,1)
wolf (Canis lupus) 3,070 0.96(0.88,1) 0.95(0.8,1)
wolverine (Gulo gulo) 18,810 0.98(0.96,1) 0.98(0.97,0.99)
Totals 2,682,380 0.97 0.97
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2.2 Training models

We trained deep convolutional neural networks using the ResNet-18 architecture (He, Zhang, Ren, &
Sun, 2016) in the Tensorflow framework (Adabi et al., 2016) on a high performance computing cluster,
“Teton” (Advanced Research Computing Center, 2018). Models were trained for 55 epochs, with a ReLU
activation function at every hidden layer and a softmax function in the output layer, mini-batch stochastic
gradient descent with a momentum hyperparameter of 0.9 (Goodfellow, Bengio, & Courville, 2016), a batch
size of 256 images, and learning rates and weight decays that varied by epoch number (described in Appendix
S2). We trained a species model, which contained classes for 58 species or groups of species and one class
for empty images (Table 1). We also trained an empty-animal model that contained only two classes, one
for images containing an animal, and the other for images without animals.

2.3 Model validation and transferability

We first evaluated our trained models by applying them to predicting species in the 10% of images that
were withheld from training. Models were evaluated for each species using the recall, top-5 recall, and pre-
cision, which are values summarizing the number of true positives (TPs), false positives (FPs), and false
negatives (FNs):

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

As recall is the proportion of images of each species that were correctly classified, top-5 recall is the pro-
portion of images for each species in which one of the model’s top five guesses is the correct species. We
also calculated confidence intervals for recall and precision rates (Appendix S3). To evaluate transferability
of the model, we conducted out-of-sample validation by applying our trained models to images from loca-
tions where the model was not trained. We evaluated the species model using four out-of-sample datasets
from North America: the Caltech Camera Traps dataset (Beery, Van Horn, & Perona, 2018), the ENA24-
detection dataset (Yousif, Kays, & He, 2019), the Saskatchewan, Canada dataset from this study, and the
Missouri Camera Traps dataset (Zhang, He, Cao, & Cao, 2016). The empty-animal model was tested using
the Wellington Camera Traps dataset from New Zealand (Anton, Hartley, Geldenhuis, & Wittmer, 2018),
the Snapshot Serengeti dataset from Tanzania (Swanson et al., 2015), and the Snapshot Karoo dataset from
South Africa (http://lila.science/datasets/snapshot-karoo).

2.4 R package development

mlwic2 was developed using the R packages Shiny (Chang et al., 2019) and ShinyFiles (Pedersen, Nijs,
Schaffner, & Nantz, 2019) so the user can choose to either use a programming console or a graphical user
interface. Users can navigate to locations on their computer using a browser window instead of specifying
paths. The package can classify images at a rate of 2,000 images per minute on a laptop with 16 gigabytes
of random-access memory. mlwic2 will optionally write the top guess from each model and confidence
associated with these guesses to the metadata of the original image file. The function write metadata uses
Exiftool (Harvey, 2016) to accomplish this. In addition, if scientists have labeled images, mlwic2 has a Shiny
app that allows users to train a new model to recognize species using one of six different convolutional neural
network architectures (AlexNet, DenseNet, GoogLeNet, NiN, ResNet, and VGG) with different numbers of
layers. Note that the time required to train a model depends on the number of images used for training
and computing resources; operating mlwic2 on a high-performance computing cluster requires programming
experience.
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Figure 1: Within sample validation of the species model revealed high recall and precision for most species.
Median values across datasets are presented along with 95% confidence intervals. The number of datasets
for each species is included in the circle next to the species name (circle sizes are proportional to the number
of datasets containing each species).
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Figure 2: Species model out-of-sample validation revealed variable recall and precision rates across species.
Median values across datasets are presented along with 95% confidence intervals. The number of datasets
for each species is included in the circle next to the species name.
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Table 2: Out-of-sample validation results. All out-of-sample images are available from
lila.science/datasets.

Dataset Number of images tested Model tested Accuracy Top-5 accuracy*
Snapshot Karoo (South Africa) 38,101 empty-animal 0.906
Snapshot Serengeti (Tanzania) 104,651 empty-animal 0.941

Wellington (New Zealand) 266,966 empty-animal 0.939
Caltech Camera Traps (USA) 218,147 species 0.562 0.744

ENA24-Detection (USA) 5,285 species 0.507 0.649
Missouri Camera Traps (USA) 5,008 species 0.362 0.652

Saskatchewan (Canada) 5,200 species 0.913 0.938

3 Results

When we evaluated our models on the withheld images (within sample validation), we found an overall
accuracy of 96.8% for the species model and 97.3% for the empty-animal model. Several species (six of 11)
had recall of > 95% with fewer than 2,000 images used for training (Table 1; Fig.1). A confusion matrix
(Appendix S4) depicts how all images of each species were classified by the species model. When evaluated
on out-of-sample images, the species model accuracy ranged from 36.3% to 91.3% (Table 2), with top-5
accuracy ranging from 65.2% to 93.8% (Fig. 2), and the empty-animal model accuracy ranged from 90.6%
to 94.1% (Table 2).

4 Discussion

In mlwic2, we provide two trained machine learning models, one classifying species and another distin-
guishing between images with animals and those that are empty, with 97% accuracy, which can potentially
be used to rapidly classify camera trap images from many locations. While the species model performed well
on out-of-sample images from Saskatchewan, Canada (91% overall accuracy), the model performed poorly
on some out-of-sample datasets (Table 2; Fig. 2). The discrepancy in model performance on images from
different datasets indicates that transferability remains an issue and our species model will not be useful
on all datasets; some users will need to train new models on images from their field sites, an option that is
available in mlwic2. Nevertheless, even in the Missouri dataset where our model performed worst, the top-5
accuracy, the rate at which the true species in an image was in the model’s top-5 guesses, was 65% (Table 2).
For some applications, e.g. detection of invasive or rare species, a good out-of-sample top-5 recall rate may
be sufficient to address scientific questions or meet monitoring objectives. Additionally, our empty-animal
model performed well at distinguishing empty images from those containing animals in datasets from three
different countries (91-94% accuracy), indicating that this model may be broadly applicable for removing
empty images from datasets globally. We propose a workflow for how users can apply these models to filter-
out empty images and train new models as necessary (Fig. 3). By providing Shiny apps to train models and
classify images, we make this technology accessible to more scientists with minimal programming experience.
Our finding that high recall (¿ 95%) can be achieved with fewer than 2,000 images for some species (Table
1; Fig.1) suggests that smaller labeled image datasets can potentially be used to train models with this
software.

Other researchers have developed models for recognizing animals in camera traps, with some success in
out-of-sample identification. For example Zilong software accurately removed 85% of empty images (Wei
et al., 2020), MegaDetector had a precision of 89-99% at detecting animals (Beery et al., 2019), and
mlwic achieved an accuracy of 82% at out-of-sample species classification (Tabak et al., 2018, 2019). We
hypothesize that our models performed well on some out-of-sample datasets (Snapshot Serengeti, Snapshot
Karoo, Wellington, and Saskatchewan; Table 2) because they were trained using camera trap images from
multiple locations with different camera placement protocols, allowing the model to develop a search image
for each species in multiple backgrounds.

Transferability of machine learning models remains a complication for implementing these models
more broadly to camera trap data and, in many cases, it is most productive for scientists to build models

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.18.997700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.997700
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Proposed workflow for using mlwic2 models when classifying camera trap images.
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that are trained directly on their study sites (see Fig. 3). While such models will have less broad applicability
(they are unlikely to be accurate globally), they can have high study-specific accuracies, thus reducing the
burden of manual image classification.
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9 Supporting Information

Appendix S1: Information for each of the 18 studies that produced camera trap images used in this paper.
The final 59 columns are the number of images of each species (or group of species).

Appendix S2: Learning rate and weight decay for each epoch in the model training process.

Appendix S3: Calculation of pooled recall and precision rate and corresponding confidence intervals.

Appendix S4: Confusion matrix depicting the number of images of each species (or group of species) that
were classified by the species model as each species (or group of species). Columns are the ground truth
labels from human observers; rows are predictions from the model.
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