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Abstract  7 

Identification of the antigens associated with antibodies is vital to understanding immune 8 

responses in the context of infection, autoimmunity, and cancer. Discovering antigens at a 9 

proteome scale could enable broader identification of antigens that are responsible for 10 

generating an immune response or driving a disease state. Although targeted tests for known 11 

antigens can be straightforward, discovering antigens at a proteome scale using protein and 12 

peptide arrays is time consuming and expensive. We leverage Serum Epitope Repertoire 13 

Analysis (SERA), an assay based on a random bacterial display peptide library coupled with NGS, 14 

to power the development of Protein-based Immunome Wide Association Study (PIWAS). 15 

PIWAS uses proteome-based signals to discover candidate antibody- antigen epitopes that are 16 

significantly elevated in a subset of cases compared to controls. After demonstrating statistical 17 

power relative to the magnitude and prevalence of effect in synthetic data, we apply PIWAS to 18 

systemic lupus erythematosus (SLE, n=31) and observe known autoantigens, Smith and 19 

Ribosomal P, within the 22 highest scoring candidate protein antigens across the entire human 20 

proteome. We validate the magnitude and location of the SLE specific signal against the Smith 21 

family of proteins using a cohort of patients who are positive by predicate anti-Sm tests. 22 

Collectively, these results suggest that PIWAS provides a powerful new tool to discover disease-23 

associated serological antigens within any known proteome. 24 

Author Summary 25 

Infection, autoimmunity, and cancer frequently induce an antibody response in patients with 26 

disease. Identifying the protein antigens that are involved in the antibody response can aid in 27 
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the development of diagnostics, biomarkers, and therapeutics. To enable high-throughput 28 

antigen discovery, we present PIWAS, which leverages the SERA technology to identify antigens 29 

at a proteome- and cohort- scale. We demonstrate the ability of PIWAS to identify known 30 

autoantigens in SLE. PIWAS represents a major step forward in the ability to discover protein 31 

antigens at a proteome scale.   32 
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Introduction 33 

Antibodies present in human specimens serve as the primary analyte and disease biomarker for 34 

a broad group of infectious (bacterial, viral, fungal, and parasitic) and autoimmune diseases. As 35 

such, hundreds of distinct antibody detecting immunoassays have been developed to diagnose 36 

human disease using blood derived specimens. The development of high-throughput 37 

sequencing technologies has enabled sequencing of numerous proteomes from diverse 38 

organisms. However, methods for antigen discovery within any given proteome remain 39 

relatively low throughput. The serological analysis of expression cDNA libraries (SEREX) method 40 

has been applied frequently to identify a variety of antigens, but high quality cDNA library 41 

construction remains technically challenging and time consuming [1–3]. Alternatively, entire 42 

human and pathogen derived proteomes can be segmented into overlapping peptides, and 43 

displayed on phage or solid-phase arrays and probed with serum [4–6]. Fully random peptide 44 

arrays of up to 300,000 unique sequences have also been used successfully to detect antibodies 45 

towards a range of organisms [7–9]. Even so, the limited molecular diversity of array based 46 

libraries can reduce antibody detection sensitivity and hinder successful mapping of petide 47 

motifs to specific proteome antigens [7]. Thus, a general, scalable approach to identify 48 

serological antigens within arbitrary proteomes is needed.  49 

  50 

In autoimmune diseases and cancers, autoantigen discovery is further complicated by the size 51 

of the proteome, heterogeneity of disease, and variability in immune response. Patient 52 

genetics, exposures, and microbiomes contribute to this heterogeneity, which in turn yields 53 

disparate responses to diverse antigens and epitopes [10,11]. In such cases, the mapping of 54 
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multiple epitopes to one antigen can increase confidence in a candidate antigen [7,12]. Even for 55 

diseases with conserved autoantigens, epitope spreading can lead to a diversified immune 56 

response against additional epitopes from the same protein or other proteins from the same 57 

tissue [13,14]. In cancer patients, neoepitopes can arise in response to somatic mutations that 58 

yield conformational changes or abnormal expression [15,16].  59 

 60 

In complex autoimmune diseases like systemic lupus erythematosus (SLE), autoantibodies play 61 

an important role in diagnosis, patient stratification, and pathogenesis. SLE autoantigens 62 

include double-stranded DNA, ribonuclear proteins (Smith), C1q, α-actinin, α-enolase, annexin 63 

II, annexin AI, and ribosomal protein P [17–19]. In particular, anti-Smith antigen antibodies are 64 

present in 25-30% of SLE patients [20,21]. The Smith antigen consists of a complex of U-rich 65 

RNA U1, U2, U4/U6, and U5, along with core polypeptides B’, B, D1, D2, D3, E, F, and G. Not all 66 

components of this complex are equally antigenic, and there are multiple epitopes within the 67 

complex [22,23].  68 

 69 

One approach for antigen discovery, serum epitope repertoire analysis (SERA), uses bacterial 70 

display technology to present random 12mer peptides to serum antibodies [24–26]. Peptides 71 

that bind to serum antibodies are separated using magnetic beads and sequenced using next-72 

generation sequencing. For each of these peptides and their kmer subsequences, enrichment 73 

can be calculated by comparing the actual number of observations to that expected based on 74 

amino acid frequencies [24]. Mapping these peptide epitopes to their corresponding protein 75 

antigens requires protein structure and/or sequence. Structure-based epitope mapping 76 
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methods (e.g., 3DEX, MIMOX, MIMOP, Pepitope) are not yet feasible at a proteome scale, due 77 

in part to the large number of undetermined structures [27–30]. However, since 85% of 78 

epitope-paratope interactions in crystal structures have a linear stretch of 5 amino acids, 79 

sequence information alone can be sufficient to identify many antigens [31–33]. The K-TOPE 80 

(Kmer-Tiling of Protein Epitopes) method has demonstrated the ability of tiled 5-mers to 81 

identify known epitopes in a variety of infections at proteome scale [34]. Here, we present a 82 

method, Protein-based Immunome Wide Association Study (PIWAS), which leverages the SERA 83 

assay to discover disease relevant antigens within large cohorts and at proteome scale. We 84 

evaluate PIWAS with synthetic data to examine the magnitude and prevalence of the effect 85 

needed for robust detection. We validate PIWAS using specimens from individuals with SLE and 86 

controls, identifying established anti-Smith and anti-Ribosomal P autoantibodies. We further 87 

validate the anti-Smith epitopes identified in our analysis using specimens positive for anti-88 

Smith autoantibodies by predicate tests.  89 

 90 

Results  91 

PIWAS allows identification of proteome-based signals 92 

To identify candidate serological antigens from arbitrary proteomes, we developed a robust, 93 

cohort-based statistical method to analyze peptide sequence data from the SERA assay. SERA 94 

uses a large bacterial display random peptide library of 10 billion member 12mers to identify 95 

binding to the epitopes recognized by antibodies species in a biospecimen (e.g. serum, plasma, 96 

cerebrospinal fluid) [Figure 1A]. From a typical specimen, we acquire 1-5 million unique 12mers. 97 

We break these 12mers into their constitutent kmers, calculate log-enrichments (observed 98 
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divided by expected counts), and store the results in a BigTable database. To identify disease-99 

specific antigens from these data, PIWAS compares kmer data from case and control cohorts 100 

against a proteome of interest (Figure 1B). For each protein and specimen dataset, we calculate 101 

tiled kmer enrichments (normalized to the controls as a background) and smooth across a 102 

sliding window. For each protein, we leverage statistics such as the outlier sum and Mann-103 

Whitney test to compare the case and control populations. At a proteome scale, we prioritize 104 

candidate antigens based on these statistics (see Methods).  105 

 106 
Figure 1. PIWAS discovers candidate disease antigens through proteome-wide analysis. (A) 107 
Case and control specimens are processed using SERA to generate a dataset of 12mer amino 108 
acid sequences bound by serum antibodies. Each 12mer is broken into kmer components and 109 
log-enrichments of these kmers are calculated, where enrichment indicates the number of 110 
observations compared to expectation based on amino acid frequency. (B) As input for the 111 
PIWAS algorithm, case and control cohorts are identified (purple, cases; gold, controls) as well 112 
as the target proteome. For each individual in the case and control cohorts and protein in the 113 
proteome, PIWAS scores are calculated by tiling kmers onto the protein sequence, smoothing 114 
over a window of these kmers, normalizing to the background signal in the controls, and 115 
calculating the maximum value. PIWAS scores are compared across all case and control samples 116 
to detect proteins whose scores are significantly greater in some subset of the case population 117 
than in the control population. Antigens are then rank-ordered by one or more statistics across 118 
the entire proteome.  119 
 120 
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Kmer enrichment in samples with serum compared to enrichment in a random library 121 

We first compared SERA library sequence composition before and after library selection with 122 

serum from healthy controls and SLE patients (Figure 2 A,B). Both the control and SLE serum 123 

yielded larger enrichments for both 5mers and 6mers compared to the unselected library. The 124 

enrichment of 5mers and 6mers in samples incubated with serum demonstrates the effects of 125 

antibody selection on the peptide library composition. We also compared the distribution of 126 

PIWAS values when 5mers were mapped to the human proteome. Interestingly, both SLE and 127 

anti-Smith cohorts yielded PIWAS value distributions with longer tails when analyzed against 128 

the entire human proteome when compared to those of healthy controls (Figures 2C). These 129 

findings confirm the general basis for using 5mers and 6mers for identifying both enriched 130 

signal in serum relative to a random library and enriched autoantigen signal using PIWAS in an 131 

example disease population relative to healthy controls.  132 

 133 

 134 
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  135 
    136 
Figure 2. Distributional differences in kmer enrichments and PIWAS values between the 137 
unselected library and after selecting with SLE and control specimens. 5mer (A) and 6mer (B) 138 
Kmer frequency (y-axis) vs. Log-enrichment score (x-axis) for 6 subjects and the naïve library 139 
demonstrates species with large enrichments are found exclusively in those SERA assays 140 
incubated with serum. All 5mers or 6mers from three representative samples per cohort are 141 
evaluated for enrichment. Dark-gray lines = naïve 12-mer peptide library, purple lines = SLE 142 
cohort, gray lines = control cohort. (C) A comparison of PIWAS values (x-axis) vs. the number of 143 
proteins per sample with the corresponding PIWAS value (y-axis) reveals differences in both the 144 
range and distribution of PIWAS values between SLE and control samples. Distributions are 145 
based on 31 SLE cases and 1,157 controls. Purple = SLE cohort, gray = control cohort, orange = 146 
anti-Smith cohort. 147 
 148 
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PIWAS Power Simulations 149 

In order to assess the statistical power of PIWAS to detect enriched antigens in a cohort, we 150 

performed computational experiments where we adjusted the magnitude and prevalence of 151 

known autoantigenic signal against Sm antigens (specifically small nuclear ribonucleoprotein-152 

associated proteins B and B’) in a cohort of SLE patients. Unsurprisingly, as the magnitude of 153 

the effect increases, so does the significance of the antigenic signal (Figure 3A). At an effect of 154 

only 60% of the SERA signal obtained with true SLE biospecimens, Sm antigens are significant at 155 

FDR=0.017 using the outlier sum FDR, still ranking within the top 20 proteins. Similarly, as the 156 

prevalence of the anti-Sm signal increases in the case population, so too does the significance 157 

of the outlier sum p-value (Figure 3B). At a prevalence of 7% (less than half of the actual 158 

biological prevalence in this cohort), anti-Sm is significant at FDR= 0.015 and remains within the 159 

top 20 scoring proteins.These results indicate an ability to detect signals well below the 160 

prevalence of many established autoantigens.  161 

 162 
 163 

 164 
Figure 3. Simulations of magnitude and prevalence of autoantigenic signal to assess statistical 165 
limits of detection for PIWAS. SERA datasets from a cohort of SLE patients and kmer 166 
enrichments on small nuclear ribonucleoprotein-associated proteins B and B’ were used as the 167 
actual biological signal (magnitude = 1 and prevalence = 19%). The magnitude (A) and 168 

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

Actual signal

Top 20 proteins
1e+00

1e−12

1e−24

0 1 2
Simulated magnitude in population

O
ut

lie
r s

um
 F

DR

A

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●
●●

●●
●

Actual signal

Top 20 proteins
1e+00

1e−12

1e−24

0.00 0.25 0.50 0.75 1.00
Simulated prevalence in population

O
ut

lie
r s

um
 F

DR

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.18.997759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.18.997759
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

prevalence (B) of the kmer signal in this cohort was synthetically modulated to understand the 169 
statistical limits of detection for PIWAS.  170 
 171 
PIWAS analysis of SERA datasets from SLE specimens 172 

We performed PIWAS to identify candidate autoantigens using specimens obtained from SLE 173 

patients. PIWAS results from individuals with SLE (n=31) were compared to those from controls 174 

(n=1,157) and proteins were ranked based on outlier sum FDR as a measure of significance 175 

across the human proteome (21,057 proteins) (Figure 4A-B). The highest scoring 22 proteins 176 

had outlier sum FDRs ranging from 1.6e-2 to 9.9e-11 and included multiple established 177 

autoantigens. Four Smith complex antigens were among the top seven hits with small nuclear 178 

ribonucleoprotein-associated proteins B and B’ exhibiting the highest significance (outlier sum 179 

FDR = 9.9e-11). In addition, 60S acidic ribosomal protein P1, another known SLE autoantigen 180 

[20,35], was highly significant. Multiple highly significant epitopes were evident within nuclear 181 

ribonucleoprotein-associated proteins B and B’ (Figure 4C, Table 1). The most significant 182 

enrichments occurred at two different locations near the C-terminus. 183 

 184 
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 185 

 186 
Figure 4. Literature reported and putative autoantigens are detected in SLE samples by 187 
PIWAS. (A) PIWAS results from a comparison of SLE samples to controls against the human 188 
proteome were prioritized using outlier sum FDR as a measure of significance (y-axis, see 189 
Methods). For visualization, proteins were laid out according to chromosome location. (B) 190 
Among the top set of 22 ranked proteins, 5 are established autoantigens (Smith family in red, 191 
others in blue). (C) Strength (y) and location (x) of PIWAS scores for the small nuclear 192 
ribonucleoprotein-associated proteins B and B’ within SLE (n=31, purple) vs. control (n=1,157, 193 
grey). A cohort of anti-Sm predicate positive patients (n=35, orange) were compared to the 194 
same controls to validate the signal obtained using SLE specimens with unknown anti-Sm 195 
serostatus.  196 
 197 
Table 1. Dominant epitopes for highest scoring antigens from SLE PIWAS. 
Protein Name Outlier Sum FDR Dominant epitope(s) 
 Small nuclear ribonucleoprotein-associated 
proteins B and B'  

9.9E-11 GGPSQQVMTPQ, PGMRPPMGPPM 

 Small nuclear ribonucleoprotein-associated 
protein N  

2.3E-10 GGPSQQVMTPQ, PPGMRPPPPGI 

U1 small nuclear ribonucleoprotein C 3.3E-10 GMRPPMGGHMP 
Doublecortin domain-containing protein 2C 0.00027 IKPVVHCDINV, YWKSPRVPSEV 
Transmembrane anterior posterior 
transformation protein 1 homolog 

0.0013 LLQPAQVCDIL 

ADP-ribosylation factor-like protein 13B 0.0026 IASVIIENEGK 
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U1 small nuclear ribonucleoprotein A 0.0028 PPGMIPPPGLA, PGMIPPPGLAP 
Ubiquitin carboxyl-terminal hydrolase 24 0.0039 None 
 Uncharacterized protein  0.0039 None 
DnaJ homolog subfamily C member 3 0.0039 None 
Ca(2+)-independent N-acyltransferase 0.0058 LIEGNCEHFVN 
Iron-responsive element-binding protein 2 0.006 None 
CMT1A duplicated region transcript 4 protein 0.0068 YVTYTSQTVKR, RLIEKSKTREL, 

SSKSSGKAVFR 
 Presenilins-associated rhomboid-like protein, 
mitochondrial  

0.0073 GRRFNFFIQQK 

Tektin-1 0.011 KKLEQRLEEVQ, NSVSLEDWLDF 
Inositol hexakisphosphate kinase 3 0.012 YDGPDPGYIFG 
Transcription factor SOX-17 0.012 QPSPPPEALPC, MGLPYQGHDSG 
Kelch-like protein 20 0.013 None 
 Estrogen-related receptor gamma  0.015 None 
PAK4-inhibitor INKA2 0.016 MDCYLRRLKQE, LQDQMNCMMGA, 

TKFPSHRSVCG 
 Gamma-butyrobetaine dioxygenase  0.016 TTGKLSFHTDY, DYCDFSVQSKH 
60S acidic ribosomal protein P1 0.016 MGFGLFD 

 198 
PIWAS in an independent cohort of Smith antigen positive subjects 199 

To investigate the ability of PIWAS to identify Smith antigens in an independent cohort positive 200 

for anti-Sm using validated clinical tests, we applied PIWAS to a cohort of 35 Smith antigen 201 

positive samples. In this anti-Sm seropositive cohort, PIWAS again clearly identifies Smith 202 

antigens at the top of the ranked list of antigens (Table 2). The dominant C-terminal, anti-Sm 203 

epitope was identical between the two independent cohorts.The statistical significance within 204 

the second cohort is greatly increased relative to the general SLE cohort as might be expected, 205 

given the 100% seroprevalence of anti-Smith within this second specimen set. The unbiased 206 

identification of known SLE autoantigens in independent cohorts validates the ability of PIWAS 207 

to identify shared autoantigens in a data-driven way.  208 

 209 
Table 2. Dominant PIWAS epitopes for top antigens from anti-Smith seropositive specimens. 

Protein Name Outlier Sum FDR Dominant epitope(s) 

Small nuclear ribonucleoprotein-associated protein N  1.1e-98 PGMRPPPPGIR 
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Small nuclear ribonucleoprotein-associated proteins B and B'  4.6e-97 PGMRPPMGPPM 

U1 small nuclear ribonucleoprotein A 1.2e-67 PPGMIPPPGLA 

U1 small nuclear ribonucleoprotein C 1.3e-47 PGMMPVGPAPG 

 210 

Discussion 211 

We demonstrate the utility of a general and scalable methodology to identify serological 212 

antigens within arbitrary proteomes using Protein-based Immunome Wide Association Studies 213 

(PIWAS). The power of PIWAS derives from cohort-based statistical analyses within large 214 

datasets of antibody-binding epitopes. PIWAS analyzes the enrichments of proteome spanning 215 

overlapping 5mers and 6mers that are observed amongst a peptide library selected for binding 216 

to antibody repertoires from cases and controls. We show that the kmer enrichment space 217 

demonstrates enriched signals compared to the unselected libraries. Further, the PIWAS space 218 

is enriched in SLE patients compared to control samples. Using synthetic data, we found that 219 

PIWAS has power to detect significant antigens at a signal of only 60% of the signal of a known 220 

autoantigen. When applied to experimental datasets from SLE cases and controls, PIWAS ranks 221 

SLE-specific Smith antigens highly in a proteome-wide search of candidate antigens. Finally, the 222 

epitopes from this antigen family were validated using a cohort of anti-Sm autoantibody 223 

positive patients. 224 

 225 

Previous approaches to proteome-scale antigen identification rely on wet lab approaches that 226 

require a priori knowledge of the target proteome when the assay is performed [1–6]. In 227 

contrast, the use of random peptide library data with PIWAS enables analyses against arbitrary 228 
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proteomes. In addition to the reference human proteome utilized here, the same SERA data 229 

can be reanalyzed against proteomes of infectious agents, patient-specific mutations, and splice 230 

variants, without performing additional wet lab assays.  Indeed, we have identified previously 231 

validated epitopes for multiple bacterial, viral, and fungal infectious diseases using this method 232 

[data not shown]. 233 

 234 

PIWAS is an immunological analog to widely employed genome-wide association studies 235 

(GWAS) that employ statistical association of gene variants in large disease and control cohorts 236 

to identify disease-associated loci. Like GWAS, PIWAS employs a data-driven statistical 237 

approach to scan entire genomes and proteomes for statistically significant differences 238 

between case and control cohorts. Advancements in GWAS methods such as burden testing has 239 

enabled multiple variants witinin a single gene to be collapsed, thereby increasing the power to 240 

detect disease-associated genes [36,37]. Similarly, PIWAS scans each protein to find a maximum 241 

signal and allows for the contributions of multiple distinct epitopes to identify candidate 242 

antigens associated with disease. By leveraging the outlier sum statistic [38], we are able to 243 

further highlight antigens with signals that are strong, but present in only a subset of the 244 

patient population, or derive from unique epitopes within the same antigen. 245 

 246 

Just as GWAS must consider a variety of biological and technical limitations, effective PIWAS 247 

must consider and address pre-assay, assay, and post-assay factors that can impact 248 

performance. The most significant pre-assay issues relate to the selection of cohorts for disease 249 

and control populations. Our analyses using synthetic data demonstrated that magnitude and 250 
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prevalence of autoantigenic signal affects the ability of PIWAS to prioritize antigens. Thus, clean 251 

case and control cohorts are more likely to yield genuine autoantigens. In this study we were 252 

able to detect known antigens using a small cohort of SLE cases. As the cohort size grows, we 253 

anticipate even greater power to identify known and novel autoantigens. 254 

 255 

Application of PIWAS to a cohort of SLE subjects identified known autoantigens, with 5 of 16 of 256 

the highest ranking hits across the entire human proteome being validated and clinically 257 

significant autoantigens. In particular, Smith antigens stood out as top hits in the SLE analysis. 258 

To validate this particular hit, we analyzed specimens from a second independent cohort of 259 

patients that tested positive for anti-Sm using clinical predicate tests. We found that the anti-260 

Sm positive cohort exhibited reactivity against the same antigens and epitopes as the less 261 

homogeneous SLE discovery cohort. PIWAS identified an anti-Sm epitope ocurring within a 262 

proline rich region in agreement with multiple prior studies [20,39]. 263 

 264 

Other highly ranked proteins identified using PIWAS could represent novel candidate antigens 265 

associated with SLE. PIWAS ranks antigens based on the maximum signal observed across a 266 

cohort, however it is not always possible to determine which antigens are biologically 267 

significant due to sequence similarity between proteins. Therefore antigens ranked highly in 268 

PIWAS should be considered candidate antigens, and orthogonal experimental validation is 269 

generally necessary to establish a bona fide antigen. If these candidate autoantigens are 270 

validated, they could be incorporated into multi-analyte autoantigen panels for diagnostic or 271 

prognostic purposes.  272 
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 273 

Although many known antibody epitopes contain a linear or contiguous segement, those with 274 

purely conformational epitopes or mimotopes may not be identified using PIWAS. PIWAS as 275 

presented, is limited to identifying linear epitopes at a proteome scale. Thus, we are developing 276 

PIWAS with degenerate positions that leverage motif patterns identified by IMUNE [24]. 277 

Furthermore, the current method uses the maximum signal observed within the protein 278 

sequence for a particular patient, but some antigens have multiple antibody epitopes [40]. The 279 

use of multiple signals within a protein is another avenue of development to improve both 280 

sensitivity and specificity of PIWAS. 281 

 282 

In conclusion, we developed PIWAS to enable robust, proteome-wide, cohort-based antigen 283 

discovery. PIWAS analyzes the datasets resulting from random peptide library selections against 284 

case and control cohorts (e.g., SERA) to discover shared candidate antigens, regardless of 285 

whether the epitopes therein are public or private. Since SERA employs random libraries, 286 

PIWAS can be applied to multiple proteomes utilizing the same physical assay. As the size of 287 

case and control datasets continue to increase, PIWAS may uncover previously undiscovered 288 

antigens with potential utility in diagnostic and therapeutic applications. Finally, PIWAS may be 289 

useful to investigate, in an unbiased manner, the association of autoantigens, human 290 

pathogens, and commensal organisms with human disease. 291 

 292 

Materials and Methods 293 
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Serum epitope repertoire analysis (SERA) 294 

Development and preparation of the Escherichia coli random 12-mer peptide display library 295 

(diversity 8×109) has been described previously [24]. SERA was performed as described [24]. 296 

Briefly, serum was diluted 1:25 and incubated for 1 hr with a 10-fold oversampling of the library 297 

(8x1010 cells/well) in a 96-well plate format at 4°C with orbital shaking (800 rpm) during which 298 

time serum antibodies bind to peptides on the bacterial surface that mimic their cognate 299 

antigens. Cells were then collected by centrifugation (3500 rcf x 7 min), the supernatant was 300 

removed, and the cell pellets were washed by resuspending in 750 µL PBS + 0.05% Tween-20 301 

(PBST). The cells were again collected by centrifugation (3500 rcf x 7 min) and the supernatant 302 

was removed. Cell pellets were resuspended in 750 µL PBS and mixed thoroughly with 50 µL 303 

Protein A/G Sera-Mag SpeedBeads (GE Life Sciences, 17152104010350) (6.25 % the beads’ 304 

stock concentration). The plate was incubated for one hour at 4°C with orbital shaking (800 305 

rpm). Bead-bound cells were captured in the plate using a Magnum FLX 96-ring magnet 306 

(Alpaqua, A000400) until all beads were separated. Unbound cells in the supernatant were 307 

removed by gentle pipetting, leaving only those cells bound to A/G beads. Beads were washed 308 

5X by removing from the magnet, resuspending in 750 µL PBST, and then returning to the 309 

magnet. The supernatant was removed by gentle pipetting after the beads were securely 310 

captured. Cells were resuspended in 750 µL LB with 34 µg/mL chloramphenicol and 0.2% wt/vol 311 

glucose directly in the 96-deep-well plate and grown overnight with shaking (300 rpm) at 37°C.  312 

Amplicon library preparation for sequencing. After growth, cells were collected by 313 

centrifugation (3500 rcf for 10 min) and the supernatant was discarded. Plasmids encoding the 314 

selected peptides were isolated in 96-well format using the Montage Plasmid MiniprepHTS Kit 315 
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(MilliPore, LSKP09604) on a MultiscreenHTS Vacuum Manifold (MilliPore, MSVMHTS00) 316 

following the “Plasmid DNA—Full Lysate” protocol in the product literature. For amplicon 317 

preparation, two rounds of PCR were employed; the first round amplifies the variable “X12” 318 

peptide region of the plasmid DNA. The second round barcodes each patient amplicon library 319 

with sample-specific indexing primers for data demultiplexing after sequencing. KAPA HiFi 320 

HotStart ReadyMix (KAPA Biosystems, KK2612) was used as the polymerase master mix for all 321 

PCR steps. Plasmids (2.5 µL/well) were used as template for a first round PCR with 12.5 µL of 322 

KAPA ReadyMix and 5 µL each of 1 uM forward and reverse primers. The primers (Integrated 323 

DNA Technologies) contain annealing regions that flank the X12 sequence (indicated in bold) 324 

and adapter regions specific to the Illumina index primers used in the second round PCR. 325 

Forward primer: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGVBHDVCCAGTCTGGCCAGGG 326 

Reverse primer: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGATGCCGTAGTACTGG 327 

A series of five degenerate bases in the forward primer, VBHDV (following IUPAC codes), 328 

provide base diversity for the first five reads of the sequencing on the NextSeq platform. The 329 

five base pairs were designed to be non-complementary to the template to avoid bias during 330 

primer annealing. To reduce non-specific products, a touchdown PCR protocol was used with an 331 

initial annealing temperature of 72°C with a decrease of 0.5°C per cycle for 14 cycles, followed 332 

by 10 cycles with annealing at 65°C. The 25 uL primary PCR product was purified using 30uL 333 

Mag-Bind TotalPure NGS Beads (Omega Bio-Tek, M1378-02) according to the manufacturer’s 334 

protocol. The second round PCR (8 cycles, 70°C annealing temperature) was performed using 335 

Nextera XT index primers (Illumina, FC-131-2001) which introduce 8 base pair indices on the 5’ 336 

and 3’ termini of the amplicon for data demultiplexing of each sample screened. The PCR 1 337 
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product (5uL) was used as a template for the second PCR with 5uL each of forward and reverse 338 

indexing primers, 5uL PCR grade water and 25uL of KAPA ReadyMix. The PCR product (50uL) 339 

was cleaned up with 56 uL Omega Mag-Bind TotalPure NGS Beads per reaction. A 96-well 340 

quantitation was performed using the Qubit dsDNA High Sensitivity assay (Invitrogen, Q32851) 341 

adapted for a microplate fluorimeter (Tecan SPECTRAFlour Plus) measuring fluorescence 342 

excitation at 485 nm and emission at 535 nm. Positive (100 ng) and negative (0 ng) controls, 343 

included with the Qubit kit, were added to the plate as standards along with 2uL of each PCR 344 

product diluted 1:100 for quantitation. The fluorescence data were used to calculate DNA 345 

concentration in each well based on the kit standards. To normalize the DNA and achieve equal 346 

loading of each patient sample on NGS, the DNA in each well was diluted with Tris HCl (pH 8.5, 347 

10 mM) to 4 nM and an equal volume from each well was pooled in a Lo-Bind DNA tube for 348 

sequencing. 349 

 The sample pool was prepared for sequencing according to specifications of the Illumina 350 

NextSeq 500. Due to the low diversity in the adapter regions of the amplicon after the first five 351 

bases, PhiX Run Control (Illumina, FC-110-3001) was included at 40% of the final DNA pool. The 352 

pool was sequenced using a High Output v2, 75 cycle kit (Illumina, FC-404-2005). 353 

Naïve Library Sequencing. An aliquot of the naïve X12 library representing 10-fold 354 

oversampling of the diversity was divided into 10 tubes, and the plasmids were purified and 355 

amplicons prepared as described above. Each prep was barcoded with a unique set of indices 356 

and sequenced on the NextSeq 500 to yield approximately 400 million unique sequences.  357 
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Cohorts 358 

Control cohort. Specimens from 1,157 apparently healthy individuals were used as a control 359 

cohort.  360 

SLE cohort. De-identified specimens from 31 individuals diagnosed with SLE, and primarily 361 

female (27), were acquired from Proteogenex (9) and BioIVT (22). The mean age within this 362 

cohort was 43 years, with a range of 22-72.  363 

Anti-Smith cohort. Samples from 34 subjects that tested positive for Anti-SM RNP (4) or Anti-364 

Smith (30) antibodies by predicate ANA multiplex testing were obtained from Discovery Life 365 

Sciences. Subjects ranged in age from 18 -74, with the majority (26) being female. 366 

PIWAS Calculation 367 

We define case (T), and control (U), cohorts of samples and begin with 12mer amino acid 368 

sequences for each sample generated by SERA (minimum of 1e6 total unique sequences per 369 

sample).  370 

Enrichment calculation. We decompose each 12 mer from SERA into constituent kmers (where 371 

k=5 and k=6 consecutive amino acids). For every kmer in each sample (S), we calculate 372 

enrichment as: 373 

𝐸"(𝑘𝑚𝑒𝑟) = 	𝑛,(𝑘𝑚𝑒𝑟)/𝑒,(𝑘𝑚𝑒𝑟) 374 

where n(kmer) is the number of unique 12mers containing a particular kmer and 𝑒,(𝑘𝑚𝑒𝑟) is 375 

the expected number of kmer reads for the sample, defined as: 376 

𝑒,(𝑘𝑚𝑒𝑟) = 𝑁,(𝐿"01 − 𝑘 + 1)5𝑝7

8

79:

 377 
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where 𝑁, is the number of 12mer reads generated for S, 𝐿"01  is the length of the amino acid 378 

reads (12), k is the kmer length, and 𝑝7  is the amino acid proportion for the ith amino acid in 379 

kmer in all 12mers from S. 380 

Number of standard deviation normalization. For every kmer, we normalize enrichment values 381 

to a control population. We define the control enrichment values as: 382 

𝐶 = {𝐸=(𝑘𝑚𝑒𝑟):	𝑤 ∈ 𝑊	} 383 

where W is the control cohort (U). 384 

The normalized enrichment is calculated as: 385 

𝐹,(𝑘𝑚𝑒𝑟) = 	
𝐸,(𝑘𝑚𝑒𝑟) − 	𝜇(𝐶)

𝜎(𝐶)  386 

where 𝜇(𝐶) is the mean of C and 𝜎(𝐶) is the standard deviation of C.  387 

PIWAS score calculation. For each protein p and sample s, we calculate a PIWAS score P(s,p), 388 

defined as: 389 

𝑃(𝑠, 𝑝) = 	 max
:L7LM0N(O)

P P 𝐺,(𝑘𝑚𝑒𝑟(𝑗, 𝑘, 𝑝))
STU	(7VW,M0N(O)X8)

Y97

Z

89[

 390 

where w is the width of the smoothing window, len(p) is the length of protein p, kmer(j,k,p) is 391 

the kmer of length k at location j in protein p, and 𝐺, is either 𝐸, or 𝐹,. Similarly, we record the 392 

location of this maximum statistics value, 𝑃M\](𝑠, 𝑝), as: 393 

𝑃M\](𝑠, 𝑝) = 	 argmax
:L7LM0N(O)

P P 𝐺,(𝑘𝑚𝑒𝑟(𝑗, 𝑘, 𝑝))
STU	(7VW,M0N(O)X8)

Y97

Z

89[

 394 

Cohort comparison statistics. For each protein p, we define our case enrichments as: 395 

𝐴(𝑝) = {𝑃(𝑡, 𝑝):	𝑡 ∈ 𝑇	} 396 

Similarly, we define our control enrichments as: 397 
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𝐵(𝑝) = {𝑃(𝑢, 𝑝):	𝑢 ∈ 𝑈	} 398 

We use several statistical tests to compare A(p) and B(p), including traditional tests like the 399 

Mann-Whitney U and Kolmogorov-Smirnov. We calculate effect size as the Hedges’ g statistic. 400 

We calculate the Outlier Sum, which we define as O(p), statistic defined in Tibshirani and Hastie 401 

[38]. We perform 1,000 random permutations of the samples in A(p) and B(p) and calculate the 402 

Outlier Sum to calculate 𝑂g(𝑝), the null distribution of the Outlier Sum for protein p. We 403 

calculate the z-score as: 404 

𝑧i(O) =
𝑂(𝑝) − 𝜇ij(O)

𝜎ij(O)
 405 

Since the Outlier Sum is a sum of i.i.d. variables, we can apply the Central Limit Theorem and 406 

calculate a p-value for 𝑧i(O) using the normal distribution.  407 

We define the sets of case and control locations as: 408 

𝐴M\](𝑝) = {𝑃M\](𝑡, 𝑝):	𝑡 ∈ 𝑇	} 409 

𝐵M\](𝑝) = {𝑃M\](𝑢, 𝑝):	𝑢 ∈ 𝑈	} 410 

We perform a Kolmogorov-Smirnov test comparing 𝐴M\](𝑝) and 𝐵M\](𝑝) to identify proteins 411 

with locational conservation of epitopes.  412 

Proteome description 413 

The reference Homo sapiens proteome was downloaded from Uniprot[41] on February 28, 414 

2019.  415 
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Kmer Enrichment Analysis 416 

We compared the count of unique kmer species vs. enrichment scores for 5 and 6 mers in 417 

assays with a random library vs. those incubated with serum. We also compared the 418 

distribution of PIWAS values and average PIWAS values across control and SLE samples. 419 

Autoantigen Simulation Experiments 420 

To simulate the effects of changing the magnitude and prevalence of autoantigenic signal, the 421 

real PIWAS signal against one of the Smith antigens in the SLE cohort was selected for use in a 422 

series of simulations (P14678: Small nuclear ribonucleoprotein-associated proteins B and B'). 423 

For every sample, the PIWAS values were calculated. To simulate different magnitudes of 424 

effect, the SLE PIWAS values were multiplied by scaling factors ranging from [0.1,2] and the 425 

outlier sum statistics were calculated relative to unscaled control values. To simulate different 426 

prevalences of effect, the SLE PIWAS values were divided into “high” (PIWAS > 6) and 427 

“low”(PIWAS < 6) values, 1000 random samplings with replacement of the SLE cohort were 428 

taken to simulate prevalences of “high” ranging from [0.01, 1], and the outlier sum statistics 429 

were calculated relative to unaffected control values. 430 

Data Availability 431 

PIWAS scores for the the human proteome in the SLE, anti-Smith, and control samples have 432 

been provided as a supplemental file.  433 
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