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Abstract 

Artificial intelligence (AI) models usually require large amounts of high-quality 
training data, which is in striking contrast to the situation of small and biased data faced 
by current drug discovery pipelines. The concept of federated learning has been 
proposed to utilize distributed data from different sources without leaking sensitive 
information of these data. This emerging decentralized machine learning paradigm is 
expected to dramatically improve the success of AI-powered drug discovery. We here 
simulate the federated learning process with 7 aqueous solubility datasets from different 
sources, among which there are overlapping molecules with high or low biases in the 
recorded values. Beyond the benefit of gaining more data, we also demonstrate 
federated training has a regularization effect making it superior than centralized training 
on the pooled datasets with high biases. Further, two more cases are studied to test the 
usability of federated learning in drug discovery. Our work demonstrates the application 
of federated learning in predicting drug related properties, but also highlights its 
promising role in addressing the small data and biased data dilemma in drug discovery. 

Introduction 

Current artificial intelligence (AI) has high requirements for data both in terms of 
quality and quantity to achieve good predictive performance. Data acquisition 
difficulties and data biases in the measurement of scientific tests have significantly 
limited AI’s power in drug discovery1–3. Data acquisition challenges come from time-
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consuming and expensive processes of data-generation and consequent confidentiality, 
especially in the later stages drug development such as data about drug 
pharmacokinetics, safety, and efficacy profiles. Taking ADME/T (Absorption, 
Distribution, Metabolism, Excretion and Toxicity) properties as an example, such data 
are usually highly standardized and of good quality, and would contribute to better 
predictive model and generate larger added value when used for modeling. However, 
few of these properties are exposed to the latest deep learning models due to 
confidentiality4,5, which can be considered as an enormous loss for drug development. 
Not only the data acquisition difficulties resulting from confidentiality, the data biases 
in the measurement of scientific tests also perplex AI for drug discovery6. It is common 
to see, for example, a specific molecular property has large discrepancy in recorded 
values from different sources, even under the same measurement of the same scientific 
tests. The discrepancy in recorded values is usually considered to come from data biases, 
because a recorded value in each data source is obtained from repeating measurements 
and the effect of variance has been reduced to minimum. In conventional machine 
learning paradigm, the discrepancy in different sources will usually be uniformed by 
taking the mean, median or a majority vote, which might bring the value closer to the 
“ground truth”. However, for practitioners who generated those data may only care 
about the recorded value in their own experimental setting-ups for reference (i.e. 
whether the structure modification will lead to the optimization of a property), rather 
than the absolute “true” value. Therefore, a shared global model for all data sources 
might not form good instructions to practitioners. Federated learning emerges as a new 
machine learning paradigm provide viable solutions for data acquisition and data bias 
problems faced by AI drug discovery by keeping confidentiality and customizing model 
for users.  

Federated learning represents a scenario where multiple clients can train a model 
collectively without sharing raw data7–10. The original idea dates back to 2016, in the 
context of the enactment of GDPR (General Data Protection Regulation) in Europe, 
users gain more control over the use of personal data, which challenges many 
companies that rely heavily on selling Ads based on users’ personal data. McMahan et 
al. from Google proposed federated learning and a year later initially applied it in 
Gboard, the keyboard on android phones7,8. Therein, federated learning was adopted to 
train, for example, a next word prediction model crosses many phone devices without 
uploading users’ data to central servers. This process has improved users’ input 
experience and preserved users’ privacy. Noteworthily, aside from training a single 
global model collectively on clients’ datasets, it becomes viable for each client to have 
a customized model in federated learning9,10. Therefore, the problem of discordant 
records in centralized machine learning turn into an intrinsic feature of federated 
learning10. Federated learning has attracted substantial attention and has found more 
and more applications in a much broader areas13–17, which is also a promising approach 
to satisfy the needs of drug discovery18 but yet to be investigated and tested. Drug 
discovery has similar request to protect the confidential or IP-sensitive data, and at the 
same time, to extract the maximum information/knowledge present within such data by 
machine learning. Moreover, given the high biases in drug discovery related data, 
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customizing a model for each client is appealing for personalized prediction as done in 
Gboard8.  

Here, we setup a general federated learning framework for drug discovery (Fig. 1) 
and tested it on FATE (Federated AI Technology Enabler)19, an open-source project 
aiming at providing a secure computing framework for federated learning. Different 
from previously mentioned Gboard cross-device federated learning application that 
trained cross millions of phone devices, federated learning for drug discovery is another 
setting trained cross data silos, which is termed as cross-silo federated learning. In this 
setting, there are a coordinator server and several collaborators instrumented with 
federated learning client program. These clients in collaboration can be big pharmas, 
biotech startups or even academic labs having their own data silos.  

 
Fig. 1. The life cycle of a federated learning system for drug discovery. In federated 
training: 1) the coordinator server broadcast the latest shared global model to each client; 
2) the client locally computes the model updates, 3) encrypts and uploads the model 
updates; 4) finally, the coordinator server aggregates all the encrypted model updates 
securely and uses them to update the shared global model for the next round of training. 
After the training is done, the best model is selected for rollout and might be customized 
for the users who have their own labeled data. 
 

During each round of cross-silo federated training, 1) the coordinator server 
broadcast the latest shared global model to each client, 2) each client locally computes 
the model updates by executing the training program, 3) and encrypts and uploads the 
model updates under a secure aggregation protocol, 4) finally, the coordinator server 
aggregates all the encrypted model updates securely and uses them to update the shared 
global model. Figure 1 illustrates the life cycle of federated learning system for drug 
discovery. Many rounds of training will be required until the model converges or meets 
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the criteria for stopping, which might be the metrics that does not improve within given 
rounds on a shared dataset on the coordinator server or a held-out validation dataset on 
each client. The best model is then selected for rollout. For users who want to use the 
model for prediction, they can use the selected shared model directly. Alternatively, for 
users who own plenty of labeled data themselves, they can opt to instrument the 
federated training program and locally update the model (without uploading updates to 
coordinator), thus obtaining a customized model. Model customization is a common 
application and should be very practically useful. 
 

In this work, we simulated cross-silo federated learning processes in three use cases: 
solubility prediction, kinase inhibitory activity prediction and hERG liability prediction. 
The datasets in these use cases show variance in the chemical space of compounds 
covered, measurement methods, experimental conditions, nonstandard representations 
and size of data. These real-world drug property datasets from different sources 
represent non-identical data distributions at different clients, from which we would like 
to investigate how drug discovery projects can benefit from federated learning. Tested 
with different network structures and federated aggregation algorithms, federated 
model can always outperform models built on only individual datasets. So we can rely 
on federated learning to build more predictive model if possible. 

Results 

Facing non-IID data 
Table 1. Data statistics and the mean absolute deviation of the values for the compounds 
shared among different sources 

F1 6110 (0.00) 
      

F2 763 (0.27) 4650 (0.00) 
     

F3 72 (0.35) 215 (0.12) 2603 (0.00) 
    

F4 520 (0.24) 952 (0.04) 136 (0.15) 2115 (0.00) 
   

C1 52 (0.19) 194 (0.06) 20 (0.22) 185 (0.06) 1291 (0.00) 
  

C2 4 (1.52) 29 (0.09) 59 (0.11) 12 (0.12) 7 (0.22) 1210 (0.00) 
 

C3 195 (0.31) 545 (0.12) 32 (0.28) 486 (0.09) 174 (0.02) 8 (0.19) 1144 (0.00)  
F1 F2 F3 F4 C1 C2 C3 

*The numbers outside the parentheses are shared molecules between two datasets, and 
numbers inside are the mean absolute deviation (MAD) of LogS of these shared 
molecules. 

 
In conventional centralized machine learning application for drug discovery, to 

include more data, researchers collect data from different sources, and assume the data 
are independent identically distributed (IID). The IID sampling of the training data is 
important to ensure that the stochastic gradient is an unbiased estimate of the full 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2020. ; https://doi.org/10.1101/2020.03.19.998898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.19.998898
http://creativecommons.org/licenses/by/4.0/


gradient. However, the assumption is usually violated due to the high data biases 
introduced in the measurement of scientific tests, which are conducted by different 
people in different experimental setting-ups. As shown in Table 1, we collected water 
solubility datasets from different sources and some of the shared molecules between 
datasets can have distinct recorded values. For example, dataset F1 and dataset C2 have 
4 shared molecules, the values of those molecules in two datasets have a Mean Absolute 
Deviation (MAD) of 1.52. The large MAD of shared molecules between datasets may 
signify the data distribution varies across datasets in some extent. In conventional 
machine learning, even a model predicts perfectly right on one dataset, it can’t predict 
well on another due to the violation of IID. Aside from a shared global model for all 
datasets, it is viable for federated learning to customize a model for each dataset, which 
is practically useful to deal with biased/Non-IID data. 
 

Tuning model update frequency 
Table 2. Performances of using different federated averaging epochs. 

 
Client / Federated averaging epochs 

Test size Every 1 Every 5 Every 10 Every 15 Every 20 
F1/611 0.878±0.022 0.864±0.023 0.872±0.017 0.888±0.013 0.870±0.012 
F2/465 0.543±0.018 0.517±0.011 0.522±0.007 0.519±0.009 0.531±0.011 
F3/260 0.534±0.007 0.503±0.011 0.511±0.002 0.515±0.020 0.530±0.006 
F4/212 0.324±0.037 0.296±0.007 0.311±0.011 0.304±0.009 0.310±0.008 
C1/258 0.299±0.023 0.277±0.003 0.280±0.004 0.283±0.004 0.287±0.006 
C2/242 0.801±0.024 0.775±0.004 0.789±0.007 0.779±0.005 0.786±0.005 
C3/229 0.328±0.021 0.313±0.005 0.315±0.006 0.319±0.010 0.322±0.004 

*The reported performance is the MAE of LogS on test sets in 5 independent runs. Clients F1-
4 are the federated training participants, and have 1/10 of the dataset as the test set (8/10 for 
federated training and 1/10 for validation), while clients C1-3 participate in customization only, 
and has 1/5 of the dataset as test set (3/5 for customization training and 1/5 for validation). The 
best performance on each client is highlighted in bold. 
 

A six-layer DNN is constructed as depicted in Figure 2B, which is a 6-layer 
multilayer perceptron with neuron numbers of 4096, 1024, 256, 64, 8 and 1 respectively. 
Compared with conventional centralized model, federated models have the same 
network architecture except for that after a given epoch of local training, the model 
updates of each client will be encrypted and uploaded to the coordinator server, and 
later the coordinator returns a new model to each client. Therein, the model update 
frequency, i.e. how many epochs should the client run locally before uploading the 
encrypted model updates, is an influential hyper-parameter. As shown in Table 2, the 
model updates in every 5 epochs of local training performances yielded the best 
predictive performance averaged on 5 independent runs. 
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Performance comparison with centralized baselines 

 
Fig. 2. Performance comparisons between federated modeling and centralized 
modeling. (A) Centralized models are trained on individual clients (Only F1, F2, F3 
and F4) or on the union/pooling of datasets F1/F2/F3/F4 (Union), while federated 
learning models are trained cross clients F1/F2/F3/F4. The MAE of LogS on the test 
set of each clients are reported. (B) The deep neural network architecture of the model, 
which is shared by federated modeling and centralized modeling. Fc is fully connected 
layer with relu activation. (C) When the weights of fc1-4 are initialized with normal 
distribution, (D) the weight distributions of union model don’t vary tangibly after 
centralized training, while (E) the weight distributions of federated model vary tangibly 
with more weights concentrated on 0.  
 
 In this study, datasets F1-4 were used for simulating clients who participate in the 
training process of the federated learning models, and C1-3 for simulating clients who 
didn’t participate in training but want to customize the federated model with their own 
data. We compared federated modeling with individualized and centralized modeling 
baselines (Figure2 and Supplementary Table 1), in terms of the MAE values on the test 
set of each client. Generally, the sub-models trained on individual datasets achieved 
higher performance on their own internal test set (i.e., F1/611, F2/465, F3/260 and 
F4/212), but much lower performance on other test tests, indicating these sub-models 
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can’t generalize well. In contrast, the federated learning model and Union model 
showed much improved predictive performance on cross client datasets. For clients F1-
4, the federated learning model generally yielded lower MAE values than the 
corresponding sub-models trained locally, and the prediction capability was maintained 
on tests from external clients C1-3. It is worth noting here that the federated model 
performed even better than the Union model, in which data from different sources are 
simply pooled together for training in a non-privacy-preserving way. This is counter-
intuitive, to examine their differences in learning, we compared the weight distribution 
of fully connected layers in the Union model and the shared Federated model (Figure 
2C-E). The weight distributions of the Union model basically unchanged after 
centralized training compared with the initialized weight distribution, while the weight 
distributions of federated model vary significantly with more weights concentrated on 
0. In the same network architecture with the same cohort of parameters, more weights 
of 0 means that the model is regularized and simpler, which is likely to generalize 
better20,21. This regularization effect explains the side benefit of federated learning 
when preserving data privacy on training datasets with different systematic biases. As 
shown in Table 1, dataset F3 showed a larger systematic bias, where the compounds 
shared with datasets F1 and F4 have averaged MAD values of 0.35 and 0.24, 
respectively, which may cause the inferior performance of the Union model and the 
shared federated model when testing on dataset F3. However, when the shared 
federated model is further fine-tuned with small learning rate locally without uploading 
the updates, which is a form of customization for the local data, the performance of the 
federated model can be further improved, especially for datasets with higher biases (i.e., 
F3 and C2). 
 

Improved network architecture and aggregation algorithm 
Table 3. Performances of using different network architectures and federated learning 
algorithms 

Client Test size 
Union Union FedAvg FedAvg FedAMP FedAMP 
+ MLP + RFCN + MLP + RFCN + MLP + RFCN 

F1 611 0.904 0.871 0.87 0.89 0.875 0.889 
F2 465 0.612 0.512 0.531 0.548 0.516 0.511 
F3 260 0.645 0.505 0.53 0.55 0.495 0.482 
F4 212 0.395 0.288 0.31 0.286 0.282 0.262 
C1 258 0.365 0.26 0.287 0.27 0.288 0.292 
C2 242 0.697 0.75 0.786 0.808 0.795 0.775 
C3 229 0.408 0.304 0.322 0.31 0.324 0.335 

Weighted mean 0.634 0.567 0.616 0.621 0.610 0.605 
Unweighted mean 0.575 0.499 0.519 0.523 0.511 0.507 

 
 To investigate how different network architectures and federated learning 
aggregation algorithms will influence the performance of federated learning, apart from 
the previous MLP architecture and FedAvg aggregation algorithm, a residual fully 
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connected neural network (RFCN) architecture22 and the FedAMP23 aggregation 
algorithm are also tested. The RFCN model in our experiment is composed of a fully 
connected layer with 1536 neurons followed by a ResNet of two 2-layer blocks and one 
single-layer block (Supplementary Figure 2B).  

The centralized RFCN model (Union + RFCN) outperforms the federated learning 
model with MLP and FedAvg algorithm (FedAvg + MLP) on 6 out of 7 clients. This 
means the centralized MLP model (Union + MLP) tested in the previous section is not 
a strong baseline and the MLP + FedAvg model outperforms it easily owing to the 
regularization effect of FedAvg. But with a strong centralized baseline (Union + 
ResNet), the federated learning usually cannot outperform centralized union model 
(Table 4 and Table 5).  

FedAMP (Federated attentive message passing)23, a personalized federated 
learning aggregation algorithm, is performed here to see how federated learning 
aggregation algorithm will influence the outcome. FedAMP encourages clients with 
similar model parameters to have stronger collaboration, so the algorithm adaptively 
discovers the hidden collaboration relationships between clients and enhancing their 
collaboration effectiveness by assigning different models to different clients. The 
combination of FedAMP and RFCN makes it perform best in 4 out of 7 clients, even 
better than the Union + RFCN baseline. However, in terms of the size-weighted mean 
and unweighted mean, Union + RFCN model performs the best.  
 

Case study on kinase inhibition and hERG liability prediction 
Table 4. The kinase inhibition predictive performance comparison 

Client 
Test 
size 

Individual MLP model Union 
+ RFCN 

FedAVG 
+ RFCN 

FedAMP 
+ RFCN BioMedX Christmann PKIS Tang 

BioMedX 170 0.648 2.533 2.634 2.189 0.490 0.766 0.611 
Christmann 111 0.676 0.674 0.644 0.215 0.262 1.178 0.275 

PKIS 37 0.410 1.033 0.583 0.629 0.079 0.388 0.127 
Tang 90 0.505 0.856 1.063 0.708 0.302 0.477 0.237 

Weighted mean 0.602  1.521  1.560  1.184  0.349  0.780  0.393  
Unweighted mean 0.534  1.575  1.508  1.227  0.267  0.721  0.408  

 
To demonstrate more use cases, we also simulated federated learning on hERG 

liability and kinase inhibition data sets. Many kinase inhibitors have the problem of 
either high toxicity or resistance in tumor24. It is of great importance for kinase 
inhibitors to precisely modulate the wanted kinases as well as avoid the unwanted 
kinases25,26. But usually biotech companies only have the inhibitory activity data of the 
specific kinase they are developing on. Constructing a predictive model for inhibitory 
activity across multiple kinases will be helpful for selective inhibitor screening. 
Federated learning can help them collectively train a more powerful model across 
multiple kinases. We build a federated model for kinase pIC50 prediction across four 
data sets from different sources (Supplementary Table 2). As shown in Table 4, the 
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FedAVG + RFCN model perform better than 3 individual models with a large margin 
but worse than the individual model built on BioMedX dataset. With a better federated 
aggregation algorithm, FedAMP + RFCN model is better than all of the individual 
models. However, the best model is the Union + RFCN model trained with mixing data 
sets in a centralized way in this case.  

Drug-induced hERG block is one of the main causes of cardiotoxicity27. Assessing 
hERG liability is required in early drug discovery program. However, various 
experimental assays can be used to evaluate the hERG liability28,29, which induce large 
biases in the recorded values of hERG liability. Previous studies are focused on merging 
data from different sources and construct a centralized model to fit the data30–33, which 
can result in biased and overfitted model that may not generalize well. In our study case, 
a federated hERG classification model was constructed using hERG inhibitory data 
from different source (Supplementary Table 3). Seen from Table 5, FedAMP + MLP 
model and FedAMP + MLP model usually outperform modeling on individual data sets 
but are always inferior to the Union + MLP model.  

These two use cases in drug discovery suggest that we can rely on federated 
learning for better predictive performance without sharing sensitive data, which will 
largely cut the cost in the help of “knowledge” from each other.  

 
Table 5 . The hERG inhibition predictive performance comparison 

Client 
Test 
size 

Individual MLP model Union 
+ MLP 

FedAVG 
+ MLP 

FedAMP 
+ MLP ChEMBL NCATS JHICC Cai 

ChEMBL 748  0.842  0.639  0.074  0.839  0.892  0.871 0.882 
NCATS 1652  0.453  0.697  0.014  0.546  0.752  0.686 0.632 
JHICC 423  0.163  0.106  0.424  0.124  0.398  0.257 0.424 

Cai 786  0.837  0.628  0.025  0.810  0.885  0.873 0.882 
FDA-Drugs 177  0.516  0.457  0.021  0.504  0.442  0.395 0.428 

Keseru 66  0.862  0.866  0.040  0.925  0.923  0.907 0.804 
Doddareddy 1636  0.906  0.754  0.020  0.912  0.920  0.905 0.823 
Siramshetty 5804  0.966  0.658  0.024  0.890  0.976  0.958 0.868 

Zhang 1565  0.821  0.698  0.022  0.864  0.881  0.861 0.754 
Sun 3024  0.489  0.908  0.024  0.579  0.863  0.818 0.665 
Weighted mean 0.762  0.705  0.036  0.764  0.886  0.855 0.773 

Unweighted mean 0.686  0.641  0.069  0.699  0.793  0.753 0.716 

Discussion 

In a bigger federated learning context, the framework we set up only focuses on 
simulating participants who have the same feature space (molecular ECFP fingerprints) 
as input, which is attributed to horizontal federated learning (Supplementary figure 
1A)34. There is also vertical federated learning scheme can cope with participants 
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having different feature types as input (Supplementary figure 1B). Moreover, a 
combination of horizontal and vertical federated learning can effectively handle the 
participants who share some feature types and samples but also have their own 
proprietary feature types and samples, which is referred to as federated transfer 
learning34. Federated transfer learning will further expand the feature space and sample 
size we have by taking both the union of feature space and sample space of multiple 
participants. For example, to predict the clinical outcome of drug candidates, we need 
integrate data with shared and proprietary features from multiple parties, including 
related pharmaceutical companies, hospitals and patients, federated transfer learning 
may generate large adding value for each party. 

Federated learning may still get some security concerns and malicious or non-
malicious failures, but it has attracted substantial attention and has been improving and 
evolving quickly. This paradigm opens up the possibility to integrate confidential 
datasets through secure distributed training, which have previously been considered 
impractical but absolutely attractive to drug discovery. Given the predictive model in 
drug discovery often work in very confined domain, the opportunity to leverage larger 
and diverse data silos from multiple institutions will improve generalizability of the 
predictive models in drug discovery.  

Conclusion 

In this work, we set up a cross-silo federated learning framework for drug 
discovery based on FATE19, and constructed baseline models using MLP and RFCN 
architectures. We collected 7 drug solubility datasets and simulated the whole process 
including federated training, model selection, rollout and customization. Federated 
training can perform better than individual training on each dataset and, more 
surprisingly, better than centralized training on the pooled highly biased datasets. 
Visualizing the weight distributions of parameters in the neural network, we find 
federated training learned a simpler model with more zero weights than conventional 
centralized training, which means federated learning intrinsically has a regularization 
effect and may contribute to better generalization performances in highly biased data. 
Beyond that, it is feasible for federated learning to customize the global model locally 
(don’t need to upload the model updates) if new users having plenty of labeled data. 
We demonstrated that users can get some benefits from customizing the global model 
than using the global model directly. Federated learning represents a new machine 
learning paradigm, the feature of privacy-preserving will encourage more and more 
institutions to fully utilize their data and expose more and more data to the latest 
machine learning models, thus solving the “small data” dilemma in drug discovery. 
Federated learning setting also makes it feasible to customize models for different 
users/clients, and hence alleviate the problem of data bias and achieve better predictive 
performance and form wiser instructions in real application scenario. 
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Methods 

Data curation and partitioning 
The 7 aqueous solubility datasets are collected from 7 different sources, which are 

preprocessed and curated by Sorkun et al. in AqSolDB35. Dataset F1 was extracted from 
eChemPortal, an open-source chemical property database developed by the OECD 
(Organisation for Economic Co-operation and Development)36. Both Dataset F2 and 
Dataset F4 are obtained EPI Suite Data website, which were generated by Water 
Solubility Fragment program37 and WSKOWWIN program38, respectively. Dataset F3 
was taken from the work of Raevsky et al.39. Dataset C1 was collected from the work 
of Huuskonen et al.40. Dataset C2 was collected from the work of Wang et al.41. Dataset 
C3 was collected from the work of Delaney et al.42. 

In our simulation, the owners of datasets F1-4 are supposed to be the collaborated 
parties who want to participate in federated training, and the owners of datasets C1-3 
are users who want to use the federated trained model. To prevent overfitting, 1/10 
molecules of datasets F1-4 were held out as validation set. Another 1/10 molecules 
were held out as test sets, for comparing with different models. Because user C1-3 have 
their own data, it is feasible for them to customize their own model by fine tuning the 
federated trained model. We set the proportion of train, validation and test sets of C1-3 
by 3:1:1. 

Kinase inhibition datasets were curated by Merget and Fulle et al. and taken from 
https://github.com/Team-SKI/Publications43, which contains four datasets—the Tang 
set44 (a collection of the kinase profiling data sets of Metz45, Davis46 and 
Anastassiadis47), PKIS48–50, Christmann201651 and a curated ChEMBL kinase inhibitor 
panel by Merget52. All these four datasets are used for federated training. 

hERG liability datasets are collected from different sources that include Cai et. al.53, 
Zhang et al.54, Siramshetty et al.55, Keseru et al.30, Doddareddy et al.56, Sun et al.57, 
Pubchem NCATS58, Pubchem JHICC59, ChEMBL60 and FDA-Drugs61. Datasets from 
Cai et al., Pubchem NCATS, Pubchem JHICC and ChEMBL are simulated to be the 
clients who take part in federated training, the rest of those datasets are only simulated 
as test sets. 

Federated Averaging and Secure Aggregation 
In our setting, all clients have the same features (molecular fingerprints) as input 

for prediction task, so all the clients are deployed with the same neural networks 
architecture and could be trained with Federated Averaging. To ensure the security of 
data and model, the model updates should also not be uploaded in plaintext. Therefore, 
a Secure Aggregation protocol are implemented together with Federated Averaging. 
Both the Federated Averaging and Secure Aggregation protocol are proposed by 
Google’s team in separate works7,62.  

 As descripted in pseudo-code of Algorithm 1, when the training start, the 
coordinator initializes the model parameters 𝑤", which will be broadcast to each client. 
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In each round of federated training, the client downloads the current shared global 
model 𝑤# from the coordinator server, and trains its model locally on its own data with 
SGD optimizer. At every E (a hyperparameter) epochs of local training, all the clients 
will compute the updates and encrypted them under Secure Aggregation protocol. As 
per the protocol, the local model updates of each client would be added a unique random 
mask that are carefully generated and relevant to all the other participants, so as to make 
sure all the random masks adds up to 0 and thus be cancelled out when the coordinator 
aggregates the local updates uploaded by all clients. Since the random masks are 
cancelled out, the coordinator gets the true averaged model updates and uses them to 
update the federated model parameters, obtaining the current shared model. The shared 
global model will be broadcast to all clients, starting a new round of training. Similar 
to conventional neural networks, the training process will stop when the federated 
model converges or the training process reaches a predefined max-round threshold. 
Note that not as simple as descripted in Algorithm 1, Secure Aggregation Protocol is 
much more complicated with a four-round interaction between the coordinator and 
clients, which make protocol robust to dropouts and delays of the clients. The Federated 
Averaging and Secure Aggregation Protocol are implemented on FATE19.  

Federated attentive message passing 
Most of the existing federated learning practices are not able to achieve good 

performances because a single global model is used for all clients. Personalized 
federated learning allows us to train a personalized model without leaking the private 
data. FedAMP (Federated attentive message passing)23, a personalized federated 
learning aggregation algorithm, has not implemented on FATE and we simulated the 
process.  
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Algorithm 1 Federated averaging with secure aggregation 
Coordinator Server executes:  

initialize 𝑤"  

for each round t = 1,2,... do  
for each client k  in parallel do  
(∆#&'( , 𝜆𝑛() ← ClientUpdate(𝑘,𝑤#) 

∆#&' ← ∑ ∆#&'(/
(0'  // sum of weighted updates 

𝜆𝑛122 ← ∑ 𝜆𝑛(/
(0' 	 // sum of weights 

∆#&' ← ∆#&'	/	𝜆𝑛122 // averaged updates 
𝑤#&' ← 𝑤# + ∆#&' 

 
ClientUpdate(𝑘,𝑤): // executed on client 𝑘 
𝑤67189:  ← 𝑤 
for each local epoch i from 1 to E do 

batches ← (data 𝑃( split into batches of size B) 
for batch b in batches do 
𝑤 ← 𝑤 − 𝜂∇𝑙(𝑤; 𝑏) 

∆ ← 𝜆𝑛( · (𝑤 −𝑤67189:) // weighted updates 
// note ∆ is more amenable to compression than w 
// then, encrypt it with random variables s 
// specified between client k and all other clients u 
// by Secure Aggregation protocol 
∆ ← ∆ + ∑ 𝑠(,D(ED − ∑ 𝑠D,((FD  

return ∆, 𝜆𝑛( to server 
 

Neural network architecture and training 
As illustrated in Figure 2B, for the aqueous solubility datasets, MLP model takes 

the 2048 bit ECFP molecular fingerprints63 as input and goes through 6 fully connected 
layers activated with the relu function, between which there are 4 batch normalization 
layers and two dropout layers with dropout rates of 0.2, 0.3, respectively20. The RFCN 
is composed of a fully connected layer with 1536 neurons followed by a ResNet of two 
2-layer blocks and one single-layer block (Supplementary Figure 2B). The network 
architecture is shared by all the clients. All the models are trained with backpropagation 
and SGD optimizer, where the learning rate starts with 0.01 and follows a 0.68 decay 
rate64. For the kinase inhibitory activity datasets, the RFCN consists of two fully 
connected layers and a DenseNet of two 2-layer dense blocks. For the hERG liability 
datasets, the MLP is composed of a 6-layer multilayer perceptron with neuron numbers 
of 4096, 1024, 256, 64, 6 and 2 respectively.  

Model selection and personalization 
 The model is selected by looking at the averaged MAE of the held out validation 
set in the training participants, if it doesn’t improve in 30 rounds, the training would 
stop. When the best shared global federated model is selected, it can be used for 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2020. ; https://doi.org/10.1101/2020.03.19.998898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.19.998898
http://creativecommons.org/licenses/by/4.0/


prediction directly. However, new users who did not participate in the federated training 
may personalize their own model by getting the licenses and instrumenting the 
federated training program as done by the participants of federated training. Then, they 
can fine tune the federated model locally on their own labeled data without uploading 
the model updates. 
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