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Abbreviations: 

LC-MS: liquid chromatography-mass spectrometry 

IM: ion mobility 

TIMS: trapped ion mobility spectrometry 

TOF: time-of-flight 

PASEF: parallel accumulation-serial fragmentation 

DDA: data-dependent acquisition 

DIA: data-independent acquisition 

MS/MS: tandem mass spectrometry 

PSM: peptide-spectrum match 

LC-IMS-MS: liquid chromatography-ion mobility-mass spectrometry 

XIC: extracted ion chromatogram 

CV: coefficient of variation 

LFQ: label free quantification 

FDR: False Discovery Rate 

CID: collision-induced dissociation 

ISF: In-source fragmentation 

PDV: proteomics data viewer 

CPU: central processing unit 

PTM: post-translational modification 
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Abstract 

 
Ion mobility brings an additional dimension of separation to liquid chromatography-mass spectrometry, 

improving identification of peptides and proteins in complex mixtures. A recently introduced timsTOF 

mass spectrometer (Bruker) couples trapped ion mobility separation to time-of-flight mass analysis. 

With the parallel accumulation serial fragmentation (PASEF) method, the timsTOF platform achieves 

promising results, yet analysis of the data generated on this platform represents a major bottleneck. 

Currently, MaxQuant and PEAKS are most commonly used to analyze these data. However, due to 

the high complexity of timsTOF PASEF data, both require substantial time to perform even standard 

tryptic searches. Advanced searches (e.g. with many variable modifications, semi- or non-enzymatic 

searches, or open searches for post-translational modification discovery) are practically impossible. 

We have extended our fast peptide identification tool MSFragger to support timsTOF PASEF data, and 

developed a label-free quantification tool, IonQuant, for fast and accurate 4D feature extraction and 

quantification. Using HeLa dataset published by Meier et al. (2018), we demonstrate that MSFragger 

identifies significantly (~30%) more unique peptides than MaxQuant (1.6.10.43), and performs 

comparably or better than PEAKS X+ (~10% more peptides). IonQuant outperforms both in terms of 

number of quantified proteins while maintaining good quantification accuracy. Runtime tests show that 

MSFragger and IonQuant can fully process a typical two hour PASEF run in under 50 minutes on a 

modern desktop (6 CPU cores, 32 GB RAM), significantly faster than other tools. Finally, through 

semi-tryptic searching, we annotate significantly (63%) more peptides. Within these semi-tryptic 

identifications, we report evidence of gas-phase fragmentation prior to MS/MS analysis. 
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Introduction 

 

A major challenge to identification and quantification of proteins from tissue or cultured cells is the 

immense complexity of the peptide mixtures that result from enzymatic preparation of these samples 

for liquid chromatography-mass spectrometry (LC-MS) analysis. Ion mobility (IM) spectrometry brings 

an additional dimension of separation to LC-MS proteomics, significantly improving peptide 

identification. Following electrospray ionization, IM differentiates gas-phase peptide ions by their size 

and charge prior to mass analysis. IM separation occurs on the millisecond timescale, improving 

selectivity without adding to analysis times. Recently, a commercially available instrument that couples 

trapped ion mobility spectrometry (TIMS) to time-of-flight (TOF) mass analysis (1) has achieved 

promising depth of coverage, routinely identifying over 6000 proteins from individual 120-minute LC 

gradients (2, 3). 

 

Owing to the dual TIMS design of this instrument, where the first region is used for storing ions and 

the second for IM separation, peptides can be continually selected for sequencing with minimal 

reduction in duty cycle. This data acquisition method has been termed parallel accumulation-serial 

fragmentation (PASEF) (2, 3). For typical data-dependent acquisition (DDA) measurements, a survey 

scan is performed, and the N-highest abundance precursor ions are targeted for tandem mass 

spectrometry (MS/MS) analysis based on their mass-to-charge ratio (m/z) and mobility. Fast 

quadrupole switching times allow multiple peptide ions to be targeted for fragmentation during a single 

ion mobility scan. As a target precursor exits the TIMS region, the quadrupole switches to transmit the 

corresponding m/z determined by the survey scan. Synchronization of the TIMS device and 

quadrupole mass filter reduces chimeric spectra and enables removal of singly-charged contaminant 

ions. Additionally, because of the fast acquisition speed (50-200 ms for a full scan), low-abundance 

precursors can be repeatedly re-targeted to improve MS/MS spectrum quality (2, 3). 
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A current major limitation of the PASEF proteomics method is long post-acquisition analysis time due 

to the high dimensionality of the data and large number of acquired MS/MS scans. MaxQuant (4, 5) 

and PEAKS (6) are both capable of processing PASEF data but require a substantial amount of time 

to perform standard tryptic searches. Neither MaxQuant nor PEAKS are practical for nonspecific 

digest searches or open searches (7), which are helpful in discovering post-translational modifications, 

in these data. We have recently introduced a fragment ion indexing method and its implementation in 

an ultrafast database search tool MSFragger (8). The speed of MSFragger makes it well suited for the 

analysis of large and complex data sets such as those from timsTOF PASEF. As conversion from 

Bruker's raw liquid chromatography-ion mobility-mass spectrometry (LC-IMS-MS) format (.d) to an 

open, searchable format (.mzML) represents another significant computational challenge (up to 90 

minutes per single two-hour LC-MS gradient raw file), we also extended MSFragger to read the raw 

format directly. Here we demonstrate that MSFragger can now perform peptide identification from raw 

timsTOF PASEF data in a fraction of time required by other tools.  

 

A second challenge is related to quantification in timsTOF PASEF data. Due to the added IM 

dimension, previously developed quantification tools need to be extended to LC-IMS-MS data. In 

MaxQuant it is done by slicing a 4-D space (ion mobility, m/z, retention time, and intensity) into 

multiple 3-D sub-spaces (m/z, retention time, and intensity) and tracing peaks within each sub-space 

(5). Though MaxQuant only uses every third TOF scan in feature detection, it represents a significant 

fraction of the overall analysis time. Similarly, PEAKS (6) has extended its functionality to support 

quantification of timsTOF PASEF data, with the analysis times similar to that in MaxQuant. To address 

this challenge, we introduce IonQuant, a quantification tool that takes Bruker's raw files and database 

search results as input to perform fast extracted ion chromatogram (XIC)-based quantification. Using 

spectral data indexing, for XIC tracing in retention and IM dimension, IonQuant requires between 10-

20 minutes per file on a desktop computer.  IonQuant is integrated seamlessly with MSFragger (8) and 

the Philosopher data validation toolkit.  
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Using timsTOF PASEF HeLa data recently published by Meier et al. (3), we show the application of 

MSFragger and IonQuant to measure the analysis speed and quantitative reproducibility across 

replicate injections, and to compare these results to PEAKS and MaxQuant. We demonstrate how 

more comprehensive (including semi-tryptic and open) searches enabled by MSFragger enable deep 

dives in these data, revealing interesting trends and recovering large numbers of peptides missed in 

the original analysis.  Additionally, our pipeline is fully compatible with the Skyline environment for 

subsequent visualization and targeted exploration of the data, and also has its own spectral library 

building capabilities. Overall, we showcase a fast, flexible, and accurate computational platform for 

analyzing timsTOF PASEF proteomics data. 

 

 

Experimental Procedures 

 

Experimental Design and Statistical Rationale 

We used data from five experimental conditions (25, 50, 100, 150, and 200 ms TIMS accumulation 

time)  published by Meier et al.(3) in the experiments. Each experimental condition has four technical 

replicates. Meier et al.(3) concluded that the 100 ms accumulation time gave the best results. We 

used these four replicates with 100 ms accumulation time extensively (performing closed tryptic 

search, closed semi-tryptic search, open search, and label free quantification comparisons). For 

identification, we estimated the false-discovery rate (FDR) using the target-decoy based approach (9, 

10). For quantification, we evaluated the quality with coefficient of variation (CV) and Pearson 

correlation coefficient. 

 

Data Analysis 

Raw data files from four replicate injections each of HeLa lysate acquired at five different TIMS ramp 

(accumulation) times on a Bruker timsTOF Pro (3) were downloaded from ProteomeXchange (11) 
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(PXD010012). For all searches, a protein sequence database of reviewed Human proteins (accessed 

09/30/2019 from UniProt; 40926 entries including decoys and 115 common contaminant sequences) 

was used unless otherwise noted. Decoy sequences were generated and appended to the original 

database for MSFragger. PEAKS and MaxQuant only need target sequences. Tryptic cleavage 

specificity was applied, along with variable methionine oxidation, variable protein N-terminal 

acetylation, and fixed carbamidomethyl cysteine modifications. The allowed peptide length and mass 

ranges were 7-50 residues and 500-5000 Da, respectively. PEAKS and MaxQuant search parameters 

were set as close as possible to those used by MSFragger. For MSFragger searches, peptide 

sequence identification was performed with version 2.2 and FragPipe version 12.1 with mass 

calibration and parameter optimization enabled. PeptideProphet and ProteinProphet in Philosopher 

(version 2.0.0; https://philosopher.nesvilab.org/) were used to filter all of peptide-spectrum matches 

(PSMs), peptides, and proteins to 1% PSM and 1% FDR. For PEAKS X+ searches, version 10.5 was 

used, and PSMs and peptides were filtered to 1% peptide FDR by clicking the FDR button on the 

“Summary” page. Since there is no option in PEAKS to automatically filter the proteins, we tried 

different protein “-10logP” scores from the smallest to the largest until the reported protein FDR was 

equal to 1%. MaxQuant v1.6.10.43 was used. The PSMs and peptides were filtered to 1% PSM FDR, 

and the protein groups were filtered to 1% protein FDR, which are the default settings. 

 

Closed searches 

Within MSFragger, precursor tolerance was set to 50 ppm and fragment tolerance was set to 20 ppm, 

with mass calibration and parameter optimization enabled. Two missed cleavages were allowed, and 

two enzymatic termini were specified. Isotope error was set to 0/1/2. The minimum number of 

fragment peaks required to include a PSM in modelling was set to two, and the minimum number 

required to report the match was four. The top 150 most intense peaks and a minimum of 15 fragment 

peaks required to search a spectrum were used as initial settings. 
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Semi-specific searches 

The parameters used by MSFragger for semi-tryptic searches were equivalent to those used in the 

closed searches (detailed above) but with only one enzymatic peptide terminus required. MaxQuant 

only supports zero missed cleavage with semi-tryptic digestion. For further investigation of the 

identified semi-tryptic peptides, variable pyro-glutamic acid and pyro-carbamidomethyl cysteine (-

17.03 Da from glutamine and cysteine), and variable water loss (-18.01) allowed on any peptide N-

terminus were also included in the semi-enzymatic MSFragger search parameters. 

 

Open searches 

Precursor mass tolerance was set from -150 to +500 Da, and precursor true tolerance and fragment 

mass tolerance were set to 20 ppm. Mass calibration and parameter optimization were enabled. Two 

missed cleavages were allowed, and the number of enzymatic termini was set to two. Isotope error 

was set to 0. The minimum number of fragment peaks required to include a PSM in modelling was set 

to two, and the minimum number required to report the match was four. A minimum of 15 fragment 

peaks and the top 100 most intense peaks were used as initial settings. 

 

Label-free quantification 

In IonQuant, mass tolerance was set to 10 ppm, retention time tolerance was set to 0.05 minutes, and 

IM 1/k0 tolerance was set to 0.05. In PEAKS, identification directed quantification was performed with 

retention time alignment, with no CV filter nor outlier removal. Mass error, retention time shift, and ion 

mobility tolerances were set to 20 ppm, 20 minutes, and 0.05 1/k0, respectively. In MaxQuant, Fast 

LFQ (label free quantification) was performed with large ratio stabilization, min ratio count set to one 

(except where noted), three minimum neighbors, and six average number of neighbors. The remaining 

parameters were set to default values. 
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Protein quantification with MSstats 

MSstats was used to calculate protein abundances based on the ion abundances reported by each 

tool. For MSFragger and PEAKS, ions (filtered at 1% PSM and 1% protein FDR for MSFragger; 1% 

peptide FDR for PEAKS) in the MSstats compatible format were provided to MSstats. For MaxQuant, 

evidence.txt (filtered at 1% PSM FDR) and proteinGroup.txt (filtered at 1% protein FDR) were provided 

to MSstats. The dataProcess function with log10 intensity transformation was used to calculate protein 

abundances.  

 

Runtime comparisons 

MSFragger (v2.2, via FragPipe v12.1) and MaxQuant (v1.6.10.43) were compared on a desktop with 

Intel Optane SSD 900P series hard disk, Intel Core i7-8700 3.2 GHz 6 CPU cores (12 logical cores), 

and 32 GB memory. Due to installation and licensing constraints, PEAKS Studio X+ was used on an 

Intel Xeon Gold 2.4 GHz 20 CPU cores (40 logical cores) workstation with 96 GB RAM. 

 

Results and Discussions 

 

Workflow Overview 

The overview of the computational workflow in shown in Figure 1. MS/MS spectral files acquired in 

PASEF mode can be read directly by MSFragger. MSFragger loads the raw format (.d) using our 

original spectral reading library MSFTBX (12), extended here to interact with the Bruker's native 

library. During loading, Bruker's native library functions are called to perform scan combining, peak 

picking, and de-noising. After loading, MSFragger writes all extracted scans in to a binary format, 

mzBIN, for fast data access in the future re-analyses of the same data. After database searching with 

MSFragger (see Experimental Procedures), PSMs are saved in the pepXML file format. PSMs are 

processed using PeptideProphet (13) and ProteinProphet (14) as part of the Philosopher toolkit. 

Philosopher is also used for FDR filtering, and for generating summary reports at the PSM, peptide 
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ion, peptide, and protein levels (Figure 1a). Finally, IonQuant (see below) is used to extract peptide 

ion intensities for all PSMs passing the FDR filter, and adds quantification information to the PSM, 

peptide, and protein-level tables. 

 

IonQuant Algorithm 

Spectral files generated by timsTOF PASEF are larger and more structurally complex than traditional 

LC-MS data due to the fast TOF scan rate and additional IM dimension. IonQuant, written in Java, 

traces and quantifies features from the four-dimensional space (ion mobility, m/z, retention time, and 

intensity) quickly and accurately using indexing technology (Figure 1b). IonQuant first digitizes the ion 

mobility dimension with a predefined bin width (0.002 1/K0; Vs/cm2). Then, IonQuant indexes all peaks 

within this 4D space according to their ion mobility, m/z, and retention time, which reduces memory 

usage and accelerates subsequent peak tracing. Given precursor m/z and retention time from an 

identified MS/MS spectrum, IonQuant uses the index to collect all related peaks. Then, it generates a 

curve with respect to retention time by tracing and performing Gaussian smoothing. After tracing all 

peaks in the retention time dimension, IonQuant traces the ion mobility dimensions by clustering 

adjacent peaks to form 4-D features. Finally, IonQuant reports the boundaries, apex location, and 

apex intensity of each detected ion feature. 

 

IonQuant takes spectral files (.d, Bruker's raw format, using MSFTBX as in MSFragger) and peptide 

identifications (pepXML) as input and outputs a csv file containing quantified results for each spectral 

file. When used with Philosopher summary tables as input, IonQuant adds quantification information 

directly to the tables containing validated PSM, peptide, and protein results. In combining protein 

intensities across multiple experiments, IonQuant uses an approach similar to that of DIA-Umpire (15). 

Each protein’s intensity is the summed intensity of top n ions identified in t percentage of all 

experiments, where n and t are parameters with default values of infinity (i.e. using all) and 50%, 

respectively. In addition, IonQuant also uses the quantified features and the PSM table from 

Philosopher to generate an MSstats (16) compatible file for downstream analysis using that tool. 
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Peptide and Protein identification 

We monitored runtime and sensitivity of database searching and quantification using four replicate 

injections of HeLa cell digest (see Experimental Procedures). The data was analyzed using 

MSFragger with IonQuant and compared to the results from MaxQuant and PEAKS. MSFragger 

identified 58954 peptides and 6525 proteins from a standard tryptic search, more than the other tools 

(Figure 2a, Supporting Table S1-S4). Uniqueness of the peptide identifications obtained by PEAKS, 

MaxQuant, and MSFragger from four replicate injections of HeLa cell digest is shown in Figure 2b. 

MSFragger with IonQuant also required significantly less total analysis time than PEAKS or MaxQuant 

(Figure 2c). Furthermore, when MSFragger was used to perform subsequent searches on the same 

raw files (i.e. starting with mzBIN files), the total processing times were below 20 minutes per file, 

more than nine times faster than PEAKS or MaxQuant (Figure 2c). We also note that a similarly fast 

speed can be achieved when using MGF files as input to MSFragger (generation of MGF files can be 

scheduled as an additional post-processing step in the instrument’s Data Analysis software 

immediately following data acquisition). In such a workflow, protein quantification would be limited to 

MS/MS-based spectral counts only, which is nevertheless sufficient for certain applications such as 

sample quality control or interactome analysis using affinity-purification mass spectrometry (17).     

 

Protein Quantification (Tryptic Search) 

We evaluated the quantitative performance of MSFragger with IonQuant, and compared with 

MaxQuant and PEAKS, using the tryptic search results (see Experimental Procedures) from the 

same four HeLa replicates (Table 1). Because each tool groups peptides and performs protein 

quantification differently, we used MSstats (16) to independently calculate protein abundances from 

ions quantified by these tools. Across the four replicate injections, IonQuant with MSstats 

demonstrated excellent reproducibility, with Pearson correlation between replicates of 0.979 or above 

(Figure 3a), higher than that from PEAKS and MaxQuant (Supporting Figure S1). The distribution of 

CVs for each protein among the tools is shown in Figure 3b.  Considering proteins quantified in at 
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least two replicates, IonQuant with MSstats quantified the most proteins (5961) while exhibiting the 

smallest median CV across replicates of 0.059, compared to PEAKS-MSstats (0.070) and MaxQuant-

MSstats (0.072). Protein abundances reported by IonQuant correlated with those reported by PEAKS 

and MaxQuant with Pearson correlations of 0.873 and 0.736, respectively (Figure 3c, Supporting 

Figure S2). We noticed that both MaxQuant and PEAKS X+ report the volume/area of the traced 

peaks while IonQuant reports the apex intensity(18) of the traced peaks. We demonstrate that using 

apex resulted in higher accuracy and lower noise. Each tool, including IonQuant, can also perform 

peptide to protein roll-up and report protein-level quantification (‘native’ quantification in Table 1). 

However, our analysis shows that post-processing using MSstats performed as well or better than 

native protein-level quantification methods for all three tools. For MaxQuant, applying an addition filter 

of min 2 peptides per protein for quantification (which is a default option in MaxQuant) reduced the 

mean protein CV to 0.057. However, this was associated with a very significantly drop in the total 

number of proteins quantified in at least two replicates (from 5335 to 4040, Table 1). 

 

Open Search Analysis 

Using MSFragger and IonQuant, we performed a quantitative open search on the four HeLa replicates 

acquired with 100 ms accumulation time. After statistical evaluation and filtering by Philosopher, mass 

shifts corresponding to water and ammonia losses (-17 and -18 Da, respectively) were the most 

prominent, followed by a +52.91 Da mass shift that corresponds to substitution of three protons with 

Fe(III), possibly an artefact from sample handling. Open search also revealed the presence of many 

semi-tryptic (neutral loss) peptides. Plots displaying the number of PSMs for each of these mass shifts 

are shown in Supporting Figure S3 (Supporting Table S5-S6). Note that MSFragger and IonQuant 

analysis times were not significantly longer for open search.  

 

Semi-tryptic Peptide Monitoring 

From the open search, we observed a significant number of semi-tryptic PSMs, and PSMs with water 

and ammonia loss. Intrigued by these observations, we investigated whether these observations were 
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indicative of ion activation prior to MS/MS analysis. To this end, we performed semi-tryptic searches 

(also allowing -17 and -18 Da losses, see Experimental Procedures) on the HeLa data acquired with 

different TIMS accumulation times (3), during which trapping in the first TIMS region and mobility 

separation in the second occur. Across the five different accumulation times tested in the publication 

(25, 50, 100, 150, and 200 ms), we observed that the number of PSMs with only one enzymatic 

terminus increases with accumulation time (Figure 4a). The relationship between accumulation time 

and semi-tryptic peptides is likely due in part to increased sensitivity. The number of peptide ions that 

can be targeted for fragmentation increases with accumulation time (3), so low-intensity ions are more 

likely to be detected when longer accumulation times are used. This can be seen in Figure 4b, where 

the share of total ion intensity from semi-tryptic peptides increases as the instrument has more time to 

interrogate these lower-abundance ions.  

 

At 100 ms accumulation time, which was selected as optimal by the original manuscript authors, a 

semi-tryptic MSFragger search resulted in an astonishing 63% increase in the number of identified 

peptides (from 58954 to 95967) across four replicates (Figure 2 and Figure 4c). The number of 

identified proteins in MSFragger search increased as well (from 6525 to 6749). Both PEAKS and 

MSFragger identified more unique peptides with a semi-tryptic search (Figure 2a,b), PEAKS identified 

~63% more and MSFragger identified ~58% more, while MaxQuant results did not reflect a noticeable 

increase. This may be partially due to the fact that MaxQuant does not allow missed cleavages in 

semi-tryptic searches. Of those peptides with a single enzymatic terminus identified by the semi-tryptic 

search, the majority (67%) were found alongside their full-length tryptic form. We also demonstrate 

that MSFragger with IonQuant quantifies more proteins in semi-tryptic vs. tryptic search without 

compromising accuracy (Table 1). It is also worth noting that, due to fast fragment ion indexing, 

MSFragger’s runtime advantage over MaxQuant and PEAKS is even greater when performing semi-

enzymatic searches (Figure 2c). 
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We further investigated the source of these semi-enzymatic peptides by comparing the observed 

cleavage sites to established gas-phase peptide fragmentation behavior. In all cases where a peptide 

was found to be semi-enzymatic, proline was found C-terminal to the cleavage site, a well-known 

product of fragmenting positively-charged peptides (19, 20). In the semi-tryptic searches, we allowed a 

neutral loss of H2O from any N-terminal residue. We observed an increase in the percentage of PSMs 

containing a neutral water loss with longer accumulation times (Figure 4d), as would be expected for 

a gas-phase fragmentation event. As described previously (21-23), water loss from N-terminal 

glutamine and glutamate is frequently observed following collision-induced dissociation (CID) of 

peptides. Of the peptides identified with N-terminal semi-tryptic cleavages across the entire dataset 

(four replicates each of five accumulation times), we observed that water loss occurred preferentially 

when glutamine or glutamate were present C-terminal to the cleavage site (Figure 4e). As the semi-

enzymatic peptides identified in this data set display neutral losses characteristic of CID, it appears 

peptide ion activation occurred in the dual TIMS device, resulting in the majority of the semi-enzymatic 

peptides we observe. 

 

The high rates of semi-enzymatic PSMs may be specific to the timsTOF datasets used in this work, 

and these analyses should be repeated when more datasets become publicly available. We expect 

improvements in instrument tuning to provide gentler peptide ion handling and therefore less 

fragmentation within the instrument. Despite the clear reduction in semi-enzymatic PSMs with altered 

tuning settings, reducing the energy imparted by the source and initial ion optics can reduce ion 

transmission, in some cases dramatically. In many analyses, it may thus be preferable to use higher 

energies in the instrument source (or later ion optics such as the TIMS device itself) to improve 

transmission efficiency despite increased fragmentation of some peptides, making a semi-enzymatic 

search necessary to recover the identities of all peptides analyzed (24) and maximize the sensitivity of 

the instrument. Furthermore, certain analyses, such as those of glycopeptides (25) may also benefit 

from in-source pseudo-MS3 capabilities to enable advanced analysis methods. As the in-TIMS 
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fragmentation level appears to be tunable, the instrument appears to have the capability to perform 

these pseudo-MS3 methods as well.  

 

Spectral Library Generation 

The search results from MSFragger (after processing with Philosopher/PeptideProphet) can also be 

fed into Skyline (26) to generate spectral libraries and inspect peptide features in three dimensions 

(Supporting Figure S4). By providing Skyline with 1% FDR filtered protein list (generated by 

Philosopher, in fasta format), Skyline libraries can be effectively created with a desired protein level 

and peptide ion FDR filters (e.g. 1% protein FDR and 1% peptide ion FDR). A detailed tutorial for 

importing and visualizing the results from MSFragger search in Skyline can be found on the 

MSFragger webpage (https://msfragger.nesvilab.org/tutorial_pasef_skyline.html). Furthermore, the 

spectral library building tool EasyPQP (https://github.com/grosenberger/easypqp) has been adapted to 

be used with ion mobility data, and we incorporated this capability into the MSFragger user interface 

FragPipe. This feature allows building spectral libraries from DDA data as part of the data-independent 

acquisition (DIA) data analysis workflows, e.g. for subsequent quantification from diaPASEF data 

using OpenSWATH or Spectronaut tools (27). Running EasyPQP on MSFragger tryptic search results 

of the four HeLa replicates (100 ms accumulation time) resulted in a spectral library containing 58931 

peptides. 

 

Conclusions 

 
Due to the efficient parallel accumulation strategy and the added selectivity of trapped ion mobility, the 

timsTOF PASEF method has achieved highly sensitive proteomics measurements. We have extended 

MSFragger to directly read raw PASEF data for rapid database searching, and developed IonQuant to 

accurately quantify peptides and proteins from these data. For standard tryptic searches, MSFragger 

requires less than half the analysis time needed by other tools that currently support PASEF data, and 

is three to five times faster for semi-enzymatic searching. MSFragger is the only PASEF-compatible 
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search engine with the ability to conduct open searches in reasonable time. The flexibility afforded by 

MSFragger’s modest analysis times can be applied for post-translational modification (PTM) discovery 

or screening for artefacts of sample preparation or data acquisition. Overall, we report data analysis 

times that remove a primary bottleneck in the usability of timsTOF PASEF data. MSFragger and 

IonQuant enable fast, sensitive, and precise quantitative proteomic analyses, including semi-specific 

and open searches, as well as spectral library generation for diaPASEF analysis workflows. A match-

between-runs capability for IonQuant is also currently under development. This entire pipeline can be 

accessed through a graphical user interface FragPipe (http://fragpipe.nesvilab.org/) or with the 

command line for high-throughput applications. Outputs are also compatible with tools such as 

Skyline, MSstats, and with proteomics data viewer PDV (28) for visualization of peptide assignments 

to MS/MS spectra, enabling a variety of complete workflows. 
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Table 1. Comparison of protein quantification within MSstats to protein quantification reported by each 
tool (native). Median protein coefficient of variation (CV) across replicates is shown. The number of 
quantified proteins refers to those quantified in at least two replicates. For all searches, two missed 
cleavages are allowed except for MaxQuant’s semi-tryptic search that only support zero missed 
cleavage. 
  

 
Tool 

 MSstats 
  proteins 
quantified 

MSstats 
CV 

Native 
proteins 
quantified 

Native 
CV 

PEAKS (tryptic) 5227 0.070 5359 0.203 

MaxQuant (tryptic) 5261 0.072 5335 0.072 

MaxQuant (tryptic, min 2 pep) 5261 0.072 4040 0.057 

MSFragger-IonQuant (tryptic) 5961 0.059 5940 0.091 

PEAKS (semi-tryptic) 5406 0.066 5527 0.194 

MaxQuant (semi-tryptic) 4740 0.072 4839 0.071 

MaxQuant (semi-tryptic, min 2 pep) 4740 0.072 3526 0.054 

MSFragger-IonQuant (semi-tryptic) 6118 0.055 6088 0.090 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.19.999334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.19.999334
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 
 
Figure 1. (a) Overview of the analysis workflow. Raw Bruker timsTOF data are converted (to mzBIN 
format) and searched with MSFragger to identify peptides from MS/MS spectra.  Identifications are 
processed with Philosopher (PeptideProphet, ProteinProphet, FDR estimation) and FDR-filtered 
reports are generated at the PSM, peptide ion, peptide, and protein levels. IonQuant performs 
quantification and generates final reports. (b) Schematic of the IonQuant algorithm. Raw Bruker 
timsTOF data are loaded and indexed. Then, IonQuant clusters features and traces peaks (for all 
identified peptide ions) in IM and retention time dimensions. Finally, IonQuant locates the apex of each 
peak (peptide ion) and reports its apex intensity.   
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Figure 2. Feature identification and run time comparison. PEAKS Studio X+ (“P”), MaxQuant 
v1.6.10.43 (“MQ”), and MSFragger 2.2 (“MSF”) results for four HeLa replicates acquired with 100 ms 
accumulation time. Hatching indicates results from semi-enzymatic search. (a) Peptide (left) and 
protein (right) identifications. (b) Comparison of non-redundant peptide sequences identified by each 
tool. (c) Total analysis times for each tool. MSF* denotes MSFragger search when mzBIN files are 
available. MSFragger analysis times are broken down into raw file reading (i.e. conversion to mzBIN), 
database searching, filtering, and quantification with IonQuant. 
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Figure 3. Protein quantification (with MSstats). (a) Correlation of quantified proteins between four 
technical replicates, MSFragger-IonQuant results. Each paired comparison is labeled in the bottom 
right-hand corner of the plot. (b) Protein coefficient of variation across the four replicates, comparing 
PEAKS, MaxQuant, and MSFragger-IonQuant. Replicates are labeled in the bottom right-hand corner 
of each plot. (c) Comparison of MSFragger-IonQuant protein abundances to PEAKS and MaxQuant 
for each replicate.  
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Figure 4. Semi-tryptic searching with MSFragger monitors fragmentation within dual TIMS device. The 
total number of semi-tryptic PSMs (a) and the percentage of total precursor intensity from semi-tryptic 
PSMs (b) increase with accumulation time. (c) More peptides and proteins are identified using semi-
tryptic search with MSFragger (four pooled HeLa replicates, 100 ms accumulation time). For semi-
tryptic search, variable pyro-glutamic acid and pyro-carbamidomethyl cysteine (-17.03 Da from 
glutamine and cysteine), and variable water loss (-18.01) allowed on any peptide N-terminus were 
added. (d) The percentage of PSMs displaying neutral water loss increases with accumulation time. 
(e) Water losses for each amino acid following the cleavage site are plotted against the total 
occurrences of the amino acid in the data set. For each line plot, shaded areas represent the 95% 
confidence interval from four replicates.  
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