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Deep Learning (DL) methods are increasingly recognised as
powerful analytical tools for microscopy. Their potential to out-
perform conventional image processing pipelines is now well es-
tablished (1, 2). Despite the enthusiasm and innovations fuelled
by DL technology, the need to access powerful and compatible
resources, install multiple computational tools and modify code
instructions to train neural networks all lead to an accessibil-
ity barrier that novice users often find difficult to cross. Here,
we present ZeroCostDL4Mic, an entry-level teaching and de-
ployment DL platform which considerably simplifies access and
use of DL for microscopy. It is based on Google Colab which
provides the free, cloud-based computational resources needed.
ZeroCostDL4Mic allows researchers with little or no coding ex-
pertise to quickly test, train and use popular DL networks. In
parallel, it guides researchers to acquire more knowledge, to ex-
periment with optimising DL parameters and network archi-
tectures. We also highlight the limitations and requirements to
use Google Colab. Altogether, ZeroCostDL4Mic accelerates the
uptake of DL for new users and promotes their capacity to use
increasingly complex DL networks.
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ZeroCostDL4Mic is a collection of self-explanatory Jupyter
Notebooks for Google Colab, featuring an easy-to-use graph-
ical user interface (Fig. S1). It complements current com-
munity efforts to simplify access to DL in microscopy, e.g.
ImJoy (3) or integration projects of DL into Fiji/ImageJ (4–
7). It differs from these solutions by providing a single
simple interface to install, use and learn about popular DL
networks, while exploiting free high-performance computa-
tional resources provided by Google Colab (Fig. 1a). Using
ZeroCostDL4Mic does not require prior knowledge of cod-
ing since researchers can, in a few mouse clicks and with the
help of an easily accessible workflow, install all needed soft-
ware dependencies, upload their imaging data and run net-
works for training and inference (Video S1). The underlying
code is hidden by default, but remains accessible allowing

Fig. 1. Overview of ZeroCostDL4Mic a) Workflow of ZeroCostDL4Mic with data
transfer via Google Drive and training and inference on Google Colab. b) Overview
of the networks currently implemented in ZeroCostDL4Mic and their functions.

advanced users to explore and edit the programmatic struc-
ture of the notebooks. No extra resources beyond a web
browser and a Google Drive account are needed, all com-
putations are directly performed on the cloud using Google’s
computational capacity.
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We created a common and straightforward interface for pop-
ular microscopy DL networks: U-net (8, 9), Stardist (5, 6),
CARE (6), Noise2Void (10) and Label-free prediction (fnet)
(11). Together, they exploit DL to provide the capacity to run
tasks of image segmentation, denoising, restoration and artifi-
cial labelling (e.g. prediction of pseudo-fluorescence images
from bright-field images) (Fig. 1b and S2, Video S2). Google
Colab presents constraints in its free resources, notably RAM
capacity and runtime duration (discussed in detail in Supp.
Note 1). These, however, do not limit the applicability of Ze-
roCostDL4Mic for the example datasets we provide and their
corresponding networks (Supp. Table S1). These only take a
few minutes to hours to train and produce the output shown
in Fig. S2 (time taken in Supp. Table S2). In addition, users
can easily test the performance of the various networks on
their own data.
By bringing previously published methods into a streamlined
format that allows easy access and customised use of DL
in microscopy, we believe this resource will be an enabling
step towards widening the use of DL approaches beyond the
community of computer scientists (further discussed in Supp.
Note 2). In addition, we envision that the template presented
here could be used by DL developers to showcase their own
network architectures (Supp. Note 3). This would ensure
the rapid dissemination of novel technologies and provide
consistent user experience for reproducible and comparative
studies of DL approaches.

Availability. ZeroCostDL4Mic is available for download
from https://github.com/HenriquesLab/ZeroCostDL4Mic.
This resource is fully open-source, providing users with
tutorials, Jupyter Notebooks for Google Colab and many
real-life example datasets available for training and testing.
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Methods
Cell Culture. U-251 glioma cells were grown in DMEM/F-
12 (Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture
F-12; Life Technologies, 10565-018) supplemented with
10 % fetal bovine serum (FCS) (Biowest, S1860). U-251
glioma cells expressing endogenously tagged paxillin-GFP
were generated using CRISPR / Cas9 and were described pre-
viously (1). MCF10 DCIS.COM (DCIS.COM) lifeact-RFP
cells were cultured in a 1:1 mix of DMEM (Sigma-Aldrich)
and F12 (Sigma-Aldrich) supplemented with 5% horse
serum (16050-122; GIBCO BRL), 20 ng/ml human EGF
(E9644; Sigma-Aldrich), 0.5 mg/ml hydrocortisone (H0888-
1G; Sigma-Aldrich), 100 ng/ml cholera toxin (C8052-1MG;
Sigma-Aldrich), 10 µg/ml insulin (I9278-5ML; Sigma-
Aldrich), and 1% (vol/vol) penicillin/streptomycin (P0781-
100ML; Sigma-Aldrich). DCIS.COM lifeact-RFP cells were
generated using lentiviruses, produced using pCDH-LifeAct-
mRFP, psPAX2, and pMD2.G constructs - see (2) for more
details. HeLa ATCC cells were seeded on fibronectin-
coated 8-well chamberslides (Sarstedt, Germany, 1.5 x 104
cells/well). Cells were grown for 16h at 37°C and 5% CO2
in Dulbecco’s modified Eagle’s medium containing 4.5 g/l
glucose, 10% FBS and 1% L-alanyl-L-glutamine (Thermo
Fisher, GlutaMAX). To fix the HeLa cells, we employed a
protocol shown to preserve the cytoskeleton and organelles
(adapted from (3)). In brief, the culture medium was directly
removed with PHEM buffer containing 3% methanol-free
formaldehyde (Thermo Fisher, USA) and 0.2% EM-grade
glutaraldehyde (Electron Microscopy Sciences, USA) and in-
cubated the samples for 1 h at room temperature. Cells were
washed thrice with PBS, quenched with 0.2% sodium boro-
hydrate in PBS for 7 min and washed again thrice with PBS.
A2780 cells were cultured in RPMI 1640 supplemented with
10% FCS. The cells were grown at 37°C in a 5% CO2 incu-
bator.

U-net training dataset. U-net (4) is a deep learning archi-
tecture originally developed for segmentation of EM images
although it has since been adapted for various other tasks (e.g.
CARE, Label-free prediction). Here, we use U-net for seg-
mentation of EM images on the dataset from the ISBI chal-
lenge 2012 (5). However, datasets for segmentation tasks can
also be created manually. This requires target images which
have been segmented by an expert using drawing tools, e.g.
in ImageJ/Fiji (6), to draw outlines around the structures of
interest. For training in the notebook the source (raw EM
image) and target (8-bit mask obtained from expert drawing)
images were placed in separate folders, with each source im-
age having a corresponding target image with the same name.

Stardist training dataset. Stardist (7) is a deep learning
method that was designed specifically to segment cell nuclei
in microscopy images. Training a Stardist network requires
matching images of nuclei and of corresponding masks. To
generate the nuclei images that we provide as a training
dataset, DCIS.COM lifeact-RFP cells were incubated for 2h
with 0.5 µM SiR-DNA (SiR-Hoechst, Tetu-bio, Cat Number:

SC007) before being imaged live using a spinning-disk con-
focal microscope. The spinning-disk confocal microscope
used was a Marianas spinning disk imaging system with a
Yokogawa CSU-W1 scanning unit on an inverted Zeiss Axio
Observer Z1 microscope (Intelligent Imaging Innovations,
Inc.) equipped with a 20x (NA 0.8) air, Plan Apochromat ob-
jective (Zeiss). The corresponding mask images were gener-
ated manually in Fiji (6). Briefly, the outlines of each nucleus
were drawn using the freehands selection tool and added to
the ROI manager. Once all outlines are stored in the ROI
manager, the LOCI plugin was used to create a ROI map.
The ROI map images were used as the mask images to train
Stardist.

Noise2Void training datasets. Noise2Void (8) is a deep
learning method that was designed to perform denoising on
microscopy images. It takes an unsupervised training ap-
proach so it can learn how to denoise a dataset directly
from the dataset to denoise. Therefore, no specific train-
ing datasets are required, only noisy images and even one
noisy image is sufficient to train the network. The 2D dataset
provided with our notebooks was generated by plating U-
251 glioma cells expressing endogenously tagged paxillin-
GFP on fibronectin-coated poly-acrylamide gels (stiffness
9.6 kPa) (1). Cells were then recorded live using a spin-
ning disk confocal microscope equipped with a long work-
ing distance 63x (NA 1.15 water, LD C-Apochromat) objec-
tive (Zeiss). The 3D dataset provided with our notebooks
was generated by recording A2780 ovarian carcinoma cell,
transiently expressing Lifeact-RFP (to visualize the actin cy-
toskeleton), migration on fibroblast-generated cell-derived-
matrices, further see (9) for methods. The cell-derived-
matrices were labeled using Alexa Fluor 488 recombinant fi-
bronectin and the images acquired using a spinning disk con-
focal microscope equipped with a 63x oil (NA 1.4 oil, Plan-
Apochromat, M27 with DIC III Prism) objective (Zeiss). For
both datasets, the spinning disk confocal microscope used
was a Marianas spinning disk imaging system with a Yoko-
gawa CSU-W1 scanning unit on an inverted Zeiss Axio Ob-
server Z1 microscope controlled by SlideBook 6 (Intelli-
gent Imaging Innovations, Inc.). Images were acquired us-
ing a Photometrics Evolve, back-illuminated EMCCD cam-
era (512 x 512 pixels).

Content-aware image restoration (CARE) training
datasets. CARE (10) is a deep learning method capable of
image restoration from corrupted bio-images (whether cor-
rupted by noise, artefacts or low resolution for instance). The
network allows image denoising and resolution improvement
in 2D and 3D images, using supervised training. The specific
function of the network is determined by the images provided
in the training dataset. For instance, if noisy images are pro-
vided as input and high signal-to-noise ratio images are pro-
vided as targets, the network will perform denoising. The
dataset provided as an example with our notebooks was gen-
erated to denoise live-cell structured illumination microscopy
(SIM) imaging data. Briefly, DCIS.COM lifeact-RFP cells
were plated on high tolerance glass-bottom dishes (MatTek
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Corporation, coverslip 1.7) pre-coated first with Poly-L ly-
sine (10 mg/ml, 1 h at 37°C) and were allowed to reach con-
fluence. Cells were then fixed and permeabilized simultane-
ously using a solution of 4% (wt/vol) paraformaldehyde and
0.25% (vol/vol) Triton X-100 for 10 min. Cells were then
washed with PBS, quenched using a solution of 1 M glycine
for 30 min, and incubated with phalloidin-488 (1/200 in PBS;
Cat number: A12379; Thermo Fisher scientific) at 4°C until
imaging (overnight). Just before imaging using SIM, sam-
ples were washed three times in PBS and mounted in vec-
tashield (Vectorlabs). The SIM used was DeltaVision OMX
v4 (GE Healthcare Life Sciences) fitted with a 60x Plan-
Apochromat objective lens, 1.42 NA (immersion oil RI of
1.516) used in SIM illumination mode (five phases 3 three
rotations). Emitted light was collected on a front illuminated
pco.edge sCMOS (pixel size 6.5 mm, readout speed 95 MHz;
PCO AG) controlled by SoftWorx. In the provided dataset,
the high signal-to-noise ratio images were acquired from the
phalloidin-488 staining using acquisition parameters optimal
to obtain the best SIM images possible (in this case, 50 ms
exposure time, 10% laser power). In contrast the low signal-
to-noise ratio images were acquired from the LifeAct-RFP
channel using acquisition parameters more suitable for live-
cell imaging (in this case, 100 ms exposure time, 1% laser
power). The dataset provided with the 2D CARE notebooks
are maximum intensity projections of the collected data.

Label-free prediction (fnet) training dataset. Fnet (11) is
a deep learning method which was developed as a tool for
label-predictions from unannotated brightfield and EM im-
ages. Training fnet in the provided Colab notebook requires
3D stacks in two channels, e.g. fluorescence and transmitted
light. Before acquisition fixed HeLa ATCC cells were perme-
abilised and blocked using 0.25% TX-100 (Sigma Aldrich,
Germany) and 3% IgG-free BSA (Carl Roth, Germany) in
PBS for 1,5 h. Cells were labelled for TOM20 using 5 µg/ml
rabbit anti-TOM20 primary antibody (sc-11415, Santa Cruz,
USA) and 10 µg/ml donkey anti-rabbit-secondary antibody
(Alexa Fluor 594 conjugated, A32754, Thermo Fisher, USA)
in PBS containing 0.1% TX-100 and 1% BSA for 1,5 h each.
Samples were rinsed twice and washed 3x with PBS (5 min)
after each incubation step. Image stacks were acquired on a
Leica SP8 confocal microscope (Leica Microsystems, Ger-
many) bearing a 63x/1.40NA oil objective (Leica HC PL
APO). The pixel size was set to 90 nm in xy-dimensions and
150 nm in z (32 slices) and fluorescence image stacks were
recorded using 561 nm laser excitation and collected by a
PMT. The corresponding transmitted light image stack was
recorded in parallel using a transmitted light PMT. Of the
acquired 3D stacks 23 were used for training and 2 for test-
ing (see Supp. Table S1). The raw data was converted into
.tif file format and split into stacks of the respective channels
(fluorescence and transmitted light). To prepare a training
set, stacks were split into individual folders by channel. The
signal files (transmitted light) and their respective targets (flu-
orescence) must be in the same order in their respective fold-
ers. The code requires matching files to be in a corresponding
position in their respective folders to create matched training

pairs. It is therefore advisable to number source-target pairs
or to give the files the same names. This was done with an
ImageJ/Fiji macro (6).
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Supplementary Note 1: Limitations of Google Colab
The Google Colab platform offers a free and straightforward access to a Graphical Processing Unit (GPU) and Tensor Process-
ing Unit (TPU), which significantly lowers the entry barrier for new users of Deep Learning methods. However, this access
comes with drawbacks, especially in terms of reliability of the access to GPUs and limitations of storage and RAM. In our
hands, we consistently found that GPU acceleration provided faster computation that TPU for the networks and datasets pre-
sented. Therefore we focused our attention on GPU accessibility and performance below. Please note, however, that these
limitations can be largely alleviated by two main approaches:
- None of these limitations applies when connecting to a local runtime, i.e. running the notebooks on the user’s work-
station. This option allows the user to access their local files directly from the Google Colab notebooks and does not have
any of the limitations outlined below. However, if the user does not have GPU access locally, running networks will likely
be significantly slower than using a GPU runtime on Colab. Making use of the local runtime requires some additional steps
outlined in the Colab manual shown in https://research.google.com/colaboratory/faq.html.
- The limitations can be largely alleviated by upgrading to Google Colab Pro for a small financial investment.

1.1. Limited free Google Drive storage. If using a free Google Drive account to perform training, the user will have access
to 15 GB of data storage that can be accessed by any Google Colab notebooks. All training and test datasets, plus output of the
predictions, need to fit within this 15 GB limit. We have shown, however, that this is sufficient to train all of the networks with
the datasets that we provide (Supp. Table S1). Additional storage space can be purchased from Google.

1.2. GPU and TPU RAM limits. A 12.72 GB RAM limit currently exists for the free GPU or TPU provided by Google
Colab. The amount of RAM required to execute the code is determined by the size of the training data, the number and sizes
of patches/batches. Exceeding this RAM limit can cause the notebook to crash or show an error when creating the datasets
within the notebook or when loading data into a network for training. For the datasets we have tested, it was always possible
to train the networks with the currently available RAM. However, large datasets (especially the 3D ones) may reach or exceed
the RAM capacity when using a large number of patches/batches.

1.3. Time-outs.

12-hour time-out. The time taken to train a network sufficiently is primarily determined by the size of the training dataset, the
number of steps/epochs/patches as well as the efficiency of the underlying code. Google Colab currently offers 12 hours of
GPU/TPU access after which local variables and data loaded into the network are deleted, a limit primarily enforced to prevent
cryptocurrency-mining. For users, this means that if training has not completed by the 12h limit, all progress may be lost if
no intermediate steps were saved. This constraint can be problematic when networks need to be trained over many epochs to
reach high performance, often necessary for large datasets. We have found that Label-free prediction (fnet) typically requires
long training times (Supp. Table S2), compared to the other networks tested here. Users can circumvent this issue by saving
network weights in a Google Drive folder regularly. In the Label-free prediction (fnet) notebook, checkpoints are automatically
saved which allows the user to continue training later from such a checkpoint after a potential time-out.

Log-out if idle. Google Colab may disconnect significantly earlier than 12 hours if it detects an interruption on user interaction
or network training. Usually, this time-out happens after 30 to 90 minutes of idleness in our hands, i.e. code not running or
lack of user interaction with the Google Colab interface. When the log-out occurs, local variables, installed packages and data
stored outside any mounted drive are deleted. Hence, if the log-out occurs before training a model, cells setting up parameters
for training such as paths or hyperparameters may have to be reset before training. With all of our notebooks, the models are
automatically saved in Google Drive upon training completion, meaning that long training sessions do not have to be attended.

1.4. Unreliable GPU access. Google Colab does not guarantee access to a GPU, as the number of users of the service may be
larger than the number of available devices. It is not clear how access to a GPU is regulated, but it may be determined by traffic
to the Google Colab servers. If no GPUs are available, Colab will offer to run the notebook using either on a TPU, on CPU
(without acceleration) or as a local run-time (i.e. on the machine of the user). However, these alternatives can be significantly
slower than Google Colab GPU access. However, if no GPU is currently available, GPU access usually becomes available
again after a few hours or a day.

1.5. GPU type. Google Colab uses different GPUs which currently include Nvidia K80, T4, P4 and P100 (as of March 2020).
The user cannot decide which GPU will be available when using the notebook. According to the Google Colab FAQ, this is due
to limitations in the provision of a free service to users which makes certain types of GPU unavailable at the time a notebook
is used. In practice, this should not affect the performance of the networks in the notebooks. However, it may affect the speed
at which networks can be trained and used. Therefore, users might encounter variability in training times as a consequence. To
find out which type of GPU Google Colab is using, the user can play the first cell in each notebook which will give information
on GPU access and type.
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1.6. How to mitigate the limitations of Google Colab. Several steps can be taken by users of ZeroCostDL4Mic to mitigate
Google Colab limitations. Regarding the 12h training limitation, we encourage users to change the number of epochs and other
training parameters so that the training can be completed in less than 12h. This is readily possible with all of the networks we
provide. In the case of Label-free prediction (fnet), only the number of epochs can be changed to shorten the training time so, in
order to accommodate large number of epochs, we provide the option to continue the training from a saved training checkpoint
in case of a time-out. This allows to start from a pre-trained model and accumulate many rounds of epochs.
For the log-out if idle issue, Google Colab cells can be played all at once (or a subset at once). In this case, the activated
cells will run one after the other. This can be useful to ensure that the run-time does not disconnect until everything has been
completed and the user’s data is safely saved in google drive.
ZeroCostDL4Mic is aimed to be an entry point to learn about DL methods where users can easily train networks with their own
data. While ZeroCostDL4Mic is completely free to use, many of its limitations (associated with the Google Colab platform) can
be mitigated with small financial investments. For instance the 15 GB google drive limitation can be easily improved by pur-
chasing more Google Drive storage from Google. In addition, Google is now rolling out a Google Colab Pro version that offers
faster GPUs, longer runtimes and access to more RAM. If these intermediate options are still not sufficient, ZeroCostDL4Mic
notebooks can also be easily adapted to run on the user’s own computer by connecting Google Colab to a local runtime. This
of course requires the users to invest in a powerful workstation.
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Supplementary Note 2: When in doubt, always retrain! A supplementary discussion
The primary focus of ZeroCostDL4Mic is to provide a straightforward and free platform to aid novice users using Deep
Learning in microscopy. A vital component of this platform is the capacity to simplify network training, which remains a
significant existing limitation in the field. Because it can be difficult to train networks, many labs are taking the approach
of providing pre-trained network models that can be used to process imaging data. Both DeepImageJ (1) and CSBDeep (2)
are excellent examples. This tends to create model "zoos" - databases of pre-trained models loadable into software packages
such as DeepImageJ and CSBDeep. However, pre-trained models can be very powerful, they can also be very specific to
the microscopes and sample types used in their training and may lead to erroneous/artefactual results when applied to widely
different dataset type than that it was training on. As a result, it is not uncommon for researchers to apply inappropriate
pre-trained models to their data, which unfortunately lead to inaccurate but often visually pleasing results (3, 4).
Given this issue, it becomes critical for researchers to have the option to train models using their own specific data in
order to produce high-fidelity and reliable results. Here, users face several constraints, such as the difficulty to install the
right dependencies and the need to have access to powerful computational resources. ZeroCostDL4Mic significantly lowers
these barriers by helping researchers access the resources needed to train, in an accessible manner. We believe ZeroCostDL4Mic
takes a significant step to increase the uptake of DL tools by microscopy users and highlights the need for all DL users to take
the step towards understanding and tackling the limitations of the approach.

Supplementary Note 3: Future perspectives for ZeroCostDL4Mic
Together with the help of the wider research community, we expect to grow the number of networks available in Zero-
CostDL4Mic quickly. We are currently working in collaboration with the Royer laboratory to add Noise2Self (5) to this
repertoire. We also expect ZeroCostDL4Mic to become a standard which users can use to evolve existing networks, adapting
them to data analysis tasks optimised for their specific image processing problems. To this end, we will further keep developing
ZeroCostDL4Mic, continuously adapting it to novel Deep Learning paradigms. This focus will incorporate the capacity to
maintain compatibility with rapidly evolving Deep Learning libraries, and the ability to export pre-trained models which could
be used in either DeepImageJ, CSBDeep or other inference engines.
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Supplementary Table 1: Training Datasets

Network Data Type # of files Image Sizes Image Type Comments
U-net Training - Images 28 512x512 EM 8-bit TIFF ISBI or here
U-net Training - Masks 28 512x512 Binary 8-bit TIFF ISBI or here
U-net Test - Images 2 512x512 EM 8-bit TIFF ISBI or here
U-net Test - Masks 2 512x512 EM 8-bit TIFF ISBI or here

Stardist Training - Images 45 1024x1024 Fluo 16-bit TIF This paper
Stardist Training - Masks 45 1024x1024 Object-labelled 8-bit TIF This paper
Stardist Test - Images 2 1024x1024 Fluo 16-bit TIF This paper
Stardist Test - Masks 2 1024x1024 Object labelled 8-bit TIF This paper
Stardist Test - Stacks 4 1024x1024x86 Fluo 16-bit TIF This paper

N2V (2D) Training - Images 1 512x512 Fluo 16-bit TIFF Stubb et al, 2020 (6)
N2V (2D) Test - Images 22 512x512 Fluo 16-bit TIFF Stubb et al, 2020 (6)
N2V (3D) Training - Images 1 (Actin) +1 (Fibronectin) 512x512x13 Fluo 16-bit TIFF Kaukonen et al, 2017 (7) (Actin and fibronectin datasets)
N2V (3D) Test - Images 48 (Actin) +48 (Fibronectin) 512x512x13 Fluo 16-bit TIFF Kaukonen et al, 2017 (7) (Actin and fibronectin datasets)

CARE (2D) Training – Low SNR images 22 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection)
CARE (2D) Training – High SNR images 22 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection)
CARE (2D) Test – Low SNR images 2 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection)
CARE (2D) Test – High SNR images 2 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection)
CARE (3D) Training – Low SNR images 22 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack)
CARE (3D) Training – High SNR images 22 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack)
CARE (3D) Test – Low SNR images 2 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack)
CARE (3D) Test – High SNR images 2 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack)

Label-free prediction (fnet) Training - Brightfield 23 1024x1024x32 Bright-field confocal 8-bit TIF This paper
Label-free prediction (fnet) Training – Fluo (mitochondrial marker) 23 1024x1024x32 Fluo confocal 8-bit TIF This paper
Label-free prediction (fnet) Test - Brightfield 2 1024x1024x32 Bright-field confocal 8-bit TIF This paper
Label-free prediction (fnet) Test – Fluo (mitochondrial marker) 2 1024x1024x32 Fluo confocal 8-bit TIF This paper

Table S1. Overview of the datasets used for training the networks. In all cases of supervised network training (all networks
provided here apart from Noise2Void), the test datasets consist of the last two files generated for training. These were set aside for
testing and are not part of the training dataset.

Supplementary Table 2: Example network training times with indicated parameters and GPU
access

Network Name Training Epochs Steps Batch size Image Dimensions # of images # of Patches, patch size, patch height GPU type Time for training (using these settings)
U-net 200 6 4 1024x1024 28 n.a. Tesla P100-PCIE-16GB 8 min

Stardist 400 12 4 1024x1024 45 n.a. Tesla P100-PCIE-16GB 14 min
N2V (2D) 100 61 128 512x512 22 392, 64 Tesla T4 17 min
N2V (3D) 100 133 128 512x512x13 48 392, 64, 8 Tesla P100-PCIE-16GB 240 min

CARE (2D) 50 31 64 1024x1024 22 100, 80 Tesla P100-PCIE-16GB 3 min
CARE (3D) 50 62 64 1024x1024x33 22 200, 80, 8 Tesla P4 90 min

Label-free prediction (fnet) n.a. 50000 4 1024x1024x32 23 n.a. Tesla P4 8h20min

Table S2. Example network settings and training times for each notebook.
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Supplementary Figure 1: Colab graphical user interface (GUI)

Fig. S1. Graphical user interface (GUI) of the ZeroCostDL4Mic notebooks. The layout of the notebook and quick access to the
different sections is available on the left panel. The user has access to the files present on their Google Drive.

Supplementary Figure 2: Network input and output examples

Fig. S2. Overview of the tasks possible to perform with ZeroCostDL4Mic and the corresponding networks. Overview of the
networks currently implemented in ZeroCostDL4Mic and their tasks.
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Supplementary Videos

Fig. S3. Supplementary Video 1. Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a
common use of the notebook. YouTube link: https://youtu.be/GzD2gamVNHI.

Fig. S4. Supplementary Video 2. Representative results obtained from the provided test dataset. YouTube link:
https://youtu.be/hh2I5xJH67k.
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