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Summary 

Goal-directed behavior requires integrating sensory information with prior knowledge 

about the environment. Behavioral biases that arise from these priors could increase 

positive outcomes when the priors match the true structure of the environment, but 

mismatches also happen frequently and could cause unfavorable outcomes. Biases that 

reduce gains and fail to vanish with training indicate fundamental suboptimalities 

arising from ingrained heuristics of the brain. Here, we report systematic, gain-reducing 

choice biases in highly-trained monkeys performing a motion direction discrimination 

task where only the current stimulus is behaviorally relevant. The monkey’s bias 

fluctuated at two distinct time scales: slow, spanning tens to hundreds of trials, and fast, 

arising from choices and outcomes of the most recent trials. Our finding enabled single 

trial prediction of biases, which influenced the choice especially on trials with weak 

stimuli. The pre-stimulus activity of neuronal ensembles in the monkey prearcuate gyrus 

represented these biases as an offset along the decision axis in the state space. This 
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offset persisted throughout the stimulus viewing period, when sensory information was 

integrated, leading to a biased choice. The pre-stimulus representation of history-

dependent bias was functionally indistinguishable from the neural representation of 

upcoming choice before stimulus onset, validating our model of single-trial biases and 

suggesting that pre-stimulus representation of choice could be fully defined by biases 

inferred from behavioral history. Our results indicate that the prearcuate gyrus reflects 

intrinsic heuristics that compute bias signals, as well as the mechanisms that integrate 

them into the oculomotor decision-making process. 

 

Introduction 

Choice biases are prevalent (Gardner, 2019). Biases that reflect imbalanced priors or 

reward expectations in the environment are advantageous as they could improve the 

speed or overall gain of our choices  (Averbeck et al., 2006; Fan et al., 2018; Hanks et 

al., 2011; Hermoso-Mendizabal et al., 2020; Hesselmann et al., 2008; Moreno-Bote et 

al., 2008, 2011). However, biases could also hinder performance (Akrami et al., 2018), 

especially when they arise from heuristics that do not truly capture the environment or 

task structure. It is often hypothesized that the history of past stimuli, actions and 

outcomes inform these heuristics for sequential choices, where subjects perform a series 

of similar decisions (Abrahamyan et al., 2016; Akrami et al., 2018; Busse et al., 2011; 

Eskandar and Assad, 1999; Fritsche et al., 2017; Hermoso-Mendizabal et al., 2020; 

Hwang et al., 2017; Lueckmann et al., 2018; Nogueira et al., 2017; Padoa-Schioppa, 

2013; Shadlen and Newsome, 2001; Wyart and Tallon-Baudry, 2009). However, the 

computations involved in these heuristics are not well defined. Further, the neural 

representation of history dependent biases and how they integrate in the decision-

making process remain debated. 

Addressing these questions requires developing a task in which heuristic biases 

are not rewarding. Biases that increase reward rate encourage alteration of decision 

strategies based on task structure, complicating generalization of results across tasks. 

But systematic biases that persist with training and are non-rewarding (or even reduce 

gain) provide an opportunity to explore the heuristics that shape history-dependent 

biases. Addressing our questions also requires single trial quantification of the 

magnitude of bias, as well as recording from neural ensembles in brain regions that 

represent both the bias and the decision-making process. Single trial quantification of 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.20.000224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000224
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

the magnitude of bias necessitates development of behavioral models that can 

accurately predict the bias on individual trials. Although many studies attempted to do 

so (Gold et al., 2008a; Jasper et al., 2019; Lueckmann et al., 2018), there are few 

comprehensive models that achieve sufficient accuracy, often because they ignore one 

or more key factors that shape the bias. Additionally, past studies on the neural 

representation of bias focused largely on single neuron activity (Eskandar and Assad, 

1999; Hanks et al., 2011; Lueckmann et al., 2018; Nogueira et al., 2017; Padoa-

Schioppa, 2013; Shadlen and Newsome, 2001), whereas accurate characterization of the 

moment-by-moment fluctuation of the state of the neural population requires 

simultaneous recording of many neurons (Arandia-Romero et al., 2017; Jasper et al., 

2019; Kiani et al., 2014a). Finally, past studies focused largely on finding a neural 

representation of bias and rarely explored how the bias is integrated in the decision-

making process. Here, we overcome these challenges for the first time, by developing a 

comprehensive framework that determines the magnitude of bias on individual trials, 

characterizes bias representation by the prefrontal neural population, and determines the 

computational mechanism for integrating the bias in the decision-making process. 

We recorded simultaneously from large populations of pre-arcuate gyrus 

neurons while monkeys performed a direction discrimination task, designed such that 

past history was unrelated to the present stimulus, making history-dependent biases 

suboptimal. Nonetheless and despite extensive training, monkeys showed detectable 

biases that fluctuated throughout and across experimental sessions. Their choice biases 

stemmed from two sources: fast biases shaped by actions and outcomes of past trials, 

especially the most recent one, and slow biases fluctuating over tens to hundreds of 

trials. Our single-trial quantification of bias enabled us to show that the total bias, as 

well as its two sources, were represented in the population activity of pre-arcuate gyrus 

neurons prior to the stimulus onset. The same pre-stimulus neural responses were also 

predictive of the upcoming choice. These neuronal representations of bias and choice 

were well aligned in the activity state space, suggesting that the pre-stimulus choice 

prediction was achieved through the representation of bias, which itself reflected past 

choices and feedbacks. Finally, we demonstrate that the bias influenced the decision-

making process as an initial offset in the accumulation of evidence, pointing at the 

computational mechanism for the integration of bias in the decision-making process. 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.20.000224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000224
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Results  

Using a 96-channel multi-electrode array, we recorded neural population activity from 

the prearcuate gyrus (area 8Ar, PAG), while monkeys (n = 2) performed a direction 

discrimination task (16 sessions; (Kiani et al., 2014b, 2015)). Each trial began with the 

monkey fixating on a central fixation point on the screen, following by the appearance 

of two targets (T1 and T2; Figure 1A), and a circular patch of random dot 

kinematogram (Britten et al., 1992). The percentage of coherently moving dots 

(coherence or motion strength) and the net motion direction of motion varied randomly 

trial to trial. The motion stimulus was shown for 800 ms and was followed by a delay 

period. The monkey reported motion direction at the end of the delay period with a 

saccadic eye movement to the corresponding targets. We use signed motion coherence 

(Britten et al., 1992; Kiani et al., 2008; Shadlen and Newsome, 2001) to jointly 

represent the stimulus strength and direction with a single variable (positive for motion 

toward T1 and negative for motion toward T2).  

 

Highly trained monkeys exhibit slow and fast choice fluctuations  

Monkeys were extensively trained in the task and showed stable performance prior to 

neural recordings. Despite their extensive training and trial-to-trial independence of 

stimulus conditions, both monkeys demonstrated slow fluctuations in their choice 

preference, where monkeys chose one target more frequently than the other for tens to 

hundreds of trials before reversing their preference (Figure 1B; black line at the bottom. 

These fluctuations were spontaneous and could not be explained by fluctuations of 

motion direction across trials because motion direction was largely balanced in those 

periods (Figure 1B, top). To further ensure that the slow choice preference fluctuation 

did not merely reflect random fluctuations arising from spurious unbalance of motion 

directions and coherence, we repeated our analysis and replicated our results by 

subsampling trials to equalize the number of trials with stimuli moving toward T1 or T2 

for each coherence (Figure 1B and S1A-B blue line; see Methods, Equation 2). Across 

sessions, the correlation coefficient between slow choice preference fluctuations and 

signed motion coherence was weak and not statistically significant (mean ± SEM 0.02 ± 

0.04, permutation test p-value = 0.26). Additionally, the mean auto-correlogram of slow 

choice preference fluctuations calculated on coherence-balanced trial history showed a 

statistically significant broad central peak (Figure S1; permutation test, p-value < 0.05), 
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indicating the presence of slow fluctuations of response preference, irrespective of 

fluctuations of stimulus statistics.  

On a finer timescale, we also observed that the monkey’s choices were 

influenced by recent choices and outcomes. As illustrated by the example trial sequence 

in Figure 1C, the monkey tended to choose the opposite target after error trials in this 

session. Fluctuations of both slow and fast choice preference were reflected as a shift in 

the psychometric curve (Methods, Equation 1) when it was calculated conditioned on 

the direction of slow choice preference (Figure 1D), previous choice (Figure 1E), or 

recent outcome (Figure 1F). 

 

Improvement of choice prediction accuracy with slow and fast choice fluctuations 

To quantify how monkeys’ decisions were affected by the slow and fast fluctuations of 

choice preference, we measured whether and how much they would improve the 

prediction accuracy of upcoming choice beyond that given by motion stimulus alone.  

We built a logistic regression model to predict choices based on three variables: 

stimulus coherence, slow choice preference fluctuation, and fast choice preference 

fluctuations expressed as a combination of previous choice and reward (Methods, 

Equations 2-4). The cross-validated model prediction accuracy was assessed using a 

leave–one–out procedure. To measure the role of choice preference fluctuations in 

determining choices, we compared the prediction accuracy with a baseline obtained by 

fitting the model using shuffled fast and slow choice preferences across trials. Because 

shuffling destroys the statistical relationship between current choices and choice 

preference fluctuations, the comparison with the baseline isolates improvement of the 

prediction accuracy conferred by the latter. The mean prediction accuracy improvement 

across all sessions was small but significantly larger than zero (0.016 ± 0.002, one 

sample t-test, p-value = 10
-6

; Figure 2A; black bars). Importantly, when we focused 

only on difficult trials, where the stimulus is less informative and biases could have a 

larger influence on choice, the improvement of choice prediction accuracy doubled 

(mean ± SEM: 0.032 ± 0.004; one sample t-test, p-value = 10
-7

; Figure 2A; open bars). 

Consistently, the improvement tested only on easy trials was not different from zero 

(mean ± SEM: 0.0001 ± 0.0002; one sample t-test test, p-value = 0.69), which is 

expected because prediction accuracies based on stimulus strength alone are already 

close to ceiling. Overall, biases had a tangible effect on upcoming choices especially for 

more difficult decisions.  
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 It is possible to use similar choice prediction models to quantify the temporal 

extent of fast and slow choice preference fluctuations. For fast choice preference 

fluctuations, information about choice and reward of the previous trial significantly 

improved choice prediction accuracy (Equation 5 in Methods, mean difference tested on 

difficult trials equaled 0.015 ± 0.0006; one sample t-test, p-value = 3*10
-4

). However, 

including information about more distant past (from two to five trials back) did no 

improve the prediction accuracy further (paired t-test on prediction accuracies, p-

value > 0.33; Figure S2A), indicating that in our task, fast choice fluctuations were 

shaped in a time scale that was not longer than one single trial in the past.  

We studied how the size of the trials window used to calculate slow choice 

preference improved performance of a model that included both slow and fast choice 

preference fluctuations compared to a model in which only fast choice preference 

fluctuations was used (in both models coherence was also used as a regressor). If slow 

fluctuations were defined using trial windows of less than 130 trials, there was not 

statistically measurable effect (Figure S2B; Equation 4, paired t-test on prediction 

accuracies, p-value > 0.063). However, when slow fluctuations were calculated in larger 

windows (130 - 400 trials), there was a statistically significant increase in prediction 

accuracy (paired t-test rank sum test, p-value < 0.05 for 19 cases; Figure S2B). 

Therefore, we conclude that slow choice preference fluctuations estimated in a window 

of 130 trials and fast choice fluctuations capturing the immediately preceding choice 

and reward were sufficient to explain the behavioral biases observed in our experiment.     

An important question is to know the relative strength of the effect of fast and 

slow choice preference fluctuations. To compare their effects, we first expressed both 

types of fluctuations in the same units (log-odd units) by using the logistic regression 

model described above. Thus, “slow bias” (Figure 2B) was defined as the product of 

slow choice preference fluctuation and its corresponding weight in the model plus the 

model offset (see Methods). Similarly, “fast bias” (Figure 2C) was defined as the 

product of fast choice preference fluctuation and its model weights (see Methods). To 

compare the relative strength of slow and fast biases on choice prediction, we calculated 

the mean ratio of the absolute value of each divided by the sums of absolute values of 

both biases and stimulus strength in log-odds space (see Methods Equation 6). We 

found that both fast and slow biases were effective in shaping the choice but, on 

average, the fast bias had a lower impact on choice (mean ± SEM 0.18 ± 0.01) 

compared to the slow bias (mean ± SEM 0.25 ± 0.01; difference of fast and slow = - 
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0.07 ± 0.016, one sample t-test p-value = 0.006).  

To capture the overall effect of slow and fast biases on behavior, we defined 

“total bias” (Figure 2D) on each trial as the sum of slow and fast biases. The total bias 

corresponds to the single-trial quantification of bias that is central for our analysis. On 

average, the contribution of total bias to the monkey’s choices was 0.25 ± 0.01 in units 

of log-odds. For comparison, it was more than twice smaller than the contribution of 

motion stimulus alone (mean ± SEM 0.58 ± 0.02), reflecting the fact that monkeys 

made their decision largely based on the presented stimuli but they were also slightly 

impacted by their current bias.   

 

Representation of bias in the pre-stimulus neural responses of PAG 

Since the slow and fast biases influenced the monkey’s choice (Figure 2A), the 

information about them should be present in brain regions involved in the 

decision-making process. An area of interest could be PAG, where neural responses 

related to the accumulation of evidence have been found (Kiani et al., 2014b; Kim and 

Shadlen, 1999; Mante et al., 2013). Also, since the observed behavioral biases had a 

history dependent component, there should be neurons sensitive to the bias even prior to 

the stimulus presentation. Such a tuning is illustrated in Figure 3A-C, where we show 

responses of example neurons modulated by slow (Figure 3A), fast (Figure 3B), and 

total (Figure 3C) biases. 

 To investigate whether these biases were represented in the responses of PAG 

neural population, we used a linear model in which each type of bias (slow, fast, or 

total) was regressed against pre-stimulus activity of simultaneously recorded PAG 

neurons (Equation 8; spike counts calculated in 800 ms window prior to stimulus onset). 

The analyses were performed on the top variance-predictive PCA components of the 

neural population responses that collectively explained 50% of the variance (Equation 

7). Here, we used PCA to reduce overfitting (Mante et al., 2013; Yu et al., 2009), but 

qualitatively similar results were obtained without dimensionality reduction. All three 

biases were significantly represented in the pre-stimulus responses of PAG population 

(Figure 3D; mean of cross–validated R
2
 across sessions was equal to 0.23 ± 0.05, 0.29 ± 

0.06 and 0.30 ± 0.05 for Bs, Bf and Bt respectively, permutation test, p-value = 0.001 in 

all three cases). 

Consistent with a representation of the fast bias, PAG activity prior to the 

stimulus onset represented previous choice and reward, which, together, defined the fast 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.20.000224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000224
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

bias. Examples of four neurons for which firing rates were modulated by previous 

choice or reward are shown in Figure S3 (A and C respectively). In all cases, the 

response modulation toward previous choice or recent outcome persisted through the 

pre-stimulus period.  

Fitting a logistic regression model to the firing rate of the population of 

simultaneously recorded PAG neurons (Equation 9 for n < 0) revealed that previous 

choices could be decoded up to three trials back in the past (Figure S3B; means ± 

SEMs: 0.52 ± 0.005; p-value = 0.006 for n = -3; 0.53 ± 0.006; p-value = 0.0007 for n = -

2 and 0.81 ± 0.02; p-value < 10
-10

 for n = -1, one sided t-test). A similar model 

(Equation 9 for n < 0) could predict the outcome (reward) of the preceding trial (Figure 

S3D; mean ± SEM 0.81 ± 0.01; paired t-test, p-value 0.0002), but not further back.   

 

Predicting choices from pre-stimulus neural responses of PAG 

Given that slow and fast biases influenced monkeys’ decisions (see Figure 2A) and that 

they were represented in the pre-stimulus PAG activity (see Figure 3), we asked whether 

pre-stimulus activity was also predictive of monkeys’ upcoming choices. Figure 4A 

shows two example units. One of the units (Figure 4A, left) had a higher firing rate for 

choosing the T2 target and the other unit had a higher firing rate for the opposite target 

(Figure 4A, right). Importantly, both units represented the upcoming choice even prior 

to the stimulus presentation (grey areas), matching the representation of bias in the 

neural population.   

 To quantify this activity modulation at the population level, we fit a logistic 

regression model to predict upcoming choices using the PCA-dimensionality-reduced 

PAG population responses in the 800 ms before stimulus onset (Equation 9 for n = 0). 

For many sessions (44%; 7 out of 16), the cross–validated prediction accuracy was 

above chance level (0.55) (Figure 4B, black bars; mean across sessions, 0.52 ± 0.005, 

permutation test p-value = 0.001). Similar to the behavioral model, the cross-validated 

prediction accuracy was higher when we focused on difficult trials (white bars; 0.54 ± 

0.008 permutation test, p-value = 0.001), and not significantly different from chance 

level for easy trials (mean ± SEM across sessions 0.5 ± 0.004 permutation test, p-value 

= 0.31). 

 

Prediction of choices based on pre-stimulus neural activity is due to the 

representation of slow and fast biases 
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A key question is whether choice predictive neural responses prior to stimulus onset are 

due to the representation of the fast and slow biases that we have defined behaviorally. 

One possibility is that encoding of our behaviorally-defined biases fully explains the 

representation of choice prior to the stimulus onset, which would imply that total bias 

and choice representations are “aligned” in neuronal activity space. Alternatively, choice 

predictive neural responses could arise from factors not fully captured by fast and slow 

biases, which would cause misalignments between choice and total bias representations 

(see Methods, Equation 13). To differentiate these two possibilities, we asked if the 

neural representation of biases was as predictive of behavior as the neural representation 

of choice.  

For each trial, we used the remaining trials in the session to find the best 

hyperplanes that explained the choice (Equation 9) and total bias (Equation 8) based on 

pre-stimulus responses (Figure 5A). Then, we calculated the distance of pre-stimulus 

responses of the left-out trial from those two hyperplanes (𝑑𝑐ℎ𝑜𝑖𝑐𝑒 and 𝑑𝑏𝑖𝑎𝑠). If the pre-

stimulus choice and bias representations were aligned, predicting the upcoming choice 

based on 𝑑𝑏𝑖𝑎𝑠 would be as accurate as using both 𝑑𝑐ℎ𝑜𝑖𝑐𝑒 and 𝑑𝑏𝑖𝑎𝑠  (Equations 10 and 

11). Indeed, this was what we observed. Across sessions, the difference in predicted 

accuracy was negligible (Figure 5B; mean  SEM, 0.002  0.003) and not significant 

(paired t-test, p-value = 0.42), suggesting that the neural representation of total bias was 

functionally indistinguishable from the neural representation of choice prior to stimulus 

onset. Consistent with these results, predicting the choice based on the sign of 𝑑𝑏𝑖𝑎𝑠 or 

𝑑𝑐ℎ𝑜𝑖𝑐𝑒 was comparable, with slightly better accuracies for 𝑑𝑏𝑖𝑎𝑠 (Figure. 5C; mean 

prediction accuracy based on choice hyperplane, 0.52  0.005; permutation test p-value 

= 0.001); based on bias hyperplane 0.54  0.004; permutation test p-value = 0.001), 

further supporting our conclusion. 

Additional insight about choice predictive neural responses prior to stimulus 

onset is gained from comparing the geometry of choice and bias decoder hyperplanes. 

Vectors in high-dimensional spaces tend to be orthogonal (Hall et al., 2005). However, 

if the representation of choice and bias are functionally aligned, one would expect that 

the angle between the norms of their respective hyperplanes is less than 90 deg. In fact, 

we found that the weight vectors that defined the norm of the choice and bias 

hyperplanes (𝛽𝑗 in Equation 8 and 𝛼𝑗 in Equation 9) were positively correlated and the 

correlation coefficients were significant for the majority of sessions (Figure 5D; n = 13, 
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permutation test p-value < 0.05; across session mean ± SEM, 0.33 ± 0.04; permutation 

test p-value = 0.001), supporting the notion that the hyperplane norms were not 

orthogonal.  

Further supporting the alignment hypothesis, we found that sessions with 

stronger representation of the total bias (higher cross-validated R
2
) in pre-stimulus 

activity of PAG also had a higher cross-validated choice prediction accuracy (Figure 5E; 

Pearson correlation coefficient 0.91 p-value = 10
-7

). These results suggest that across-

session variability in choice predictive power could be explained by the across-session 

variability in the representation of total bias. 

 

The integration of bias into the accumulation of evidence 

Given the presence of the bias signal prior to stimulus presentation, the question arises 

of whether and how this bias impacts the accumulation of the sensory evidence during 

the stimulus-viewing period. Our result about the alignment of bias and choice decoders 

before stimulus onset suggests that the bias could be implemented as an initial offset in 

baseline activity before accumulation of sensory information begins in each trial. This 

initial offset is best visible in the neuronal activity axes where the decision is encoded 

(orthogonal to the choice decoder hyperplane shown in Figure 5A). Thus, we plotted 

how the decision variable (projection of neuronal activity onto the choice axes) evolved 

over time (Figure 6, see Methods Equation 14).  

We found, consistent with our expectations, that there was an offset in the 

decision variable before stimulus onset. The offset was positive when the bias favored 

the final choice (Figure. 6A, blue line) and negative when the bias was against the final 

choice (red). This offset was roughly constant for the whole duration before stimulus 

onset and persisted during the first few hundreds of milliseconds of stimulus viewing 

period, when the decision was formed. Interestingly, the offset lasted longer for more 

difficult stimuli (Figure 6B), where monkeys integrated the sensory evidence longer. 

However, toward the end of the stimulus presentation, the offset vanished because the 

monkey had likely reached a decision on the majority of trials. Our results suggest that 

the initial bias was integrated into the decision-making process and contributed to the 

formation of the choice.  

The initial offset and final convergence of the decision variables for positive 

(Figure 6A, blue line) and negative (red line) biases are consistent with predictions of 
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bounded evidence-accumulation models for the decision-making process (Link, 1992; 

Ratcliff and Smith, 2004; Shadlen and Kiani, 2013). The gradual dynamics of the 

decision-variables and larger and longer-lasting effects of offset for weaker motion 

stimuli (compare Figure 6B and 6C) is compatible with these models too. This is 

because the accumulation of sensory evidences is slower for weaker stimuli, and the 

decision variable takes longer to hit the decision bound. This slower ramping lets the 

bias-induced offset (blue and red) survive longer during stimulus viewing. In contrast, 

sensory evidence accumulates quickly on easy trials, causing accelerated convergence 

of the decision variables and leaving minimal room for the bias-induced offset to 

influence the final decision. 

Another interesting feature of the neurally inferred decision variable is that it 

continues to rise after the convergence of positive and negative bias curves in Figure 6. 

Because our model is designed to predict the choice (Equation. 14), the magnitude of 

the model decision variable is influenced by any factor that improves its accuracy. 

Those include neural responses that may represent only the final choice but not 

necessarily the decision-making process that leads to the choice. Such choice-related 

responses have been shown to emerge in motor-planning regions toward the end of the 

stimulus viewing period in the dots task (Peixoto et al., 2018), and could be responsible 

for additional rise of the model decision variable after 700ms from stimulus onset, when 

the initial bias is no longer represented.  

 

Discussion 

We have studied the dynamics and neuronal representation of biases in highly-trained 

monkeys performing a direction discrimination task while recording simultaneous 

responses of hundreds of neurons in the prefrontal cortex. Despite trial-by-trial 

independence of the stimulus direction, monkeys exhibited weak but measurable 

suboptimal behavioral biases. Observed biases emerged at two distinct time scales. The 

slow bias, reflecting the monkey’s preference towards one of the targets, fluctuated at a 

time scale spanning tens to hundreds of trials.  The fast bias was shaped by the choice 

and outcome of only the preceding trial. Together these biases improved prediction 

accuracy of upcoming choices beyond that given by stimulus alone. As expected, this 

increase was higher on trials with weak stimuli. Further, we found that pre-stimulus 

population activity of prearcuate gyrus represented the fast and slow biases. The same 
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activity was also predictive of the monkey’s upcoming choices. Critically, the axes that 

represented bias and choice in the neural population state space were similar; suggesting 

that choice-prediction power of pre-stimulus prefrontal activity was largely due to the 

representation of the fast and slow biases. Conditioned on behavioral biases, we 

demonstrated that biases were incorporated into the decision-making process as an 

offset of baseline activity that persisted throughout the integration of sensory evidence 

during motion stimulus presentation.  

To make optimal decisions one should take into account all available and 

relevant information. This idea is expressed in Bayesian decision theory where choices 

depends on both, the current sensory information and prior expectations (for review see 

(Summerfield and de Lange, 2014)). Such prior expectations might reflect for example 

the previously learned statistics of the stable environment and as such ease correct 

decisions especially when sensory evidence is ambiguous (Hanks et al., 2011; Rao et 

al., 2012). In contrast, when environment is unpredictable, prior expectations do not 

provide additional useful information into decision at hand but instead might lead to 

suboptimal behavioral biases that potentially reduce accuracy. Our task was designed to 

make prior history uninformative, and thus all biases that we observed despite extensive 

monkey’s training could not arise from a reward optimization strategies. Rather, they 

provide an unique opportunity to explore innate mechanisms that shape history-

dependent biases. 

In perceptual and value based decision making tasks one particular type of 

biases refers to the fact that current choices can depend on previous history of stimuli, 

rewards and choices even in the conditions where such dependence is not relevant for 

the task – so-called sequential biases (Abrahamyan et al., 2016; Akrami et al., 2018; 

Busse et al., 2011; Eskandar and Assad, 1999; Fritsche et al., 2017; Hermoso-

Mendizabal et al., 2020; Lueckmann et al., 2018; Nogueira et al., 2017; Padoa-

Schioppa, 2013; Shadlen and Newsome, 2001). Such history dependences can span 

from one trial up to several trials in the past (Akrami et al., 2018; Busse et al., 2011; 

Gold et al., 2008b; Hermoso-Mendizabal et al., 2020; Lueckmann et al., 2018; Nogueira 

et al., 2017). However, only a couple of studies have reported the presence of separate 

time scales in sequential biases. One such example refers to the study where monkeys 

performed perceptual decision task and during training exhibited intrinsic slow (tens of 

trials) and fast (previous few trials) choice sequential biases (Gold et al., 2008b). As the 

slow bias component decreased with training, it is likely that it was a byproduct of 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.20.000224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000224
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

learning. Fast and slow bias components have been shown to depend also on sensory 

components of the previous history (Akrami et al., 2018). Our results add to that body 

of research and constitute a rather unique example of such biases in highly trained 

primates performing unstructured tasks in which past trails are irrelevant for choice at 

hand. As it has been suggested, the existence of such biases might be a byproduct of a 

priori adaptive mechanisms that take advantage of stability of natural environment to 

make faster and more accurate decisions (Summerfield and de Lange, 2014). However, 

in our task biases, while having an impact on choice, they have very little impact on 

task performance.  

Given that history-dependent biases impact choices, they should be represented 

in the form of choice-predictive neuronal activity in brain regions that represent both the 

bias and the decision-making process. Such choice predictability has been described in 

the pre-stimulus activity of LIP neurons in the seminal work of Shadlen and Newsome 

(Shadlen and Newsome, 2001). However, as the authors did not investigate history-

dependent biases, it was unclear what the source of this choice predictability was. 

Several studies investigated whether choice predictability reflects past history of 

stimuli, choices and outcomes (Akaishi et al., 2014; Akrami et al., 2018; Bonaiuto et al., 

2016; Eskandar and Assad, 1999; Fischer and Whitney, 2014; Lueckmann et al., 2018; 

Nogueira et al., 2017; Shadlen and Newsome, 2001; Williams et al., 2003; Wyart and 

Tallon-Baudry, 2009), Although recently it has been demonstrated that choice-

predictive signals in visual cortex could be partially accounted for by previous history 

(Lueckmann et al., 2018), the remaining unexplained residuals probably reflected 

unmeasured biases at the behavioral level that are nevertheless measurable at the 

neuronal level. At the behavioral level, our results go beyond these results by providing 

a single-trial quantification of bias that seems to exhaust all biases that are linearly 

decodable from neuronal population activity in PAG. That allowed us to demonstrate 

that choice predictive power of prefrontal cortex pre-stimulus activity can be explained 

by history dependent biases. While it is still possible that other biases exist in the 

monkeys’ behavior, their temporality or non-linearity make them hard to detect and 

measure. 

Several models have proposed how biases might mechanistically combine with 

sensory information to form the final decision (Bogacz et al., 2006; Drugowitsch and 

Pouget, 2012; Drugowitsch et al., 2019; Gold and Shadlen, 2007; Rustichini and Padoa-

Schioppa, 2015). One of the predictions is that biases can act either as an offset or as a 
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change in the slope of sensory information accumulation (Drugowitsch et al., 2019; 

Gold and Shadlen, 2007; Shadlen and Kiani, 2013; Urai et al., 2019) (but see (Sohn et 

al., 2019)). Previous experimental work provided evidence in favor of the offset 

hypothesis (Gold et al., 2008b; Shadlen and Newsome, 2001). For instance, 

conditioning neuronal responses on the final choice Shadlen and Newsome 

demonstrated an offset in pre-stimulus LIP neuronal activity that persisted during the 

stimulus presentation period (Shadlen and Newsome, 2001). However, since the choice 

is a combination of bias and stimulus evidence integration, whether similar offsets in 

accumulation of evidence would be observed when directly conditioning on bias has 

remained unsolved. Here we provide this missing evidence and demonstrate an offset in 

pre-stimulus neuronal activity between trials in which behavioral bias matched or 

mismatched final decision. 

To conclude, we have provided neuronal evidence that behavioral biases and 

choices are represented in the same neuronal circuits along similar directions of activity 

state space. The implications of these results can be multifarious. For instance, in a 

speculative vein, the fact that biases are directly incorporated into the decision process 

as an offset, just as veridical information would do, could speak about why it is so 

difficult to eliminate deleterious biases from our daily life behavior (Gigerenzer, 2008; 

Kahneman, 2011), and it is in line with current work on decision making proposing 

bottlenecks in sensory (Moreno-Bote et al., 2014) and value-based processing (Hayden 

and Moreno-Bote, 2018).  
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Figures 

 

Figure 1. Well-trained monkeys in a random dots direction-discrimination task show 

slow and fast fluctuations in their preferred choice. A. Task design. After the monkey 

acquired a central fixation point, the patch of randomly moving dots appeared on the 

screen for 800 ms. The fraction of dots moving coherently in a given direction defined 

the trial difficulty. The motion was followed by a delay period with variable length, 
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after which the monkey indicated its choice by making a saccade towards one of the two 

targets (T1 or T2). B. Top –average of signed motion coherence. Dashed line indicates 

0% coherence, and positive and negative values indicate motion toward T1 and T2, 

respectively. Bottom – black line shows the fraction of trials in which the monkey chose 

T1. The dashed blue line also shows the choice preference towards T1 but calculated 

after balancing coherence in a given window. All curves calculated in a 130 trials 

running window.  C. The monkey’s choices in a sample sequence of 30 trials. Color 

intensity indicates signed motion coherence direction, with positive values showing 

motion toward T1 and negative values motion toward T2. D - F. Psychometric curves 

from one experimental session (the same session as in B-C) computed conditioned on 

the monkey’s slow choice preference (D), previous choice (E), and previous reward (F). 

Dots indicate actual data and the solid lines are maximum likelihood fits of logistic 

functions (see Methods). 
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Figure 2. Predicting the monkey’s choices becomes more accurate by using fluctuations 

of behaviorally-defined choice preference. A. Improvement of choice prediction 

accuracy measured as the difference of the accuracy of a logistic regression model with 

fast and slow choice preference fluctuations and a reference model in which choice 

preferences were shuffled across trials. Both models contained stimulus strength (signed 

motion coherence) as a regressor in addition to the bias terms. Improvement in choice 

prediction accuracy was higher when computed for difficult trials (white bars, compare 

to black bars for all trials). Each pair of bars represents a single session. B - D. Traces of 

slow (B, blue), fast (C, dark blue) and total (summed fast and slow, D, green) biases 

across a sample experimental session. On each trial, biases were computed from the 

choice preference fluctuations multiplied by their corresponding weights from the 

logistic regression model. Insets zoom in on a sequence of 60 trials in the session (the 

grey bar on the x-axis) for better visualization of the dynamics of different types of 

biases. Note the different time scale between slow and fast biases but their similar 

contribution to the total bias in terms of their magnitudes. 
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Figure 3. Pre-stimulus responses of prearcuate gyrus neurons carry information about 

behavioral biases. A - C. Peristimulus time histograms (PSTHs) of example cells (left, 

monkey 1, and right, monkey 2) averaged across trials with high positive (dark) or 

negative (light) slow (A, blue), fast (B, red), or total (C, green) biases. Specific bias 

ranges for which trials were averaged (legends) corresponded to the 0.35 (negative) and 

0.65 (positive) quantiles of the bias distribution for all sessions pulled together. Shaded 

areas correspond to SEM. On the x-axis, zero refers to stimulus onset. Target onset time 

is indicated by an arrow. Spikes were counted in 100 ms moving windows in steps of 20 

ms. D. Histograms of the coefficients of determination (cross-validated R
2
) of a linear 

regression model fitted to predict slow (left, blue), fast (middle, red), or total (right, 

green) biases from the pre-stimulus population activity of prearcuate gyrus cells (T = 

800 ms; grey areas in A – C). Arrows indicate mean across sessions (0.23 ± 0.05 for 

slow; 0.29 ± 0.06 for fast and 0.3 ± 0.05 for total biases respectively; mean ± SEM). 

 

Figure 4. Pre-stimulus activity of prearcuate gyrus neurons predicts upcoming choice. 

A. Mean firing rate of two cells (from two monkeys) averaged across trials with T1 

(dark) or T2 (light) choices. Shaded area corresponds to SEM. Arrow on the x-axis 

indicates target onset. Firing rates were calculated in a 100 ms windows moved in steps 

of 20 ms. B. Cross-validated prediction accuracy of a logistic regression model for 

predicting upcoming choice from the pre-stimulus activity of simultaneously recorded 

neurons in prearcuate gyrus (window size, 800 ms; grey area in A, PCA dimensionality 

reduction). Accuracy was higher when assessed for difficult trials only (white bars). 

Choice prediction accuracy was above chance level (0.5, dotted line) for seven or nine 
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sessions when calculated for all or difficult trials respectively (*, permutation test; p-

value < 0.05). Mean across session was equal (0.52 ± 0.005, p-value = 0.001 for all 

trials; 0.54 ± 0.008 p-value = 0.001 for difficult trials mean ± SEM p-values from 

permutation test). 

 

Figure 5. Choice predictive power of pre-stimulus PAG neural responses is related to 

the representation of total bias. A. The total bias (green) and choice (red) decoders, 

corresponding to two discriminant hyperplanes that split neuronal state space in two 

regions for T1/T2 choices or positive and negative total bias, were trained using the 

same pre-stimulus activity of PAG neuronal populations. The panels show example data 

points (40 trials) where each dot represents the pre-stimulus population firing rates of a 

trial projected on the first three PCA dimensions. Filled circles correspond to T1 

choices and hollow circles to T2 choices. Although the bias decoder has been trained to 

predict biases, it can be used “indirectly” to predict choices because the sign of the bias 

indicates tendency toward a choice in each trial (“indirect method”). In contrast, the 

“direct method” uses the choice decoder to predict choices.  B. Difference in choice 

prediction accuracy between a model including the distances from neuronal activity to 

the choice and bias hyperplanes as predictors, and a model with the distance to the bias 

hyperplane as the only predictor. The mean prediction accuracy difference between the 
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two models was equal 0.002   0.003 and not significant (paired t-test, p-value = 0.42) 

C. Experimental data. Choice prediction accuracies from the direct and indirect methods 

were comparable, suggesting that the bias and choice decoders are aligned as illustrated 

in (A). As in (B), choice decoding was based on PAG activity from a 800 ms window 

before stimulus onset (0.5 chance level marked by dotted line; mean  SEM calculated 

across sessions, PCA dimensionality reduction) D. Consistent with an alignment of the 

bias and choice hyperplanes, the correlation coefficient between weights of choice and 

bias decoder hyperplanes (y-axis) was significantly positive for most of the sessions (* 

permutation test, p - value < 0.05). E. Across sessions choice prediction accuracy (direct 

method) correlated with the strength of the total bias representation (defined as the R
2 

of 

the total bias linear regression model; corr = 0.91, p - value = 0.0004). Each point 

represents a single session (dots or stars for Monkey 1 or 2, respectively). 

 

Figure 6. Total bias acts as an initial offset of the decision variable before accumulation 

of motion information begins. A - C. Instantaneous decision variable (DV) from the 

logistic regression model of choice. The DV is averaged across trials in which the total 

bias was aligned with the monkey’s choice (blue) or trials in which the total bias was 

against the final choice (red, non-matched). Different panels show the average DVs for 

all (A), difficult (B) or easy (C) trials. The DVs were calculated based on 100ms of 
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dimensionality-reduced neural responses centered at each time (PCA axes for 

dimensionality reduction were the same as those used in earlier figures and calculated 

for the 800ms window before stimulus onset). The analyses window was moved in steps 

of 20 ms. Shading indicates SEM.  

 

Methods 

 

Experimental Procedures.  

We recorded extracellular activity from populations of neurons in the prearcuate gyrus 

(PAG) of two macaque monkeys performing a direction discrimination task. All 

training, surgery, and recording procedures conformed to the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by 

Stanford University Animal Care and Use Committee.  

 

Behavioral Tasks 

The direction discrimination task is illustrated in Figure 1A. Each trial began when a 

fixation point (FP; 0.3° diameter) appeared at the center of the monitor. The monkey 

was required to fixate within ±1.5° of the FP. Afterwards two targets (T1 and T2) 

appeared. In 11 sessions, the targets were placed on opposite sides of the screen. In the 

remaining five sessions, both targets were placed contralateral to the recorded 

hemisphere. After a short delay (400 ms for 15 data sets and 500–1500 ms for one data 

set, median 876 ms), a patch of randomly moving dots was shown at the center of the 

screen for 800 ms. The fraction of coherently moving dots (stimulus strength or 

coherence) defined the difficulty of a given trial (Britten et al., 1992; Kiani et al., 2008; 

Shadlen and Newsome, 2001). The motion direction and strength were chosen randomly 

on each trial from a set of predefined values. The coherent motion direction could be 

toward one target or the other. Coherence ranged from 0 to 0.8. We use signed motion 

coherence, C, to specify motion direction and coherence using one number, where 

positive values indicate motion toward T1 and negative values motion toward T2. The 

coherence range was tailored for each monkey to obtain the full range of performance 

accuracy from the chance level to nearly perfect. The stimulus was followed by a delay 

period of variable duration (302–1478 ms, median = 758 ms) randomly selected on each 
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trial. At the end of the delay period, FP disappeared (Go cue) and the monkey had to 

report the perceived direction of motion by making a saccade towards the corresponding 

target and maintaining gaze on the target until the trial outcome was revealed. Correct 

choices were rewarded with a drop of juice. For the zero coherence trials, choices were 

rewarded randomly with a probability of 0.5. Throughout the session the eye position 

was monitored at 1 kHz with a scleral search coil (CNC Engineering, Seattle). 

 

Neural Recording 

We recorded extracellular activity of a population of PAG neurons using 96 channel 

microelectrode arrays (Blackrock Microsystems, Salt Lake City; electrode length = 1.5 

mm; spacing = 0.4 mm; impedance ~ 0.5 MΩ), while monkeys performed the 

behavioral task. The electrode array was implanted anterior to the concavity of the 

arcuate sulcus and posterior to the tip of principal sulcus. Neural signals were saved 

online with 30 kHz sampling rate and spike waveforms were sorted offline (Plexon Inc., 

Dallas). Recording artifacts simultaneously occurring in a large number of channels 

were removed using customized algorithms. We identified 169–250 single and multi-

units in each session (median = 220). We use the term ‘‘units’’ to refer to both well-

isolated single neurons and multi-units. The data sets analyzed in the present study 

included 9 and 7 recording sessions from monkeys 1 and 2, respectively. These sessions 

were chosen based on three factors: large number of trials per session (>1000), high 

quality of recordings, and large number of units. Although the position of the electrode 

array could not be changed by the experimenter after implantation, the recorded units 

could change from one session to another, presumably due to small movements of 

cortex relative to the array. The analyzed data were published previously (Kiani et al., 

2014b, 2015) in the context of different scientific questions.  

Due to the length of the experimental sessions and the large size of the datasets, 

they were saved as multiple small files, each containing data from an experimental 

block of more than a hundred trials. These data files were concatenated offline at the 

end of the session. For 11 of the recording sessions, online spike detection thresholds 

varied in different blocks of the experiment, causing non-stationary baseline firing rates 

across the session. To make certain that our analyses were not affected by this non-

stationarity, we z-scored firing rates in each block after removing the first and last three 

trials in the block (median number of removed trials per session, 18, range, 6-30). The 

z-scored firing rates were concatenated across the session and used in the session by 
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session analyses explained below. Similar but noisier results were obtained when the 

blocks were analyzed separately without z-scoring. 

 

Behavioral Data Analysis 

Psychometric curves were defined as the fraction of trials in which the monkey chose 

target T1 for a given signed motion coherence, C, for each session. We fit a logistic 

function to the psychometric curve: 

 Logit[𝑃𝑇1(𝐶)] = 𝛽 + 𝛼𝐶 (1) 

 

where 𝑃𝑇1 is the probability of choosing target T1, and α and β are model parameters, 

describing sensitivity and overall bias, respectively. We used a maximum-likelihood 

fitting procedure for Equation 1 and all subsequent models in the paper. 

We use the psychometric function of each session to define difficult and easy 

motion strengths. Difficult motion strengths were those associated with lower than 75% 

accuracy. Easy motion strengths were those associated with accuracy equal or higher 

than 75%.  

 

Modeling behavior  

We hypothesized (and confirmed below) that behavior is influenced by past history of 

choices at two different time scales: long timescale changes in target preference varying 

over tens to hundreds of trials, and short timescale preference shaped by action and 

reward history in a few previous trials.  

We defined the slow timescale fluctuations of choice preference based on the 

frequency of choosing targets T1 and T2:  

 
𝛹𝑠(𝑖) =

𝑁𝑇1(𝑖)

𝑁𝑇1(𝑖) + 𝑁𝑇2(𝑖)
 −  

1

2
 

 

(2) 

 

were 𝑁𝑇1(𝑖) and 𝑁𝑇2(𝑖) correspond to the number of T1 or T2 choices, respectively. 

𝑁𝑇1(𝑖) and 𝑁𝑇2(𝑖) were computed for a group of trials around i : [𝑖 −𝑊 2⁄ , 𝑖 − 2] ∪

[𝑖 + 1,  𝑖 + 𝑊 2⁄ ]. Trials i and i-1 were excluded from calculation of 𝛹𝑠(𝑖) to avoid 

confounds and any overlap with the variables that will be used to define the fast 

timescale fluctuations of choice preference (see below). We tested various trial 

windows, W, as explained below. To ensure that 𝛹𝑠(𝑖) reflected spontaneously 

generated choice preference and not random fluctuations in the stimulus history, we 
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subsampled trials in the analysis window to balance the number of trials for each signed 

coherence. Excluding trials after the ith trial — making the definition of 𝛹𝑠(𝑖) causal — 

did not qualitatively change our results.  

We defined fast time-scale changes of choice preference based on immediately 

preceding trials. Past studies suggest that the outcome of decisions before trial i can 

influence the choice on current trials i (Abrahamyan et al., 2016; Busse et al., 2011; 

Hermoso-Mendizabal et al., 2020). We use three indicator variables to define different 

combinations of choice and outcome for each preceding trial. For trial i-n, where i 

indicates the current trial and n indicates how many trials back in the past are 

considered, the vector of indicator variables are: 

 

 

𝛹𝑓
−𝑛(𝑖) =

{
 

 
(1 0 0) if 𝑇1−

(0 1 0) if 𝑇1+ 
(0 0 1) if 𝑇2−

(0 0 0) if 𝑇2+

 

 

 

(3) 

 

where T1 and T2 indicate the two choices, and +/- indicate the two possible outcomes 

(rewarded/unrewarded) of trial i - n. Here and further in the text we use bold symbol 

notation to denote vectors. 

To test the effect of fast and slow timescale choice preference on the monkey’s 

behavior, we used a logistic regression model (Hastie et al., 2001) that included both the 

motion strength and direction from the current i
th

 trial (signed coherence C), together 

with the slow and fast choice preference fluctuations:  

 

 Logit[𝑃𝑇1(𝑖)] = 𝑏0 + 𝑏1𝐶(𝑖) + 𝒃𝟐(𝜳𝑓
−1(𝑖))𝑇 + 𝑏3𝛹𝑠(𝑖) (4) 

 

where 𝑃𝑇1(𝑖) is the probability of a T1 choice in trial i. The predictor 𝜳𝑓
−1(𝑖) defines 

the fast choice preference fluctuations, which are shaped by choice and reward on the 

previous trial (Equation 3), and 𝛹𝑠(𝑖) is the slow choice preference fluctuation that 

varies at time scales much larger than the immediately experienced history (Equation 2). 

Here the model weights 𝑏0, 𝑏1 and 𝑏3 are constants and 𝒃𝟐 is a row vector composed of 

three constants.  

The model in Equation 4 was cross-validated using a leave-one-out procedure: 

the model was fit to all trials except for a held-out trial and its preceding trial, which 

was used for estimating the fast choice preference for the held-out trial. We used the 
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model parameters to predict the probability of a T1 choice in the held-out trial. The 

procedure was repeated for all trials in the experiment. For each training set we 

balanced the number of T1 and T2 choices by randomly removing trials corresponding 

to the surplus choice. We considered that the model prediction was correct if it gave a 

higher probability to the target chosen by the monkey. The overall prediction accuracy 

of the model was calculated for all trials in a session, or sub-groups of easy and difficult 

trials.  

We used the model described in Equation 4 to estimate fast and slow biases on 

each trial of each session. The “fast bias” at trial i was calculated as 𝐵𝑓(𝑖) =

𝒃𝟐(𝜳𝑓
−1(𝑖))𝑇. The “slow bias” was calculated as 𝐵𝑠(𝑖) = 𝑏0 + 𝑏3𝛹𝑠(𝑖). We defined the 

“total bias” as the sum of the fast and slow biases, 𝐵𝑡(𝑖) = 𝐵𝑓(𝑖) + 𝐵𝑠(𝑖). The 

advantage of defining fast and slow bias effects on the current choice using the 

parameters obtained by the logistic regression model is that all variables are measured 

using log-odds, thereby allowing a direct comparison between the strength of the three 

variables on choices.  

The significance of the effects of slow and fast choice preference fluctuations on 

choices was assessed by shuffling 𝜳𝒇
−𝒏(𝑖) and 𝛹𝑠(𝑖) independently across trials and 

fitting Equation 4 to this shuffled data. We repeated this process 1000 times to calculate 

the distribution of prediction accuracy for the shuffled data, corresponding to the null 

hypothesis distribution. As in our shuffling procedure we kept the relation between the 

monkey’s choice and motion coherence intact, the null hypothesis distribution was 

centered on the baseline prediction accuracy given solely by the stimulus direction and 

strength. We subtracted that mean from the model prediction accuracy to calculate the 

accuracy improvement conferred by adding the monkey’s fast and slow biases into the 

logistic regression model. The p-value for the significance of this improvement was 

calculated as the fraction of shuffles for which the prediction accuracy was higher than 

or equal to the prediction accuracy for the unshuffled data (one-tailed permutation test). 

To test whether the mean improvement across all the behavioral sessions was different 

from zero, we used a paired t-test between the predicted and mean shuffled accuracies 

across sessions.  

To select the time scale of the slow fluctuations of choice preference, 𝛹𝑠(𝑖), we 

tested a wide range of W from 20 to 500 trials in steps of 10 trials. A wide range of 

window sizes provided choice prediction accuracies significantly higher than a model 
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without slow choice preference. We chose the shortest window in a consecutive set of 

significant window sizes (W = 130; Figure S2). This window was used for calculation of 

slow choice preference in all subsequent analyses, but the results were qualitatively 

similar for other significant window sizes in Figure S2. The time scale of fast bias was 

chosen using a similar procedure by progressively including 𝜳𝒇
−𝟐(𝑖) to 𝜳𝒇

−𝟓(𝑖) in the 

model:  

 

Logit[𝑃𝑇1(𝑖)] = 𝑏0 + 𝑏1𝐶(𝑖) +∑𝒃𝒏+𝟏
𝑇𝜳𝒇

−𝒏(𝑖)

𝑗

𝑛=1

 

 

(5) 

where j = {1, …, 5}. Because choice prediction accuracy did not show tangible 

improvement by these extensions, we limited our definition of fast bias to the 

immediately preceding trial, as in Equation 4. 

To compare the strength of each bias on the decision, we used the model in 

Equation 4 to define the motion coherence in log-odds space of choice as 𝑀𝑐(𝑖) =

 𝑏1𝐶(𝑖). Next for each session separately, we defined the total choice predictive power 

in i
th

 trial as 𝐸𝑡(𝑖) = |𝑀𝑐(𝑖)| + |𝐵𝑓(𝑖)| + |𝐵𝑠(𝑖)|. The impact of each bias (𝐼𝑥) on the 

decision, (where 𝑥 ∈ {𝑠, 𝑓, 𝑡} stands for slow, fast or total bias) was defined as: 

 

𝐼𝑥 =
1

𝑁
∑

|𝐵𝑥(𝑖)|

𝐸𝑡(𝑖)

𝑗

𝑖=1

 

 

(6) 

 

To evaluate whether variations of total bias, 𝐵𝑡, correlates with the monkey’s 

accuracy, we measured average accuracy in windows of 130 trials. Accuracy was based 

on a subsampled group of trials to balance motion coherences. We used 130 trials to 

match the time window in which total bias was calculated. Next we calculated Pearson 

correlation between absolute value of total bias and accuracy. To assess the significance 

of Pearson correlations, we used a permutation test by randomly shuffling rewarded 

trials and recomputing accuracy and its correlation with absolute value of total bias (n = 

1000). To measure the reduction of accuracy (and reward) caused by the total bias, we 

calculated the mean difference of accuracy in trials with low and high total bias in each 

session. Trials were labeled as low (or high) bias, if the absolute value of the total bias 

was within the smallest (or largest) tertiles of the distribution of absolute total bias 

across all sessions. 
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 Neuronal Data Analysis 

 

Firing Rate and Dimensionality Reduction  

In the present study we focused on the activity of PAG units before stimulus 

appearance, the period of time when the effects of choice biases could be most easily 

detected as stimulus cannot yet affect neuronal responses (Shadlen and Newsome, 

2001). For each recorded unit, m, the firing rate (the number of spikes per unit of time) 

at trial i, 𝑟𝑚(𝑖), was computed in an 800 ms window that terminated 10 ms before dots 

onset.  

Because of the large number of recorded units and limited number of trials, 

models that use neural responses to predict bias or choice are prone to overfitting. To 

diminish overfitting, we reduced dimensionality of the neuronal population activity 

using principal component analysis (PCA). The projection of the neural responses on 

the j
th

 principal component in the i
th 

trial is defined as 

 

 
�̃�𝑗(𝑖) =  ∑ λ𝑚

𝑗
𝑟𝑚(𝑖)

𝑀

𝑚=1

 
 

(7) 

where 𝜆𝑚
𝑗

 is the j
th

 PCA coefficient for the m
th

 unit and M is the number of 

simultaneously recorded units. For each recording session, we used the lowest number 

of PCA  components, denoted J, which explained at least 50% of the total variance 

(range 38–52, median 48 components). The 50% cutoff provided a good balance 

between reducing overfitting (increasing prediction accuracy) and maintaining task-

related variance of neural responses. Qualitatively similar results were obtained for 

different variance cutoffs or for the raw data. Principal components were calculated 

across all trials.  

 

Decoding Biases — Linear Regression Models  

A linear regression model was used to investigate whether PAG population activity 

represents fast, slow and total biases. We regressed any of these biases with the first J 

principal components of population activity as 

 
𝐵𝑥(𝑖) =  𝛽0 +∑𝛽𝑗�̃�𝑗(𝑖) + 𝜀

𝐽

𝑗=1

 

 

(8) 
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where “x” stands for {s, f, t} for slow (𝐵𝑠), fast (𝐵𝑓), or total bias (𝐵𝑡), respectively, and 

𝜀 is a Gaussian noise term. J corresponds to the number of principal components that 

explain 50% of the total neural response variance, as explained above. Bias variables 

were z-scored using all trials in the session. The model was cross-validated using a 

leave-one-out procedure. The significance of the cross-validated R2 was assessed based 

on a permutation test (n = 1000 random shuffles of 𝐵𝑥; the one-tailed p-value was 

computed as the fraction of shuffles leading to a R2  higher than the one obtained from 

unshuffled 𝐵𝑥). 

 

Decoding Choices and Outcomes - Logistic Regression Models 

We used a logistic regression model to predict the monkey’s n
th

 past choice, future 

choice, or outcome, based on population activity of the units before stimulus onset on 

the current trial. 

 
Logit[𝑃𝑥(𝑖 + 𝑛)] =  𝛼0 +  ∑𝛼𝑗�̃�𝑗(𝑖)

𝐽

𝑗=1

 

 

(9) 

 

where i is the current trial, n ∈ {0,±1,±2,−3,−4,−5} and “x” stands for T1 for choice 

prediction and ‘+’ for outcome prediction (reward or not). Positive and negative n 

indicate trials after and before i, respectively.  

For the choice decoder, we balanced the training set for T1 and T2 choices to 

make chance level equal to 0.5 for the model prediction accuracy. Similar to the 

behavioral model in Equation 4, for each repetition/cross-validation, we randomly 

removed trials corresponding to the surplus choice to have equal numbers of T1 and T2 

choices. For the outcome decoder, we did not balance rewarded and unrewarded 

responses because errors comprised only a small fraction of trials (16%–29% across 

sessions) and balancing the number of rewarded and unrewarded trials led to exclusion 

of more than half of the trials in each session. Rather than dropping trials, we calculated 

the chance level for predicting trial outcome as the monkey’s overall reward rate (the 

fraction of the rewarded trials). Both models (choices or outcomes) were cross-validated 

using a leave-one-out procedure. For the model predicting upcoming choice (n = 0) the 

significance of the model prediction accuracy was assessed based on a permutation test 

similar to the ones described earlier (n = 1000 random shuffles of choices or outcomes). 
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For the remaining models we tested if the mean prediction accuracy calculated across 

sessions significantly differ from the chance level. 

 

Alignment of choice and the total bias decoders 

The bias and choice decoders (Equations 8 and 9) provide distances of pre-stimulus 

responses from the discriminant hyperplanes that best explain the monkey’s choice or 

total bias (𝑑𝑐ℎ𝑜𝑖𝑐𝑒 and 𝑑𝑏𝑖𝑎𝑠). If the pre-stimulus choice and bias representations were 

aligned, predicting the upcoming choice based on 𝑑𝑏𝑖𝑎𝑠 would be as accurate as using 

both 𝑑𝑐ℎ𝑜𝑖𝑐𝑒 and 𝑑𝑏𝑖𝑎𝑠. That is, 𝑑𝑐ℎ𝑜𝑖𝑐𝑒 would not provide additional information for 

predicting the choice beyond what is provided by 𝑑𝑏𝑖𝑎𝑠.To test this hypothesis we 

trained and compared two logistic regression models: 

  

Logit[𝑃𝑇1(𝑖)] = 𝑎1𝑑𝑏𝑖𝑎𝑠(𝑖) (10) 

and 

Logit[𝑃𝑇1(𝑖)] =  �̂�1𝑑𝑏𝑖𝑎𝑠(𝑖) + �̂�2𝑑𝑐ℎ𝑜𝑖𝑐𝑒(𝑖) (11) 

 

 Alternatively, one could test for the alignment of the neural representations of 

choice and bias by directly comparing the two discriminant hyperplanes. If our 

definition of total bias and its neural representation provide a complete account of the 

representation of choice prior to stimulus onset, one would expect parallel hyperplanes 

in Equations 8 and 9, and thereby strong correlations in the weight vectors that 

determine the norm of hyperplanes (�⃗� and 𝛽). In contrast, if our definition of total bias 

is an incomplete account of the factors that predict the choice prior to stimulus onset, 

and if those factors have distinct neural representations from our total bias, the choice 

hyperplane would not align with our total bias hyperplane. Specifically, if we assume 

that factors beyond our total bias add up to make a new bias term, 𝜗, that has a neural  

representation captured by 𝜗(𝑖) = 𝛾0 + ∑ 𝛾𝑗�̃�𝑗(𝑖)
𝐽
𝑗=1 , we can update Equation 8 to 

include all biases   

 
�́�𝑡(𝑖) =  (𝛽0 + 𝛾0) +∑𝛽𝑗�̃�𝑗(𝑖) +∑𝛾𝑗�̃�𝑗(𝑖)

𝐽

𝑗=1

+  𝜀

𝐽

𝑗=1

 

 

(12) 

where �́�𝑡 is the corrected bias term that includes both our slow and fast biases and 

additional factors that we may have failed to identify behaviorally in this paper. Because 

the combination of all possible bias terms is what enables the prediction of the 
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upcoming choice based on neural responses prior to stimulus onset (Logit[𝑃𝑇1(𝑖)] =

�́�𝑡(𝑖)), we can combine Equations 9 and 12 to write 

 
∑𝛼𝑗�̃�𝑗(𝑖)

𝐽

𝑗=1

=  (𝛽0 − 𝛼0) +∑𝛽𝑗�̃�𝑗(𝑖) +∑𝛾𝑗�̃�𝑗(𝑖)

𝐽

𝑗=1

+  𝜀

𝐽

𝑗=1

 

 

(13) 

Equation 13 clarifies that in the presence of additional bias factors not captured by our 

definition of total bias, the choice hyperplane would not need to align well with our 

total bias hyperplane. Alternatively, if our definition of total bias is complete within the 

precision conferred by our dataset, the third term on the right-hand side of Equation 13 

would be negligible and the choice and total bias hyperplanes would align well. We test 

for the alignment of hyperplanes by calculating the correlation of the weight vectors that 

determine their norms (�⃗� and 𝛽), and by calculating the angle of the two vectors. Since 

both hyperplanes lay in a highly dimensional space, angles calculated are from two 

random hyperplanes are biased towards 90 deg (that is, they are biased to be 

orthogonal). To account for this bias, we also computed the angle between the two 

hyperplanes using only from two up to 38 top PCA dimensions used for the previous 

analysis. Additionally, we checked choice prediction accuracy and total bias 

representation in a reduced space.       

In addition to the analyses above, we compared the accuracy of predicting 

choices using the neural representation of our total bias or the neural representation of 

choice prior to stimulus onset. For simplicity, we relied on the sign of 𝑑𝑐ℎ𝑜𝑖𝑐𝑒 and 𝑑𝑏𝑖𝑎𝑠. 

Based on Equation 9, positive values of 𝑑𝑐ℎ𝑜𝑖𝑐𝑒 mean a higher probability of choosing 

T1, while negative values mean a higher probability of choosing T2. Similarly, positive 

and negative 𝑑𝑏𝑖𝑎𝑠 suggest leaning toward T1 and T2, respectively.  

 

Choice decoder during stimulus presentation.  

To explore the dynamics of choice prediction accuracy based on neural responses, we 

extended Equation 9 to include time: 

 

 
Logit[𝑃𝑇1(𝑖, 𝑡)] =  𝛼0(𝑡) +  ∑𝛼𝑗(𝑡)�̃�𝑗(𝑖, 𝑡)

𝐽

𝑗=1

 

 

(14) 

   

where i is the current trial and t is the center of time window used for the analysis. We 

used a 100-ms sliding window that moved from 800 ms before to 1100 ms after 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.20.000224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000224
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

stimulus onset in steps of 20ms. The projection of the neural responses on the j
th

 

principal component in the i
th 

trial �̃�𝑗(𝑖, 𝑡) was defined using the same PCA coefficients 

used in Equation 7 and based on the 800 ms activity prior to stimulus onset. Similar to 

the model in Equation 9, we used a leave-one-out cross-validation and balanced choices 

in the training sets. 

The model decision variable (DV) given by the right-hand side of the above 

equation is the distance of population neural responses from a linear discriminant 

hyperplane separating T1 and T2 choices. To investigate how behavioral bias interacts 

with the DV, we calculated the mean DV conditional on trials where the pre-stimulus 

total bias favored the choice finally made by the animal (matched trials) or on trials 

where the total bias was against the final choice (non-matched). To plot the average of 

DV for each group of trials, we flipped the sign of the DV for T2 choice trials before 

averaging. 
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Supplementary Information 

 

Supplementary results 

 

Impact of slow and fast biases on monkey’s performance 

Since our task was designed such that the stimulus sequence across trials did not have 

temporal correlations, the existence of behavioral biases described above can only 

impair the monkey’s performance. As expected, periods with larger than average total 

bias correlated with periods with lower than average animal accuracy (percent of correct 

choices; Pearson correlation coefficient -0.08 ± 0.03, permutation test, p-value = 0.001). 

However, the reduction in accuracy was very small (0.007 ± 0.003%; one sample t-test, 

p-value = 0.02), suggesting that monkeys may not have noticed the adverse effect of 

biases on their performance or they did not find enough incentive to fully abolish them.  

 

Analysis of angle between choice and total bias decoders 

Conversion of the correlation coefficients to angles resulted in 70 ± 2.5 deg., 

significantly smaller than 90 (mean ± s.e.m., permutation test p-value = 0.001). 

However, we note that the angles were also far from zero, indicating that the alignment 

of the two hyperplanes was not perfect. The non-zero angles were at least partly due to 

the bias toward orthogonality in high-dimensional spaces. Repeating the correlation 

analysis and measuring angles in lower dimensional spaces (lower number of principal 

components) resulted in smaller angles as illustrated and elaborated in Supplementary 

Fig. 4. In any case, as demonstrated by our earlier analyses on choice prediction 

accuracy, the component of the choice hyperplane that was orthogonal to the bias 

hyperplane in the high-dimensional state space did not provide additional information 

for predicting behavior. Put differently, the non-zero angles between hyperplanes did 

not amount to functional differences with respect to the upcoming choice. 
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Supplementary Figures 

 

 

Figure S1. Statistically significant slow choice fluctuations through the session. A – B 

Slow fluctuations of choice preference are not an artifact generated by smoothing, as 

shown by the difference between the observed and shuffled-data auto-correlations. Top: 

slow choice preference calculated in 130 trials window (blue) from one example session 

of monkey 1 (A) and monkey 2 (B). The dotted line corresponds to condition with no 

choice preference. Bottom: the auto-correlograms of the slow choice preference 

fluctuation for experimental (blue) and shuffled data (black). The shuffled data were 

generated by permuting monkey choices across trials and recalculating the slow choice 

preference fluctuation (n = 1000). They represent the null hypothesis distribution when 

there are no actual fluctuations of choice preference. Black line corresponds to mean 

auto-correlograms of shuffled data and grey area corresponds to 90% of the distribution 

estimated from shuffles. C – D The mean auto-correlogram calculated across session for 

monkey 1 (C) and 2 (D). Convention as in A - B.  
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Figure S2. Slow and fast choice preference fluctuations have separated time scales. A. 

Mean increase in choice prediction accuracy of a model fitted to predict upcoming 

choice from the current stimulus coherence and the history of previous outcomes and 

choices in comparison to a model with just the coherence regressor. Fast choice 

preference is defined as a categorical variable that combines the choice and outcome in 

the previous trial but not on further trials (see Methods). Adding additional regressors 

from two trials back or further (i-k refers to a model including the coherence of the 

current trial i and choices and outcomes from the k previous trials as regressors) does 

not significantly improve the performance of the (i-1) model. B. The slow choice 

preference fluctuation occurs around a time scale of hundreds of trials. We took model 

(i-1) described before and extended it with one additional regressor - the choice 

preference calculated in a window T, varying between 20 and 500 trials. Significant 

improvement in the choice prediction accuracy of the extended model was observed for 

a broad range of T (*, 130 – 400 trials), but not outside this range. Significance tested 

using paired t-test (prediction accuracy for the (i-1) model against the extended model 

with slow choice preference).A-B. Prediction accuracy tested on difficult trials only. 
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Figure S3. Pre-stimulus activity of PAG neurons caries information about previous 

choice and outcome – the two components of the fast behavioral bias. A. Firing rate of 

example cells (left - monkey 1 and right - monkey 2) averaged across trials when animal 

previously has chosen first (black) or second (gray) target. Shaded area around curves 

corresponds to SEM. Time zero refers to the onset of stimulus in the present (i
th

) trial. 

Spikes are counted in a 100 ms window swept with 20 ms resolution. B. Mean cross-

validated prediction accuracy of decoding past and future choices from pre-stimulus 

activity of prearcuate gyrus cells. History and future horizons considered are up to five 

trials back and two trials forth from current i
th

 trial respectively. Rate calculated in 800 

ms window before stimulus onset (shaded rectangle in A). Dotted black line marks 

chance level (0.5). Accuracy averaged across 16 sessions ( SEM). C. Firing rate of 
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example cells averaged across previously rewarded (black) or unrewarded (gray) trials. 

D. Mean cross-validated prediction accuracy of decoding past and future outcome from 

pre-stimulus activity of prearcuate gyrus cells. Dotted black line marks chance level 

corresponding to animals performance (0.76, mean fraction of rewarded trials across 16 

sessions). C – D convention like in A – B.  

 

Figure S4. The statistics of choice and bias decoders as a function of number of 

principal components used in the analyses. A. Angle between weight vectors of choice 

and bias decoders B. Cross-validated prediction accuracy of choice decoder, and C. R
2 

of bias decoder calculated from test dataset of reduced dimensionality (from first two up 

to first 38 PCA components). Note that both decoders were trained on PCA’s explaining 

50% of the variance. 
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