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Abstract
Microbial metabolic processes greatly impact ecosystem functioning and the physiology
of multi-cellular host organisms. The inference of metabolic capabilities and pheno-
types from genome sequences with the help of prior biomolecular knowledge stored in
online databases remains a major challenge in systems biology. Here, we present gapseq:
a novel tool for automated pathway prediction and metabolic network reconstruction
from microbial genome sequences. gapseq combines databases of reference protein se-
quences (UniProt, TCDB), in tandem with pathway and reaction databases (MetaCyc,
KEGG, ModelSEED). This enables the statistical prediction of an organism’s metabolic
capabilities from sequence homology and pathway topology criteria. By incorporating
a novel LP-based gap-filling algorithm, gapseq facilitates the construction of genome-
scale metabolic models that are suitable for metabolic phenotype predictions by using
constraint-based flux analysis. We validated gapseq by comparing predictions to experi-
mental data for more than 1, 000 bacterial organisms comprising over 10, 000 phenotypic
traits that include enzyme activity, energy sources, fermentation products, and gene es-
sentiality. This large-scale phenotypic trait prediction test showed, that gapseq yields
an overall accuracy of 80% and thereby outperforming other commonly used reconstruc-
tion tools. Furthermore, we illustrate the application of gapseq-reconstructed models
to simulate biochemical interactions between microorganisms in multi-species communi-
ties. Altogether, gapseq (https://github.com/jotech/gapseq) is a new method that
improves the predictive potential of automated metabolic network reconstructions and
further increases their applicability in biotechnological, ecological, and medical research.
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1 Introduction

Anything you have to do repeatedly may be ripe for automation.
— Doug McIlroy

Metabolism is central for organismal life. It provides metabolites and energy for all
cellular processes. A majority of metabolic reactions are catalysed by enzymes, which
are encoded in the genome of the respective organism. Those catalysed reactions form a
complex metabolic network of numerous biochemical transformations, which the organ-
ism is presumably able to perform [21].
In systems biology, the reconstruction of metabolic networks plays an essential role, as
the network represents an organism’s capabilities to interact with its biotic and abiotic
environment and to transform nutrients into biomass. Mathematical analysis has shown
great potential for dissecting the functioning of metabolic networks on the level of topo-
logical, stoichiometric, and kinetic models [79], which together provide a wide array of
methods [47]. Although different microbial metabolic modelling approaches exist, they
can be summarised by a theoretical framework that provides a unifying view on micro-
bial growth [38]. Metabolic models not only have demonstrated their ability to predict
phenotypes on the level of cellular growth and gene knockouts, but also provide potential
molecular mechanisms in form of gene and reaction activities, which can be validated ex-
perimentally [87]. Due to this predictive potential, genome-scale metabolic models have
been applied to identify metabolic interactions between different organisms [1, 32, 44, 80,
96], to study host-microbiome interactions [33, 64, 95], to predict novel drug targets to
fight microbial pathogens [55, 85], and for the rational design of microbial genotypes and
growth-media conditions for the industrial production or degradation of biochemicals [59,
66]. Furthermore, recent advances in DNA-sequencing technologies have led to a vast in-
crease in available genomic- and metagenomic sequences in databases [48], which further
expands the applicability of genome-scale metabolic network reconstructions.
The reconstruction of metabolic networks links genomic content with biochemical reac-
tions and therefore depends on sequence annotations and reaction databases, which are
both crucial for overall network quality [83, 92]. A general problem in reconstructing
metabolic networks occurs by an incorrect representation of the organism’s physiology.
First, inconsistencies in databases can lead to an incorporation of imbalanced reactions
into the metabolic network, which may become responsible for incorrect energy produc-
tion by futile cycles [83]. Second, many genes are lacking a functional annotation due to
a lack of knowledge [7] and, thus, also the gene products cannot be integrated into the
metabolic networks, which potentially lead to gaps in pathways. Third, the gap-filling of
metabolic networks is frequently done by adding a minimum number of reactions from
a reference database that facilitate growth under a chemically defined growth medium
[34, 63, 84]. Such approaches miss further evidences potentially hidden in sequences and
are biased towards the growth medium used for gap-filling. And fourth, the validation
of predictions made by metabolic networks is so far only performed with smaller experi-
mental data sets from model laboratory strains such as Escherichia coli K12 or Bacillus
subtilis 168 and therefore the overall performance of many metabolic models is insuffi-
ciently assured.
Genome-scale metabolic network reconstructions are increasingly applied to simulate
complex metabolic processes in microbial communities [45]. Such simulations are highly
sensitive to the quality of the individual metabolic networks of the community members.
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This is because the accurate prediction of fermentation products and carbon source util-
isation is crucial for the correct prediction of metabolic interactions since the substances
produced by one organism may serve as resource for others [61]. Thus in multi-species
communities, the metabolic fluxes of organisms are intrinsically connected, which can
lead to error propagation when one defective model affects otherwise correctly working
models.
In this work, we present gapseq a novel method for pathway analysis and metabolic net-
work reconstruction. The pathway prediction is based on multiple biochemistry databases
that comprise information on pathway structures, the pathways’ key enzymes, and reac-
tion stoichiometries. Moreover, gapseq constructs genome-scale metabolic models that
enable metabolic phenotype predictions as well as the application in simulations of com-
munity metabolism. Models are constructed using a manually curated reaction database
that is free of thermodynamically infeasible reaction cycles. As input, gapseq takes the
organism’s genome sequence in FASTA format, without the need for an additional anno-
tation file. Topology as well as sequence homology to reference proteins inform the filling
of network gaps, and the screening for potential carbon sources and metabolic products
is done in a way that reduces the impact of growth medium definitions. Finally, we used
large-scale experimental data sets to validate enzyme activity, carbon source utilisation,
fermentation products, and gene essentially.

2 Material and methods

2.1 Program overview & source code availability

The source code is accessible and maintained at https://github.com/jotech/gapseq.
The program is called by ./gapseq, which is a wrapper script for the main modules.
Important program calls are ./gapseq find (pathway and reaction finder), ./gapseq
find-transport (transporter detection), ./gapseq draft (draft model creation), ./gapseq
fill (gap-filling), or ./gapseq doall to perform all in line. When ever necessary,
method sections directly refer to config, data and source code files from the gapseq pack-
age, which contains the main subfolders src/ with source code files and dat/, which
contains databases and also the sequence files in dat/seq/. Figure 1 shows an overview
of the different gapseq modules.

2.2 Pathway and sequence databases

Pathways are considered as a list of reactions with enzyme names and EC numbers.
Pathway definition were obtained from MetaCyc [13], KEGG [39], and ModelSEED [34].
For MetaCyc, PathwayTools [40] was used in combination with PythonCyc to obtain
pathway definitions [78] (src/meta2pwy.py). Information on Kegg pathways were re-
trieved directly from the KEGG homepage: reactions (http://rest.kegg.jp/list/
reaction), and EC numbers (http://rest.kegg.jp/link/pathway/ec) and further
processed (src/kegg_pwy.R). In case of ModelSEED, subsystem definition were obtained
from the homepage: http://modelseed.org/genomes/Annotations (src/seed_pwy.R).
In addition, manual defined and revised pathways are stored in the file dat/custom_pwy.tbl.
Sequence data needed for pathway prediction were downloaded from UniProt [82] for each
reaction identified by EC number, enzyme name, or gene name. Both reviewed and unre-
viewed sequences are considered and stored as clustered UniPac sequences (src/uniprot.sh).
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Figure 1: Chart showing the main components and workflow of gapseq. Free icons
were used from https://www.flaticon.com (creators: Freepik, Gregor Cresnar, Freepik,
Smashicons).

To increase the sequence pool for a given reaction, alternative EC numbers from BRENDA
[37] and from the Enzyme Nomenclature Committee https://www.qmul.ac.uk/sbcs/
iubmb/enzyme/ are integrated (src/altec.R, dat/brenda_ec.csv).

2.3 Pathway prediction

For each pathway selected from a pathway database (MetaCyc, KEGG, ModelSEED,
custom), gapseq searches for sequence evidence and a pathway is defined as present if
enough of its reactions were found to have sequence evidence. In more detail, sequence
data (section 2.2) is used for homology search by tblastn [12] with the protein sequence
as query and the genome as database. By default, a bitscore ≥ 200 and a coverage
of at least 75% is needed to make a hit. For certain reactions, the user can define
additional criteria, for example an identity of ≥ 75% (dat/exception.tbl). In case of
protein complexes with subunits, a more complex procedure is followed (section 2.4).
Spontaneous reactions, which do not need an enzyme, were set to be present in any case.
In general, a pathway is considered to be present if at least 80% of the reactions are
found (completenessCutoffNoHints threshold). This pathway completeness threshold
is lowered for pathways in following cases:

1. If the pathway contains key reactions, as it is defined for some pathways in MetaCyc,
and all key reactions are found, then completenessCutoff of the total reactions
needed to be found. We used a value of 2/3 for this threshold.

2. In the cases in which no sequence data is available for specific reactions, the status
of the reactions is set to "vague" and these reactions do not count as missing if they
account for less than vagueCutoff of the total reactions of a pathway. We used a
value of 1/3 for this threshold.

The pathway prediction algorithm is implemented in the bash shell script src/gapseq_find.sh,
which uses GNU parallel [81] and fastaindex/fastafetch from exonerate [75].
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2.4 Protein complex prediction

A problem with automatic sequence download for reactions (as FASTA files) comes with
protein complexes, for which a simple blast hit may be not sufficient to predict enzyme
presence. In gapseq, subunits are detected by text matching in the FASTA headers.
Search terms are: "subunit", "chain", "polypeptide", "component", and different num-
bering systems (roman, arabic, greek) are homogenised. To avoid artifacts in text match-
ing, subunits that occur less than five times in the sequence file are not considered, and
in cases in which a subunit occurs almost exclusively (≥ 66%) the other entries are not
taken into account. All FASTA entries, which could not matched by text mining, or
which are excluded because of the coverage, are labeled ’undefined subunit’ and do not
add to the total amount of subunits. For each recognised subunit, a blast search is done.
A protein complex counts as present if more than 50% of the subunits could be found,
whereby the presence of ’undefined subunits’ tip the balance if exactly 50% of the sub-
units were found. The text matching with regular expressions is done with R’s stringr
[90] and biostrings [57] as defined src/complex_detection.R. The script is called from
within the shell script src/gapseq_find.sh.

2.5 Transporter prediction

For transporter search, sequence data from the Transporter Classification Database is em-
ployed [70]. In addition, manual defined sequences can be defined in dat/seq/transporter.fasta.
The sequence set is reduced to a subset of transporters that involve metabolites known
to be produced or consumed by microorganisms (dat/sub2pwy.csv). Subsequently, the
genome is queried by the reduced sequences using tblastn [12]. For each hit (default
cutoffs: bitscore ≥ 200 and coverage ≥ 75%), the transporter type (1. Channels and
pores, 2. Electrochemical potential-driven transporter, 3. Primary active transporters,
4. Group translocators) is determined using the TC number mentioned in the FASTA
header. A suitable candidate reaction is searched in the reaction database. If there is a
hit for a transporter of a substance but no candidate reaction for the respective trans-
porter type can be found, then other transporter types are considered. The transporter
search is done by the shell script src/transporter.sh that uses GNU parallel [81] and
fastaindex/fastafetch from exonerate [75].
Candidate transporters are selected from the reaction database by transporter type and
substance name. This is done by text search and is currently implemented only for the
ModelSEED namespace. From the ModelSEED reaction database all reaction with the
flag is_transport = 1 are taken and the transporter type is predicted by keywords:
"channel", "pore" (1. Channels and pores); "uniport", "symport", "antiport", "per-
mease", "gradient" (2. Electrochemical potential-driven transporters); "ABC", "AT-
Pase", "ATP"(3. Primary active transporters); "PTS" (4. Group translocators). If no
transporter type could be identified by keywords, additional string matching is done for
ATPases, proton/sodium antiporter, and PTS by considering the stoichiometry of the
involved metabolites. The transported substance is identified as the substance that oc-
curs on both sides of the reaction. In addition, reactions from the reaction database can be
linked manually to substances and transporter types (dat/seed_transporter_custom.tbl).
The text matching with regular expressions is done with stringr [90] (src/seed_transporter.R).
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2.6 Biochemistry database curation and construction of univer-
sal metabolic model

For the construction of genome-scale metabolic network models, gapseq uses a reactions
and metabolite database that is derived from the ModelSEED database [34] as from
January 2018. In addition, 30 new reactions and 2 new metabolites were introduced
to the gapseq biochemistry database (see suppl. table S1). All reactions and metabo-
lites from the database were included for the construction of a full universal metabolic
network model; an approach that is also used in CarveMe [50]. We curated the underly-
ing biochemistry database in order to correct inconsistencies in reaction stoichiometries
and reversibilities. Inconsistencies were identified by optimising the universal network
model for ATP-production without any nutritional input to the model using flux bal-
ance analysis. In case of ATP-production, the flux distributions of such thermodynami-
cally infeasible reaction cycles were investigated by cross-checking the involved reactions
with literature information, the BRENDA database for enzymes [37] and the MetaCyc
database [13]. Stochiometries and reversibilities of erroneous reactions were corrected ac-
cordingly. This curation procedure was repeated until no theromodynamically infeasible
and ATP-generating reaction cycles were observed.
Hits from the pathway prediction (2.3) and transporter prediction (2.5) are mapped to
the gapseq reaction database using different common identifiers. A majority of reactions
are directly matched via their corresponding Enzyme Commission (EC) system identifier
[88] and Transporter Classification (TC) system identifier [70], respectively. For this map-
ping, also alternative EC-numbers for enzymatic reactions as defined in the BRENDA
database [37] are considered. Moreover, the databases used for pathway and transporter
predictions often provide cross-links to the reaction’s KEGG ID, which is also assigned
to most reactions in the gapseq database and used to match reactions. Additionally, the
MNXref database [6] provides cross links between several biochemistry databases, which
gapseq also utilises to translate hits from the pathway predictions to model reactions.
Finally, a manual translation of enzyme names to model reactions is done for some re-
actions, which we identified as important reactions but which failed to match between
the pathway databases (2.3) and the gapseq model reactions using other reaction iden-
tifies (dat/seed_Enzyme_Name_Reactions_Aliases.tsv). The overall mapping is done
by the function getDBhit() as defined in ./src/gapseq_find.sh.

2.7 Model draft generation

A draft genome-scale metabolic model is constructed based on the results from the
pathway and transporter predictions (see above). A reaction is added to the draft
model if the corresponding enzyme/transporter was directly found or if the a path-
way was predicted to be present (i.e. due to pathway completeness and key enzymes)
in which the reaction participates. Additionally, spontaneous reactions as defined in
the MetaCyc database as well as transport reaction of compounds, which are know
to be able to cross cell membranes by means of diffusion, are directly added to every
draft model. As part of the draft model construction gapseq adds a biomass reac-
tion to the network that aims to describe the composition of molecular constituents
that the organism needs to produce in order to form 1 g dry weight (1 gDW) of bac-
terial biomass. gapseq uses the biomass composition definition from the ModelSEED
database for Gram-positive (dat/seed_biomass.DT_gramPos.tsv) and Gram-negative
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bacteria (dat/seed_biomass.DT_gramNeg.tsv). If no Gram-staining property is spec-
ified by the user, gapseq predicts the Gram-staining-dependent biomass reactions by
finding the closest 16S-rRNA-gene neighbor using a blastn search against reference 16S-
rRNA gene sequences from 4647 bacterial species with known Gram-staining properties
that are obtained from the PROTRAITS database [10]. The model draft generation is
done by the R script src/generate_GSdraft.R. Currently, only reactions are added

2.8 Gap-filling algorithm

gapseq provides a gap-filling algorithm that adds reactions to the model in order to
enable biomass production (i.e. growth) and likely anabolic and catabolic capabilities.
The algorithm uses the alignment statistics (i.e. the bitscore) from the pathway- and
transporter prediction steps of gapseq (see above) to preferentially add reactions to the
network, which have the highest genetic evidence. This approach is especially relevant
in cases where the sequence similarity to known enzyme-coding genes was close to but
did not reach the cutoff value b, which is required for a reaction to be included directly
into the draft network. In contrast to the gap-filling algorithms described in previous
works [4] and [50], which also use genetic evidence-weighted gap-filling, the gap-filling
problem in gapseq is not formulated as Mixed Integer Linear Program (MILP) but as
Linear Program (LP), and is derived from the parsimonious enzyme usage Flux Balance
Analysis (pFBA) algorithm developed by Lewis et al., 2010 [47]. Therefore, the alignment
statistics (i.e. bitscore) are translated into weights for the corresponding model reactions
and incorporated into the problem formulation:

max: vj − c
∑
iεRall

wi|vi| , (1)

wi =


wmin bi ≥ u | i εRdraft

(bi − u)
(
wmin−wmax

u−l

)
+ wmin l ≤ bi < u

wmax bi < l

s.t.
S · v = 0

lb ≤ v ≤ ub

Where Rall is the set of all reaction in the universal model, Rdraft are the reactions,
which are already part of the draft network before gap-filling, vj is the flux through
the objective reactions (e.g. biomass production), vi the flux through reaction i, wi
the weight for reaction i, v the flux vector for all reactions, and c a scalar factor that
determines the contribution of the absolute reduction of weighted fluxes to the overall
FBA solution (default: c = 0.001). Moreover, a maximum weight value wmax (default:
100) is assigned if the reaction’s highest bitscore is smaller than a threshold l (default:
50). A minimum reaction weight wmin (default: 0.005) is assigned to reactions with a
bitscore higher than u (default: 200) or if the reactions are already part of the draft
model. S is the stoichiometric matrix and lb and ub the lower and upper flux bound
vectors. Following the the solution of the LP (1), reactions carrying a flux and which
are not part of the draft model are added to the network model. The algorithm is
implemented in src/gapfill4.R.
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2.9 Gap-filling of biomass, carbon sources, and fermentation prod-
ucts

Gap-filling of a draft model in gapseq requires only for the first step a user-defined growth
medium that is ideally known to support growth of the organism of interest in vivo. A
set of generic growth media (e.g. LB, TSB, M9) is provided in the folder dat/medium/.
In addition, the user can provide also a custom-made growth medium definition. The
above described gap-filling algorithm is used to improve the generated draft model in four
steps.

1. Biomass production: To ensure that the model is able to produce biomass under
the given nutritional input (medium) the gap-filling algorithm is applied while the
objective is defined as the flux through the biomass reaction. This step will add all
missing reactions that are essential for in silico growth.

2. Individual biomass components: It is checked whether the model supports the
biosynthesis of biomass components. Therefore, the objective function is set to
the production of one biomass component at a time and the gap-fill algorithm is
performed. This gap-filling step is repeated for each biomass component metabolite
twice, with and without oxygen to potentially allow aerobic and anaerobic growth
for facultative anaerobe species.

3. Alternative energy sources: gapseq tries to gap-fill likely metabolic pathways,
which enable the utilisation of alternative energy sources, which might not be part
of the defined growth medium. To this end, the model is re-constrained to a M9-
like minimal medium containing a single carbon source of interest at the time.
As objective function, the summed flux of artificial reactions that accept electrons
from the electron carriers ubiquinol, menaquinol, or NADH is defined. This test
can be considered as an in silico simulation of the commonly used BIOLOG carbon
source utilisation test arrays [76] in which the colometric effect is coupled to a
dehydrogenase [8]. This gap-filling step is performed for all metabolites defined in
dat/sub2pwy.csv.

4. Metabolic products: Finally, the same list of compounds as for step 3, is used to
check whether the network can be gap-filled to allow the formation of these metabo-
lites. For each compound the gap-filling algorithm is applied with the production
of the focal compound as objective function.

While step 1 considers all reaction from the universal model as potential candidate reac-
tions for gap-filling, steps 2-4 allow only the addition of candidate reactions to the model
with a corresponding bitscore from the pathway prediction (2.3) higher than a threshold
value b (default: 50). Thus, these so-termed "core reactions" represent only reactions,
for which gapseq has found genomic sequence or pathway evidence. This approach for
steps 2-4 is chosen to avoid the addition of biosynthetic capabilities to the model, which
the organism presumably does not possess.

2.10 Validation with enzymatic data (BacDive)

The Bacterial Diversity Metadatabase (BacDive) [67] was used to obtain enzymatic ac-
tivity data. For this purpose, a list of type strains IDs where downloaded using the
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advanced search. Afterwards the IDs were used to query the database via the R pack-
age BacDiveR (0.9.1) to obtain the data [46]. If the stored data contained non-zero
entries for enzymatic activity and if a genome assembly was available on NCBI, the
type strain was considered for the validation analysis and. The respective genome as-
semblies were downloaded with ncbi-genome-download (https://github.com/kblin/
ncbi-genome-download). If multiple genomes were available for one type strain, then
’representative’ and ’complete’ (NCBI tags) genomes were preferred and possibly the
most complete genome selected. Genome completeness was estimated by employing the
software BUSCO (3.0.2) [74]. In total, 3017 type strain genomes were taken as input
for ModelSEED (2.5.1), CarveMe (1.2.2), and gapseq to create metabolic models. The
gap-filling was set to default for each program, i.e. a complete medium was assumed.
The final test whether a reaction activity is covered by a model was done by checking if
the corresponding reaction is present in the model. This was done by matching enzymes
and reactions via EC numbers. For CarveMe the vmh (https://www.vmh.life) and for
ModelSEED and gapseq the ModelSEED (http://modelseed.org) reaction database
was used to association reactions and EC numbers. For the EC numbers 3.1.3.1, 3.1.3.2,
the corresponding reactions were the same, and thus unspecific, so that both EC numbers
were not considered for the validation analysis. In general, the enzyme activities in the
BacDive database have the form active ("+") or not active ("-") but some entries were
ambiguous (e.g.: "+/-"). The ambiguous entries were not taken into account.

2.11 Validation with carbon sources data (ProTraits)

Data for the validation of carbon source utilisation was obtained from the "atlas of
prokaryotic traits" database (ProTraits) [10]. A tab-separated table with binarised pre-
dictions with a stringent threshold of precision of ≥ 0.95 were downloaded from http:
//protraits.irb.hr/data.html. For organisms which had at least one carbon source
prediction, a genome was searched on NCBI RefSeq [71]. In cases where a genome as-
sembly was found, it was taken as input for ModelSEED, CarveMe, and gapseq to create
metabolic models. The number of potential carbon sources was reduced to a subset for
which a mapping from substance name to ModelSEED and CarveMe model namespace
existed (dat/sub2pwy.csv). The tests for D-lyxose were removed because it was listed
as all negative in ProTraits and also all compared pipelines predicted no utilisation. The
main test whether a carbon source can be used by a model was done in a BIOLOG-
like manner as described above (see 2.9). To this end, temporary reactions to recycle
reduced electron carriers as carbon source utilisation indicators were added to the respec-
tive model. The objective for optimisation was set to maximise the flux through these
recycling reactions. The exchange reactions were limited to a minimal medium with
minerals and the focal potential carbon source. This theoretical approach tests, whether
the model is able to pass electrons from the potential carbon source to electron carrier
metabolites. A carbon source was predicted to be able to serve as energy source if the
recycle reactions carried a positive flux.

2.12 Prediction of gene essentiality

To predict the essentiality of genes we performed in silico single gene deletion phe-
notype analysis for the network reconstructions of Escherichia coli str. K-12 substr.
MG1655 (RefSeq assembly accession: GCF_000005845.2), Bacillus subtilis substr. sub-
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tilis str. 168 (GCF_000789275.1), Shewanella oneidensis MR-1 (GCF_000146165.2),
Pseudomonas aeruginosa PAO1 (GCF_000006765.1), and Mycoplasma genitalium G37
(GCF_000027325.1). The analysis was performed on the basis of the models’ Gene-
Protein-Reaction (GPR) mappings and according to the protocol by Thiele and Palsson,
2010 [83]. To this end, the contingency tables of predicted growth/no growth phenotypes
from the network models and experimentally determined growth phenotypes of gene dele-
tion mutants were constructed. Genes were predicted to be conditionally essential under
the given growth environment if the predicted growth rates of the models were below
0.01 hr-1. The growth media compositions for growth predictions were defined as M9
with glucose as carbon- and energy source for E. coli, lysogeny broth (LB) for B. subtilis
and S. oneidensis, M9 with succinate as carbon and energy-source for P. aeruginosa,
and a complete medium (all external metabolites available for uptake) for M. genitalium.
Experimental data for gene essentiality was obtained from [29, 54, 62, 86, 93].

2.13 Fermentation product tests

The release of by-products from anaerobic metabolism was predicted using Flux Balance
Analysis (FBA) coupled with a minimisation of total flux [35] to avoid fluxes that do
not contribute to the objective function of the biomass production. In addition, Flux-
Variability Analysis (FVA) [52] was applied to predict the maximum fermentation product
release of individual metabolites across all possible FBA solutions. Metabolites with a
positive exchange flux (i.e. outflow) were considered as fermentation products. The anal-
ysis was performed for 18 different bacterial organisms, which (1) have a genome assembly
available in the RefSeq database [71], (2) are known to grow in anaerobic environments,
and (3) for which the fermentation products have been described in the literature based
on anaerobic cultivation experiments (suppl. table S2). The gap-filling of the network
models using gapseq, CarveMe, and ModelSEED as well as the simulations of anaerobic
growth were all performed assuming the same growth medium that comprised several
organic compounds (i.e. carbohydrates, polyols, nucleotides, amino acids, organic acids)
as potential energy sources and nutrients for growth (see media file dat/media/FT.csv).
Since the amount of fermentation product release depends on the organism’s growth rate,
we normalised the outflow of the individual fermentation products, which has the unit
mmol ∗ gDW−1 ∗ hr−1, by the predicted growth rate of the respective organism which
has the unit hr−1. Thus, we report the amount of fermentation product production in
the quantity of the metabolite that is produced per unit of biomass: mmol ∗ gDW−1.

2.14 Pathway prediction of soil and gut microorganisms

The pathway analysis was done by comparing predicted pathways of soil and gut mi-
croorganisms. For this means, genomes were downloaded from a resource of reference soil
organisms [14] and gut microbes [51]. The default parameter of gapseq were used for
pathway prediction. The principal component analysis was done in R using the factoex-
tra package [41]. For predicted pathways for soil and gut microorganisms, it was checked
if samples belong to different distributions using a bootstrap version of the Kolmogorov-
Smirnov test [72].
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2.15 Anaerobic food web of the human gut microbiome

Representative bacterial organisms known to be relevant in the human intestinal cross-
feeding of metabolites were selected based on the proposed food webs by Louis et al.,
2014 [49] and Rivera-Chavez et al., 2015 [69]. The genomes of organisms were obtained
from NCBI RefSeq [71] and metabolic models reconstructed using gapseq. A medium
containing minerals, vitamins, amino acids, fermentation- and metabolic by-products
(acetate, formate, lactate, butyrate, propionate, H2, CH4, ethanol, H2S, succinate), and
carbohydrates (glucose, fructose, arabinose, ribose, fucose, rhamnose, lactose) was used
for gap-filling. Furthermore, a published model of Methanosarcina barkeri was added to
the community [20] to represent archaea that are also known to be part of anaerobic food
webs [73]. All organisms of the modeled community and their respective genome assembly
accession numbers are listed in supplementary table S3. All metabolic models were then
simulated with BacArena [3] by using the described medium but without the fermentation
and by-products, plus sulfite and 4-aminobenzoate which were needed for growth by the
M. barkeri model. The community was simulated for five time steps (corresponding to
5 hours simulated time). The analysis of metabolite uptake and production were done
after the third time step, for which all organisms were still growing exponentially.

2.16 Technical details

The pathway prediction part of gapseq is implemented as Bash shell script and the
metabolic model generation part is written in R. Linear optimisation can be performed
with a different solvers (GLPK or CPLEX). Other requirements are exonerate, bedtools,
and barrnap. In addition, the following R packages are needed: data.table [19], stringr
[91], sybil [28], getopt [17], reshape2 [89], doParallel [16], foreach [53], R.utils [5], stringi
[23], glpkAPI [27], and BioStrings [58]. Models can be exported as SBML [9] file using
sybilSBML [28] or R data format (RDS) for further analysis in R, for example with sybil
[28] or BacArena [3].

3 Results

3.1 Biochemistry database and universal model

The pathway-, transporter, and complex prediction is based on a protein sequence database
that is derived from UniProt as well as TCDB and consists in total of 130,671 unique
sequences (111,542 reviewed unipac 0.9 clusters and 19,129 TCDB transporter) and also
1,131,132 unreviewed unipac 0.5 cluster that can be included optionally. In addition,
the protein sequence database in gapseq can be updated to include new sequences from
Uniprot and TCDB. For the construction of genome-scale metabolic network models
we have built a biochemistry database, that is derived from the ModelSEED biochem-
istry database. In total, the resulting curated gapseq metabolism database comprises
14.287 reactions (including transporters) and 7.570 metabolites. All metabolites and
reactions from the biochemistry database are incorporated in the universal model that
gapseq utilises for the gap-filling algorithm. When removing all dead-end metabolites
and corresponding reactions, the universal model comprises 10.194 reactions and 3.337
metabolites. It needs to be noted, that the current biochemistry database and the derived
universal model represents bacterial metabolic functions and that, at the current version
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of gapseq, the database does not include light-dependent and archaea reactions. How-
ever, those reactions and, thus, also the possibility to use gapseq for the reconstruction of
photosynthetic bacteria and archaea will be included in an later version of the software.

3.2 Agreement with enzymatic data (BacDive)

We used experimental data of active metabolic enzymes to compare the accuracy of model
generation pipelines. In total, we compared 10,538 enzyme activities, 30 unique enzymes,
in 3,017 organisms. gapseq models had much less false negatives, 6% compared with 32%
(CarveMe) and 28% (ModelSEED), and correspondingly also more true positives, 53%
compared with 27% (CarveMe) and 30% (ModelSEED), whereas results for false positives
and true negatives were comparable (Figure 2A). For this test, the most prominent EC
numbers were the catalase, 1.11.1.6, accounting for 26% of the comparisons and the
cytochrome oxidase, 1.9.3.1, accounting for 22%.

3.3 Validation of carbon source usage (ProTraits)

Growth predictions are essential for metabolic models. We checked the quality of model
generation pipelines to predict the growth on different carbon sources. In summary,
we compared 1,795 different growth prediction for 526 organism and 48 carbon sources
(Figure 2B). gapseq outperformed the other methods in terms of false negatives (14%
compared with 29% ModelSEED and 37% CarveMe) and true positives (45% compared
with 31% ModelSEED and 23% CarveMe). ModelSEED showed slightly fewer false pos-
itives (5% compared with 10% gapseq and 11% CarveMe) and more true negatives (35%
compared with 30% gapseq and 30% CarveMe). gapseq, predicted most false positives
for formate (29 times). This overestimate of formate as potential carbon source is likely
due to the fact that we tested carbon source utilisation on the basis of electron trans-
fer from the source to electron carriers (i.e. ubiquinol, menaquinol, or NADH), which
is analogous to the experiemental carbon source test of BIOLOG plates [76]. However,
while it is known that formate can serve in fact as electron donor in a number of different
bacteria [15], the role as source of carbon atoms for the synthesis of biomass components
is limited to a few known methylotrophs [30].

Across all methods, the best predicted carbon sources, with more than 100 tested
organisms, were fructose (91% correct predictions), mannose (89%), or arginine (84%),
whereby less good predictions were obtained for arabinose (29% correct predictions),
dextrin (40%), or acetate (42%).

3.4 Gene essentiality

We compared the ability of gapseq models to predict the essentially of genes with pre-
dictions from ModelSEED and CarveMe reconstructions as well as with curated models
for the same organisms (Figure 3). As expected, the curated models outperform all three
automated reconstruction tools for most species and prediction metrics. Interestingly,
for P. aeruginosa the gapseq model shows better gene essentiality predictions in terms
of sensitivity, accuracy, and F1-score than the curated model (Figure 3D). Compared to
CarveMe, gapseq shows generally a higher sensitivity in essentiality predictions but, at
the same time, a lower precision rate. This pattern is attributed to the fact, that gapseq
models tend to predict more genes as essential than CarveMe, leading to a higher number

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.20.000737doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000737
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1000

2000

3000

4000

5000

6000

Fa
lse

 n
eg

at
ive

Fa
lse

 p
os

itiv
e

Tr
ue

 n
eg

at
ive

Tr
ue

 p
os

itiv
e

E
nz

ym
e 

ac
tiv

ity
 c

om
pa

ris
on

carveme

gapseq

modelseed

0

200

400

600

800

Fa
lse

 n
eg

at
ive

Fa
lse

 p
os

itiv
e

Tr
ue

 n
eg

at
ive

Tr
ue

 p
os

itiv
e

C
ar

bo
n 

so
ur

ce
 c

om
pa

ris
on

carveme

gapseq

modelseed

Figure 2: Results from enzyme activity and carbon source validations. A) In total 10,538
enzyme activities (30 enzymes and 3,017 organisms) from experimental standardised ex-
periments from the DSMZ BacDive database were compared for three different methods.
B) The predictions of 1,795 carbon sources (48 unique carbon sources and 526 organisms)
were validated with data from the ProTraits database.
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Figure 3: Results from model gene essentiality tests for five bacterial species: (A) Es-
cherichia coli, (B) Bacillus subtilis, (C) Shewanella oneidensis, (D) Pseudomonas aerug-
inosa, and (E) Mycoplasma genitalium. Results from gapseq models (red) are compared
to CarveMe- (blue) and ModelSEED (yellow) models, as well as to published curated
genome-scale metabolic models (black) of the respective organisms. (F) Counts of genes,
reactions (including exchanges and transporters), and metabolites in each reconstruction.

of true positive (TP) predictions and more false positives (FP). For most organisms and
on the basis of most prediction metrics, gapseq outperforms network models that were
reconstructed using ModelSEED.
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3.5 Fermentation products

Anaerobic or facultative anaerobic bacteria utilise different fermentation pathways in or-
der to extract energy from the oxidation of organic compounds. We tested if the identity
of fermentation products can be predicted by metabolic network model constructions
obtained from gapseq, CarveMe, and ModelSEED for 18 different bacterial organisms
(Figure 3). The organisms were selected based on following criteria: (1) the organisms
have a published RefSeq genome sequence [71], (2) are known anaerobic or facultative
anaerobic organisms, and (3) the identity of fermentation products has been experimen-
tally described and reported in primary literature (Suppl. table S1). Overall, gapseq
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Figure 4: Results of the fermentation product test of 18 bacterial organisms under anaer-
obic growth with models generated using gapseq, CarveMe, and ModelSEED. Point sizes
indicate the predicted production of a fermentation product metabolite (columns) by the
corresponding organism (row). Predictions (black) are based on Minimize-Total-Flux
(MTF) flux balance analyses. Grey circles indicate the upper production limit obtained
from Flux-Variability-Analysis (FVA). Metabolite-organism-combinations highlighted in
green denote known fermentation products, which have been reported in literature based
on experimental measures of the metabolite in anaerobic cultures.

showed the highest number of true positive predictions (TP) with 36 TP predicted with
the MTF solution and 37 TP predicted with FVA which is substantially higher compared
to CarveMe (8 TP with MTF, 10 TP with FVA) and modelSEED (1 TP, 3 TP). The
production of all short-chain-fatty-acids acetate, butyrate, and propionate was correctly
predicted by gapseq in 78% of cases and thereby outcompetes CarveMe (9%) and mod-
elSEED (0%), which did not predict butyrate or propionate production for any organism
tested. Moreover, gapseq correctly predicted homolactic fermentation by Lactobacillus
delbrueckii and Lactobacillus acidophilus, which is dominated by lactic acid as well as
heterolactic fermentation by Bifidobacterium longum. However, gapseq failed to predict
lactic acid production of organisms that utilise different fermentation strategies, which
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also yield lactic acid (e.g. mixed-acid fermentation by E. coli).
Interestingly, the predicted quantities of fermentation product release is higher for

true positive than for false negative predictions (Figure 3). This further suggests, that
gapseq is able to predict the main fermentation products of bacterial organisms during
anaerobic growth based on the organism’s genome sequence.

3.6 Validatiton test summary

The performance of different approaches for metabolic model creation is summarised
in Figure 5. The overall accuracy (proportion all correct prediction in relation to all
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Figure 5: Summary of different validation tests. The specificity and sensitivity for all
compared methods are shown. This includes results from benchmarks concerning enzyme
activities, energy sources, fermentation products, and gene essentiality.

predictions made) of model predictions with experimental and literature data was 64%
(CarveMe), 68% (ModelSEED), and 80% (gapseq). In addition, predictions and experi-
mental or literature data were compared to calculate the specificity and sensitivity for each
approach. Sensitivity measures the proportion of correctly predicted positives, whereas
specificity accounts for the accurate prediction of negatives. All approaches showed a
high specificity > 0.7 with highest values for fermentation product and gene essentiality
tests. Notably, gapseq showed the highest sensitivity over all tests. In summary, gapseq
outperformed other methods in terms of accuracy and sensitivity while showing similar
specificity at the same time.

3.7 Sample application I - Anaerobic food web of gut microbiome

The prediction of metabolic interactions between microbial organisms is of special inter-
est in ecology, medicine, and biotechnology. So far, we showed the capacity of gapseq
on the level of individual models. In a next step, we simulated several individual models
together as a multi-species community to validate the potential of gapseq in commu-
nity modelling. As sample application we selected representative members of the human
gut microbiome that are known to form an anaerobic food web [49, 69]. Altogether, we
employed 20 organisms and simulated the combined growth in a shared environment for
several time steps. On the community level, simulations captured all important sub-
stances, which are known to be produced in the context of the food web (Figure 6).
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This included the production of short chain fatty acids (acetate, propionate, butyrate),
lactate, hydrogen, hydrogen sulfide (H2S), methane, formate, and succinate. The for-
mation of acetate, formate, and hydrogen was most prevalent, which are also common
end-products of fermentation. Lactate, succinate, acetate, hydrogen, formate, and H2S
were further metabolised by some community members (Figure 6). The predicted iden-
tity of fermentation end-products and other by-products of metabolism was found to be
in line with literature information [49, 56, 69]. For example, the formation of lactate was
observed for Lactobacillus acidophilus and Bifidobacterium longum, and butyrate was re-
leased by known butyrate producers, i.e. Faecalibacterium prausnitzii, Anaerobutyricum
hallii, Clostridium perfringens, and Coprococcus spp.. Especially the main products of
mixed acid fermentation (acetate, formate, hydrogen, ethanol) were predicted for most
members of the community which is in agreement with what is known about common
metabolic end products of many gut-dwelling microorganisms [56]. Interestingly, for Fae-
calibacterium prausnitzii no acetate production is reported [56], which was also observed
in simulations. Moreover, H2S was correctly predicted to be produced by Desulfovibrio
desulfuricans. In general, the anaerobic oxidation of fatty acids is not favored by the
gut environment because the host competes for the uptake of butyrate, propionate, and
acetate, which serve as energy source for colonic epithelial cells and are involved in many
host functions [68]. Therefore, the gut community lacks syntrophic organisms which are
able to anaerobically degrade butyrate but are slow growing and therefore not favored
by the gut environment [94]. In agreement with this, we found no microbial uptake of
butyrate in the community simulation. In contrast, lactate was predicted to produced
and consumed by distinct community members. We found utilisation of lactate by Co-
prococcus comes, Megasphaera elsdenii, and Veillonella dispar, which is a known feature
of these organisms [49]. In addition, succinate was correctly predicted to be used by Bac-
teroides species [56]. The formation of methane is known to be limited to methanogenic
archaea, and thus Methanosarcina barkeri produced methane from acetate and hydro-
gen during our simulations. In summary, gapseq models were able to recapitulate the
major interactions, which are described for microbial communities in the human gut.
The overall consumption pattern and individual microbial contributions were found to
be in agreement with literature data. Taken together, the community simulation results
illustrate the capacity of gapseq to construct predictive models for complex metabolic
interaction networks comprising several different species.

3.8 Sample application II - Pathway prediction of soil and gut
microorganisms

To demonstrate the pathway prediction capabilities of gapseq, we analysed two com-
munities of soil and gut microorganisms. The energy metabolism of both communities
were characterised, whereas both communities comprised a similar number of organisms
(soil 922 organisms, gut 822 organisms). The distribution of pathways was found to
be habitat-specific and not determined by phylogeny. In a principal component anal-
ysis, most variance could be explained by subsystems of pathways that are involved in
chemoautotrophic, respiratory and fermentative processes including hydrogen production
(Figure 7A). Out of 128 energy pathways, 40 differed significantly (Kolmogorov-Smirnov
test, P < 0.05) between soil and gut microorganisms and could be categorised to 12 sub-
systems (Figure 7B). In total, gut microorganisms showed less variety in energy pathways
than soil microorganisms. Only pathways relevant for the formation of acetate, hydrogen,
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Figure 6: Predicted human gut microbial community metabolism using gapseq models.
The metabolism of a community consisting of 19 bacterial species and one archaeon
(Methanosarcina barkeri) was predicted using BacArena [3]. All bacterial models were
reconstructed using gapseq and a published manually curated model was used for M.
barkeri.

and lactate were predicted to be enriched. In the case of all other energy subsystems,
more pathways were predicted for soil organisms, most prominently pathways relevant
for aerobic and anaerobic respiration as well as the tricarboxylic acid cycle (TCA). In
summary, members of the soil community showed a more versatile energy metabolisms,
which potentially indicates a higher energetic specialisation of gut microbes. This sample
application demonstrates how gapseq can facilitate the characterisation and comparison
of microbial communities based on the analysis of the presence and absence of specific
metabolic pathways.

4 Discussion
Here, we introduced gapseq - a new tool for metabolic pathway analysis and genome-
scale metabolic network reconstruction. The novelty of gapseq lies in the combination
of (i) a novel reaction prediction that is based both on genomic sequence homology as
well as pathway topology, (ii) a profound curation of the reaction database to prevent
thermodynamically infeasible reaction cycles, and (iii) a reaction evidence score-oriented
gap-filling algorithm. In order to scrutinise gapseq metabolic models, we compared the
models’ network structures and predictions with large-scale experimental data sets, which
were retrieved from publicly available databases. Furthermore, the ability of gapseq to
predict bacterial phenotypes was compared to two other commonly used automatic recon-
struction methods, namely, CarveMe [50] and ModelSEED [34] (Table 1). ModelSEED
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Figure 7: Sample applications of gapseq. Comparison of energy metabolism between
soil and gut community. A) A PCA plot with the first two dimension explaining more
than 50% of the variance. Selection of subsystems from energy metabolism with highest
quality and impact are shown. B) List of subsystems of energy metabolism that differ
significantly between members of the soil and gut community (TCA: tricarboxylic acid
cycle, PPP: Pentose phosphate pathway).

is also implemented in the KBASE online software platform [42].

Large-scale benchmarking of metabolic models is crucial

The quality of genome-scale metabolic networks can be assessed by comparing model
predictions with experimental physiological data. The protocol by Thiele and Palsson
(2010) for the reconstruction of genome-scale metabolic networks recommends the qual-
ity assessment and manual network curation using data for (i) known secretion products
(e.g. fermentation end-products), (ii) single-gene deletion mutant growth phenotypes (i.e.
gene essentiality), and (iii) the utilisation of carbon/energy sources [83]. Tools for the
automatic reconstruction of metabolic networks should also make use of such physiolog-
ical data whenever available for benchmarking. Here, we tested our gapseq approach
on the basis of all three recommended phenotypic data and compared the performance
with CarveMe and ModelSEED. Additionally, we included a fourth (iv) and novel bench-
marking test where experimental information on the activity of specific enzymes [67] was
compared to reconstructed networks. Across all four benchmark tests, we could show that
gapseq outperformed CarveMe and ModelSEED in terms of sensitivity while achieving
specificity scores that are comparable to the other two tools (Figure 5). Publicly avail-
able genome sequences of microorganisms, which can be subject for automated metabolic
network reconstruction are massively increasing in number due to continuing advances
in high-quality and high-throughput sequencing technologies [48]. This development is
further fueled by the the increasing number of genome assemblies from metagenomic ma-
terial [65]. In contrast, standardised phenotypic data for microorganisms remains a bot-
tleneck for the validation of automated metabolic network reconstruction pipelines such
as gapseq. As consequence, it is crucial for the future development of automated network
reconstruction software to include possibly all available phenotypic data for benchmark-
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Table 1: Summary of different methods that were compared in this work.

Metric CarveMe gapseq ModelSEED
Implementation
Infrastructure local local web service
Input (FASTA file) protein nucleotide nucleotide
Programming languages python shell script, R perl/javascript
Gap-fill solver CPLEX GLPK/CPLEX not needed*
Gap-fill problem formulation MILP LP MILP

Performance
Accuracy 0.64 0.80 0.68
Sensitivity 0.35 0.74 0.39
Specificity 0.83 0.81 0.86

* Solver runs on ModelSEED server. No local solver is required.

ing, especially data from non-model organisms. To benchmark gapseq in in relation to
CarveMe and ModelSEED using phenotypic data from mainly non-model organisms, we
retrieved phenotypic data of enzyme activity for more than 3, 000 organisms and carbon
source utilisation for more than 500 organisms from online databases, which is, to our
knowledge, the yet largest phenotypic data set used for validation of automatically re-
constructed metabolic networks. In this validation approach gapseq achieved the highest
prediction accuracy among all three tools tested (Figure 2).
Hence, those results suggest that gapseq is a powerful new tool for the automated recon-
struction of genome-scale metabolic network models. Moreover, the underlying reference
protein sequences as well as the pathway database can readily updated using online
resources, which makes gapseq flexible to include future developments and findings in
microbial metabolic physiology.

Automated network reconstructions for community modelling

While single organisms can be considered as the building blocks of microbial communities,
individual metabolic models of organisms are the building blocks of in silico microbial
community simulations. Therefore, genome-scale metabolic models are increasingly ap-
plied to predict the function of multi-species microbial communities [31, 43, 51]. To
correctly infer metabolic interaction networks between different organisms, it is impor-
tant that individual models accurately predict nutrient utilisation (e.g. carbon source)
and metabolic end-products (e.g. fermentation products). In this study, the benchmarks
for carbon source utilisation and fermentation end-product identity indicated that gapseq
has the highest prediction performance compared to other reconstruction tools (Figure 2
and Figure 4).
To illustrate the applicability of gapseq-reconstructed metabolic models for the simula-
tion of multi-species community metabolism, we generated models for bacterial strains
from the human gut microbiota and simulated their growth in a shared environment.
Without further curation, the community simulation reproduced all important hallmarks
of intestinal anaerobic food webs [49, 56]. Above all, short chain fatty acids (SCFA) were
predicted to be the primary end products of fermentation. This prediction is important to
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represent intestinal metabolism, because SCFA are crucially involved in host physiology
by affecting regulatory response in intestinal and immune cells [11, 77]. Furthermore, the
simulation predicted the exchange of metabolites between different members of the micro-
bial community (Figure 6). Cross-feeding of metabolites and the formation of anaerobic
food chains have been associated with a healthy microbiome [1, 60]. For instance, the
cross-feeding of lactate has been reported to be vital for the early establishment of a
healthy gut microbiota in infants [60]. In this study, the exchange of lactate between
different bacterial species was also observed in the community simulations (Figure 6)
and involved known lactate producers (e.g. Enterococcus faecalis) and consumers (e.g.
Megasphaera elsdenii). This example illustrates that we are able to predict key features
of the anaerobic food-web within the gastrointestinal microbiota using gapseq models.
In addition to the ability to accurately model metabolic processes within existing micro-
bial communities, gapseq will further promote the potential of metabolic modelling to
predict how complex microbial communities can be modulated by targeted interventions.
Specific interventions, which could for instance be predicted, are the introduction of new
species to the community (i.e. probiotics) or microbiome-modulating compounds (prebi-
otics) to the environment. Predictions of potential intervention strategies that target the
microbiome are of vast relevance for biomedical research.
Taken together, the results obtained with gapseq suggest, that metabolic models which
are reconstructed using gapseq are promising starting points to construct ecosystem-
scale models of inter-species biochemical processes and to predict targeted strategies to
modulate microbiome structure and function.

Pathway analysis of microbial communities

The construction of genome-scale metabolic models is based on metabolic networks that
are inferred from genomic sequences in the context of biochemical databases [83]. Al-
though, the reconstruction of metabolic networks is closely related to the prediction of
metabolic pathways, metabolic modelling and pathway analysis are often treated sepa-
rately [25]. In gapseq, the prediction of metabolic pathways is intrinsically tied to the
reconstruction of metabolic networks and gap-filling. In addition, reaction, transporter,
and pathway predictions can also be used to evaluate the functional capacities of microor-
ganisms without the need of metabolic modelling. As an example for metabolic pathway
analysis, we compared the predicted energy metabolism of two large microbial communi-
ties that occur in soil and the human gut. We could show that the predicted distribution
of pathways differ between both communities based on the habitat, which usually accom-
modates the members of the respective community. Gut microorganisms showed a less
versatile energy metabolism and a specialisation towards fermentation pathways, which
lead to the formation of acetate, hydrogen, and lactate. Variations in pathways distri-
butions between both communities may be explained by distinct evolutionary histories.
The habitat of the diverse group of soil microorganisms more likely represents an open
ecosystem, whereas the gut microbiome is directly constraint by a multi-cellular host
that potentially controls microbial traits [22]. In general, metabolic modelling should be
accompanied by the analysis of pathways based on statistical methods [25] to compen-
sate for additional assumptions, which are introduced in constraint-based metabolic flux
modelling [38].
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Limitations and outlook

gapseq takes 1-2h for the reconstruction of a single model, whereas ModelSEED and
CarveMe operate faster (10min) on a standard desktop computer. Nonetheless, CarveMe
needs as input gene sequences (protein or nucleotide), which has to be predicted first,
and ModelSEED works as a web service, which can complicate the handling of large-
scale reconstruction projects. In gapseq, pathways were predicted based on topology
and sequence homology searches. However, the assignment of enzymatic function from
sequence comparisons has been shown to potentially miss protein domain structures and
thus can cause false annotations [2, 24]. In addition, gapseq uses many resources to find
potential sequences for reactions in pathway databases. Together this might explain why
although gapseq performed better than other methods on predicting positive phenotypes
(function present), it went head to head with regard to negative phenotype predictions
(function not present). CarveMe takes a different approach when inferring function by
taking care of functional regions (protein domains) [26], resulting in orthologous groups
[36], which results in a slightly better specificity (true negative phenotype predictions) in
benchmarks (Figure 5). Future developments of gapseq will address orthologous groups
by using multiple inference methods. Furthermore, the integration of functional pre-
dictions coming from phylogenetic inference without the need of genomic sequences [18]
might also be promising for further developments of gapseq.

Conclusion

We propose a new tool called gapseq that is suitable for metabolic network analysis and
metabolic model reconstruction. To enhance phenotype predictions, gapseq employs var-
ious data sources and a novel gap-filling procedure that reduces the impact of arbitrary
growth medium requirements. We further brought together the so far largest benchmark-
ing of genome-scale metabolic models, in which gapseq performed on average better than
comparable alternative tools. Altogether, we consider gapseq as important contribution
to the modelling of microbial communities in the age of the microbiome.
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Table S1. New reactions and metabolites added to biochemistry database.
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Table S2. Organisms included in fermentation product validation test.
see file: github.com/jotech/gapseq/preprint/Table_S2.xlsx
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Table S3. Organisms used in modelling of the anaerobic food web of the human gut
microbiome.

RefSeq Assembly Organism name Reconstruction method
GCF_000173975.1 Anaerobutyricum hallii DSM 3353 gapseq
GCF_000025985.1 Bacteroides fragilis NCTC 9343 gapseq
GCF_001314975.1 Bacteroides thetaiotaomicron gapseq
GCF_000196555.1 Bifidobacterium longum subsp. longum JCM 1217 gapseq
GCF_000157975.1 Blautia hydrogenotrophica DSM 10507 gapseq
GCF_000013285.1 Clostridium perfringens ATCC 13124 gapseq
GCF_003434235.1 Coprococcus catus gapseq
GCF_000155875.1 Coprococcus comes ATCC 27758 gapseq
GCF_000154425.1 Coprococcus eutactus ATCC 27759 gapseq
GCF_000189295.2 Desulfovibrio desulfuricans ND132 gapseq
GCF_000391485.2 Enterococcus faecalis EnGen0107 gapseq
GCF_000005845.2 Escherichia coli str. K-12 substr. MG1655 gapseq
GCF_000162015.1 Faecalibacterium prausnitzii A2-165 gapseq
GCF_003047065.1 Lactobacillus acidophilus gapseq
GCF_001304715.1 Megasphaera elsdenii 14-14 gapseq
GCF_000195895.1 Methanosarcina barkeri str. Fusaro manually curated (BiGG-ID: iAF692)[20]
GCF_000144405.1 Prevotella melaninogenica ATCC 25845 gapseq
GCF_900101355.1 Ruminococcus bromii gapseq
GCF_000006945.2 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 gapseq
GCF_900637515.1 Veillonella dispar gapseq
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