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Abstract

Microbial metabolic processes greatly impact ecosystem functioning and the
physiology of multi-cellular host organisms. The inference of metabolic
capabilities and phenotypes from genome sequences with the help of reference
biomolecular knowledge stored in online databases remains a major challenge in
systems biology. Here, we present gapseq: a novel tool for automated pathway
prediction and metabolic network reconstruction from microbial genome
sequences. gapseq combines databases of reference protein sequences (UniProt,
TCDB), in tandem with pathway and reaction databases (MetaCyc, KEGG,
ModelSEED). This enables the prediction of an organism’s metabolic capabilities
from sequence homology and pathway topology criteria. By incorporating a novel
LP-based gap-filling algorithm, gapseq facilitates the construction of
genome-scale metabolic models that are suitable for metabolic phenotype
predictions by using constraint-based flux analysis. We validated gapseq by
comparing predictions to experimental data for more than 3, 000 bacterial
organisms comprising 14, 895 phenotypic traits that include enzyme activity,
energy sources, fermentation products, and gene essentiality. This large-scale
phenotypic trait prediction test showed, that gapseq yields an overall accuracy of
81% and thereby outperforms other commonly used reconstruction tools.
Furthermore, we illustrate the application of gapseq-reconstructed models to
simulate biochemical interactions between microorganisms in multi-species
communities. Altogether, gapseq is a new method that improves the predictive
potential of automated metabolic network reconstructions and further increases
their applicability in biotechnological, ecological, and medical research.
gapseq is available at https://github.com/jotech/gapseq.
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1 Background3

Anything you have to do repeatedly may be ripe for automation.

— Doug McIlroy

Metabolism is central for organismal life. It provides metabolites and energy for4

all cellular processes. A majority of metabolic reactions are catalysed by enzymes,5

which are encoded in the genome of the respective organism. Those catalysed reac-6

tions form a complex metabolic network of numerous biochemical transformations,7

which the organism is presumably able to perform [1].8

In systems biology, the reconstruction of metabolic networks plays an essential role,9
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as the network represents an organism’s capabilities to interact with its biotic and10

abiotic environment and to transform nutrients into biomass. Mathematical analysis11

has shown great potential for dissecting the functioning of metabolic networks on12

the level of topological, stoichiometric, and kinetic models [2], which together pro-13

vide a wide array of methods [3]. Although different microbial metabolic modelling14

approaches exist, they can be summarised by a theoretical framework that provides15

a unifying view on microbial growth [4]. Metabolic models not only have demon-16

strated their ability to predict phenotypes on the level of cellular growth and gene17

knockouts, but also provide potential molecular mechanisms in form of gene and18

reaction activities, which can be validated experimentally [5]. Due to this predictive19

potential, genome-scale metabolic models have been applied to identify metabolic20

interactions between different organisms [6, 7, 8, 9, 10], to study host-microbiome21

interactions [11, 12, 13], to predict novel drug targets to fight microbial pathogens22

[14, 15], and for the rational design of microbial genotypes and growth-media condi-23

tions for the industrial production or degradation of biochemicals [16, 17]. Further-24

more, recent advances in DNA-sequencing technologies have led to a vast increase25

in available genomic- and metagenomic sequences in databases [18], which further26

expands the applicability of genome-scale metabolic network reconstructions.27

The reconstruction of metabolic networks links genomic content with biochemical28

reactions and therefore depends on sequence annotations and reaction databases,29

which are both crucial for overall network quality [19, 20]. A general problem in30

reconstructing metabolic networks occurs by an incorrect representation of the or-31

ganism’s physiology. First, inconsistencies in databases can lead to an incorporation32

of imbalanced reactions into the metabolic network, which may become responsible33

for incorrect energy production by futile cycles [20]. Second, many genes are lack-34

ing a functional annotation due to a lack of knowledge [21] and, thus, also the gene35

products cannot be integrated into the metabolic networks, which potentially lead36

to gaps in pathways. Third, the gap-filling of metabolic networks is frequently done37

by adding a minimum number of reactions from a reference database that facilitate38

growth under a chemically defined growth medium [22, 23, 24]. Such approaches39

miss further evidences potentially hidden in sequences and are biased towards the40

growth medium used for gap-filling. And fourth, the validation of predictions made41

by metabolic networks is so far only performed with smaller experimental data sets42

from model laboratory strains such as Escherichia coli K12 or Bacillus subtilis 16843

and therefore the overall performance of many metabolic models is insufficiently44

assured.45

Genome-scale metabolic network reconstructions are increasingly applied to simu-46

late complex metabolic processes in microbial communities [25]. Such simulations47

are highly sensitive to the quality of the individual metabolic networks of the com-48

munity members. This is because the accurate prediction of fermentation products49

and carbon source utilisation is crucial for the correct prediction of metabolic in-50

teractions since the substances produced by one organism may serve as resource for51

others [26]. Thus, in multi-species communities, the metabolic fluxes of organisms52

are intrinsically connected, which can lead to error propagation when one defective53

model affects otherwise correctly working models. As a consequence, the feasibility54

of community modeling intrinsically depends on the accuracy of the individual or-55

ganismal models.56
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In this work, we present gapseq a novel software for pathway analysis and metabolic57

network reconstruction. The pathway prediction is based on multiple biochem-58

istry databases that comprise information on pathway structures, the pathways’59

key enzymes, and reaction stoichiometries. Moreover, gapseq constructs genome-60

scale metabolic models that enable metabolic phenotype predictions as well as the61

application in simulations of community metabolism. Models are constructed using62

a manually curated reaction database that is free of energy-generating thermody-63

namically infeasible reaction cycles. As input, gapseq takes the organism’s genome64

sequence in FASTA format, without the need for an additional annotation file.65

Topology as well as sequence homology to reference proteins inform the filling of66

network gaps, and the screening for potential carbon sources and metabolic products67

is done in a way that reduces the impact of growth medium definitions. Finally, we68

used large-scale experimental data sets to validate enzyme activity, carbon source69

utilisation, fermentation products, gene essentiality, and metabolite-cross feeding70

interactions in microbial communities.71

2 Results72

2.1 Biochemistry database and universal model73

The pathway-, transporter, and complex prediction is based on a protein sequence74

database that is derived from UniProt as well as TCDB and consists in total of75

130,671 unique sequences (111,542 reviewed unipac 0.9 clusters and 19,129 TCDB76

transporter) and also 1,131,132 unreviewed unipac 0.5 cluster that can be included77

optionally. In addition, the protein sequence database in gapseq can be updated to78

include new sequences from Uniprot and TCDB. For the construction of genome-79

scale metabolic network models we have built a biochemistry database, that is80

derived from the ModelSEED biochemistry database. In total, the resulting cu-81

rated gapseq metabolism database comprises 14.287 reactions (including trans-82

porters) and 7.570 metabolites. All metabolites and reactions from the biochem-83

istry database are incorporated in the universal model that gapseq utilises for the84

gap-filling algorithm. When removing all dead-end metabolites and corresponding85

reactions, the universal model comprises 10.194 reactions and 3.337 metabolites. It86

needs to be noted, that the current biochemistry database and the derived universal87

model represents bacterial metabolic functions and that, at the current version of88

gapseq, the database does not include archaea-specific reactions. However, those89

reactions and, thus, also the possibility to use gapseq for the reconstruction of90

archaeal models will be included in an later version of the software.91

2.2 Agreement with enzymatic data (BacDive)92

We used experimental data of active metabolic enzymes to compare the accuracy of93

model generation pipelines. In total, we compared 10,538 enzyme activities, com-94

prising 30 unique enzymes, in 3,017 organisms. For all organisms, genome-scale95

metabolic models were constructed using three different pipelines (CarveMe[39],96

gapseq, ModelSEED[24]). gapseq models had with 6% the lowest false-negative97

rate compared to CarveMe (32%) and ModelSEED (28%). Correspondingly, gapseq98

showed with 53% also highest true positive rate compared to CarveMe (27%) and99

ModelSEED (30%), while the rates of false positive and true negative predictions100
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were comparable (Figure 1A). For this test, the most prominent EC numbers were101

the catalase, 1.11.1.6, accounting for 26% of the comparisons and the cytochrome102

oxidase, 1.9.3.1, accounting for 22%.103

2.3 Validation of carbon source usage (ProTraits)104

Growth predictions are essential for metabolic models. We checked the quality of105

model generation pipelines to predict the growth on different carbon sources. In106

summary, we compared 1,795 different growth prediction for 526 organism and 48107

carbon sources (Figure 1B). gapseq outperformed the other methods in terms of108

false negatives (14% compared with 29% ModelSEED and 37% CarveMe) and true109

positives (45% compared with 31% ModelSEED and 23% CarveMe). ModelSEED110

showed fewer false positives (5% compared with 10% gapseq and 11% CarveMe) and111

more true negatives (35% compared with 30% gapseq and 30% CarveMe). gapseq,112

predicted most false positives for formate (29 times). This overestimate of formate113

as potential carbon source is likely due to the fact that we tested carbon source114

utilisation on the basis of electron transfer from the source to electron carriers (i.e.115

ubiquinol, menaquinol, or NADH), which is analogous to the experiemental carbon116

source test of BIOLOG plates [46]. However, while it is known that formate can117

serve in fact as electron donor in a number of different bacteria [84], the role as118

source of carbon atoms for the synthesis of biomass components is limited to a few119

known methylotrophs [85].120

Across all methods, the most accurately predicted carbon sources, with more than121

100 tested organisms, were fructose (91% correct predictions), mannose (89%), or122

arginine (84%), whereby less good predictions were obtained for arabinose (29%123

correct predictions), dextrin (40%), or acetate (42%).
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Figure 1: Results from enzyme activity and carbon source validations.

A) In total 10,538 enzyme activities (30 enzymes and 3,017 organisms) from

experimental standardised experiments from the DSMZ BacDive database were

compared for three different methods. B) The predictions of 1,795 carbon sources

(48 unique carbon sources and 526 organisms) were validated with data from the

ProTraits database.

124

2.4 Gene essentiality125
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Figure 2: Results from model gene essentiality tests for five bacterial

species. (A) Escherichia coli, (B) Bacillus subtilis, (C) Shewanella oneidensis,

(D) Pseudomonas aeruginosa, and (E) Mycoplasma genitalium. Results from

gapseq models (red) are compared to CarveMe (blue) and ModelSEED (yellow)

models, as well as to published curated genome-scale metabolic models (black)

of the respective organisms. (F) Counts of genes, reactions (including exchanges

and transporters), and metabolites in each reconstruction.

We compared the ability of gapseq models to predict the essentially of genes with126

predictions from ModelSEED and CarveMe reconstructions as well as with curated127

models for the same organisms (Figure 2). As expected, the curated models out-128

perform all three automated reconstruction tools for most species and prediction129

metrics (namely precision, sensitivity, specificity, accuracy, and F1-score). Interest-130

ingly, for Pseudomonas aeruginosa the gapseq model shows better gene essentiality131

predictions in terms of sensitivity, accuracy, and F1-score than the curated model132

(Figure 2D). Compared to CarveMe, gapseq shows generally a higher sensitivity in133

essentiality predictions but, at the same time, a lower precision rate. This pattern is134

attributed to the fact, that gapseq models tend to predict more genes as essential135

than CarveMe, leading to a higher number of true positive (TP) predictions but136

also more false positives (FP). For most organisms and on the basis of most pre-137

diction metrics, gapseq outperforms network models that were reconstructed using138

ModelSEED.139

2.5 Fermentation products140

Anaerobic or facultative anaerobic bacteria utilise different fermentation pathways141

in order to extract energy from environmental compounds by chemical transfor-142

mations in the absence of oxygen. We tested if the identity of fermentation prod-143

ucts can be predicted by metabolic network model constructions obtained from144

gapseq, CarveMe, and ModelSEED for 18 different bacterial organisms (Figure 2).145
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The organisms were selected based on following criteria: (1) the organisms have146

a published RefSeq genome sequence [52], (2) are known anaerobic or facultative147

anaerobic organisms, and (3) the identity of fermentation products has been exper-148

imentally described and reported in primary literature (Suppl. table S2). Overall,

Metabolite

O
rg

an
is

m

[mmol / gDW]

Known
fermentation
product

FALSE

TRUE

Prediction
TP

TN

FP

FN

carveme gapseq modelseed

Method Performance

Aminobacterium colombiense  DSM 12261

Anaerobutyricum hallii  DSM 3353

Anaerotignum propionicum  DSM 1682

Bacteroides thetaiotaomicron  VPI−5482

Bifidobacterium animalis subsp. lactis DSM 10140

Bifidobacterium longum  subsp. infantis  ATCC 15697

Clostridium acetobutylicum  ATCC 824

Clostridium butyricum  KNU−L09

Clostridium pasteurianum  BC1

Clostridium perfringens  ATCC 13124

Cutibacterium acnes  KPA171202

Escherichia coli  str. K−12 substr. MG1655

Lactobacillus acidophilus  NCFM

Lactobacillus delbrueckii subsp. bulgaricus  ATCC 11842

Prevotella bergensis  DSM 17361

Prevotella melaninogenica  ATCC 25845

Thermotoga maritima  MSB8

Zymomonas mobilis  subsp. mobilis  ATCC 10988

Number of predictions

50

100

150

>150

Predicted
production

+

+

0 50 100 150 0 50 100 150 0 50 100 150

Ace
tat

e

Buty
rat

e

La
cta

te

Etha
no

l

Form
ate H2

n-b
uta

no
l

Prop
ion

ate

Suc
cin

ate

Ace
tat

e

Buty
rat

e

La
cta

te

Etha
no

l

Form
ate H2

n-b
uta

no
l

Prop
ion

ate

Suc
cin

ate

Ace
tat

e

Buty
rat

e

La
cta

te

Etha
no

l

Form
ate H2

n-b
uta

no
l

Prop
ion

ate

Suc
cin

ate

Figure 3: Results of the fermentation product test of 18 bacterial or-

ganisms under anaerobic growth with models generated using gapseq,

CarveMe, and ModelSEED. Point sizes indicate the predicted production

of a fermentation product metabolite (columns) by the corresponding organ-

ism (row). Predictions (black) are based on Minimize-Total-Flux (MTF) flux

balance analyses. Grey circles indicate the upper production limit obtained from

Flux-Variability-Analysis (FVA). Metabolite-organism-combinations highlighted

in green denote known fermentation products, which have been reported in lit-

erature based on experimental measures of the metabolite in anaerobic cultures.

149

gapseq showed the highest number of true positive predictions (TP) with 36 TP150

predicted with the Minimize-Total-Flux (MTF) and 37 TP predicted with Flux-151

Variability-Analysis (FVA) which is substantially higher compared to CarveMe (8152

TP with MTF, 10 TP with FVA) and ModelSEED (1 TP, 3 TP). The produc-153

tion of the short-chain-fatty-acids acetate, butyrate, and propionate was correctly154

predicted by gapseq in 78% of cases and thereby outcompetes CarveMe (9%) and155

ModelSEED (0%), which did not predict butyrate or propionate production for any156

organism tested. Moreover, gapseq correctly predicted homolactic fermentation by157

Lactobacillus delbrueckii and Lactobacillus acidophilus, which is dominated by lac-158

tate as fermentation end-product and also predicted heterolactic fermentation by159

Bifidobacterium longum. However, gapseq failed to predict lactate production of or-160

ganisms that utilise different fermentation strategies, which also yield lactate (e.g.161

mixed-acid fermentation by Escherichia coli). Interestingly, the predicted quantities162

of fermentation product release is higher for true positive than for false negative163

predictions (Figure 3). This further suggests, that gapseq is able to predict the164

main fermentation products of bacterial organisms during anaerobic growth based165

on the organism’s genome sequence.166
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2.6 Anaerobic food web of the gut microbiome167

The prediction of metabolic interactions between microbial organisms is of special168

interest in ecology, medicine, and biotechnology. So far, we showed the capacity169

of gapseq on the level of individual models. In a next step, we simulated several170

individual models together as a multi-species community to validate the potential171

of gapseq in microbial community modelling. As sample application we selected172

representative members of the human gut microbiome that are known to form an173

anaerobic food web [64, 65]. Altogether, we employed 20 organisms and simulated174

the combined growth in a shared environment for several time steps using the com-175

munity modeling framework BacArena [68]. On the community level, simulations176

using gapseq models captured all important substances, which are known to be177

produced in the context of the food web (Figure 4). This included the production178

of short chain fatty acids (acetate, propionate, butyrate), lactate, hydrogen, hy-179

drogen sulfide (H2S), methane, formate, and succinate. The formation of acetate,180

formate, and hydrogen was most prevalent, which are also common end-products181

of fermentation. Lactate, succinate, acetate, hydrogen, formate, and H2S were fur-182

ther metabolised by some community members (Figure 4). The predicted identity183

of fermentation end-products and other by-products of metabolism was found to184

be in line with literature information [64, 65, 86]. For example, the formation of185

lactate was observed for Lactobacillus acidophilus and Bifidobacterium longum, and186

butyrate was released by known butyrate producers, i.e. Faecalibacterium praus-187

nitzii, Anaerobutyricum hallii, Clostridium perfringens, and Coprococcus spp.. Es-188

pecially the main products of mixed acid fermentation (acetate, formate, hydrogen,189

ethanol) were predicted for most members of the community which is in agreement190

with what is known about common metabolic end products of many gut-dwelling191

microorganisms [86]. Interestingly, for Faecalibacterium prausnitzii no acetate pro-192

duction is reported [86], which was also observed in our simulations. Moreover, H2S193

was correctly predicted to be produced by Desulfovibrio desulfuricans. In general,194

the anaerobic oxidation of fatty acids is not favored by the gut environment because195

the host competes for the uptake of butyrate, propionate, and acetate, which serve196

as energy source for colonic epithelial cells and are involved in many host functions197

[87]. Therefore, the gut community lacks syntrophic organisms which are able to198

anaerobically degrade butyrate [88]. In agreement with this, we found no microbial199

uptake of butyrate in the community simulation. In contrast, lactate was predicted200

to be produced and consumed by distinct community members. We found utilisa-201

tion of lactate by Coprococcus comes, Megasphaera elsdenii, and Veillonella dispar,202

which is a known feature of these organisms [64]. In addition, succinate was cor-203

rectly predicted to be used by Bacteroides species [86]. The formation of methane204

is known to be limited to methanogenic archaea, and thus Methanosarcina barkeri205

produced methane from acetate and hydrogen during our simulations.206

For comparison, the community simulation were also performed using models re-207

constructed with CarveMe and ModelSEED (Figure 4). In both cases, most of the208

above-mentioned known metabolic cross-feeding interactions and end-products were209

not predicted, for instance the production of the short chain fatty acids butyrate210

and propionate was missing. In summary, gapseq models were able to recapitulate211

the major interactions, which are described for microbial communities in the hu-212

man gut. The overall consumption pattern and individual microbial contributions213
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were found to be in agreement with literature data. Taken together, the community214

simulation results illustrate the capacity of gapseq to construct predictive models215

for complex metabolic interaction networks comprising several different species.216
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Figure 4: Predicted metabolic products and food web of a microbial

community. The metabolism of a community consisting of 19 bacterial species

commonly found in the human gut and one archaeon (Methanosarcina barkeri)

was predicted using BacArena [68]. All bacterial models were reconstructed by

CarveMe, gapseq, or ModelSEED; with the exception of M. barkeri for which a

published and manually curated model [66] was used.

2.7 Pathway prediction of soil and gut microorganisms217

To demonstrate the pathway prediction capabilities of gapseq, we analysed two218

communities of soil and gut microorganisms comprising 922 and 822 organisms,219

repectively. The two communities could be separated from each other by differ-220

ences in energy metabolism (Principal component analysis, Figure 5A). Here, most221

variance was explained by subsystems of pathways that are involved in chemoau-222

totrophic, respiratory, and fermentative processes including hydrogen production.223

Out of 128 energy pathways, the presence of 40 pathways differed significantly224

(Kolmogorov-Smirnov test, P < 0.05) between soil and gut microorganisms and225

could be categorised into 12 subsystems (Figure 5B). In total, gut microorganisms226

showed less variety in energy pathways than soil microorganisms. Only pathways227

relevant for the formation of acetate, hydrogen, and lactate were predicted to be228

enriched. In the case of all other energy subsystems, more pathways were predicted229

for soil organisms, most prominently pathways relevant for aerobic and anaerobic230

respiration as well as the tricarboxylic acid cycle (TCA). In summary, members of231

the soil community showed a more versatile energy metabolisms, which potentially232

indicates a higher energetic specialisation of gut microbes. This sample application233

demonstrates how gapseq can facilitate the characterisation and comparison of mi-234

crobial communities based on the analysis of the presence and absence of specific235

metabolic pathways.236
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Figure 5: Comparison of energy metabolism between soil and gut com-

munity. A) A PCA plot with the first two dimension explaining more than 50%

of the variance. Selection of subsystems from energy metabolism with highest

quality and impact are shown. B) List of subsystems of energy metabolism that

differ significantly in frequency between members of the soil and gut community

(TCA: tricarboxylic acid cycle, PPP: Pentose phosphate pathway).

2.8 Model reconstructions for metagenomic assemblies237

Genome-scale metabolic models can also be reconstructed on the basis of species-238

level genome bins (SGBs, [69]) assembled from shotgun metagenomic sequencing239

reads. Yet, genome assemblies from metagenomic material are more prone to errors,240

fragmentation, and sequence gaps than assemblies of isolated genomes [89], which241

can potentially cause gaps in the metabolic network reconstructions. We tested242

whether gapseq is able to identify and fill such gaps by comparing the models re-243

constructed for 127 SGBs from the human microbiome[69] to corresponding models244

of closely-related reference genomes that were assembled from DNA-sequencing of245

pure cultures (Figure S2).246

As expected, we found a strong positive correlation between the SGBs’ genome com-247

pletion and their model similarity to their respective reference models (Spearman’s248

rank correlation, n = 127, P < 10−9). To estimate the quantitative effect of genome249

completion on the model similarity, a logarithmic function (y(x) = c + b ∗ log(x))250

was fitted to the data (R2 = 0.71, Figure S2). The fitted model indicated, that251

gapseq is able to reconstruct the underlying metabolic network of an organism even252

on the basis of incomplete and fragmented genomes. For instance, gapseq was on253

average able to recover 90% of the enzymatic reactions that are found in the ref-254

erence models for SGBs with a predicted genome completion of only 80% (Figure255

S2).256

2.9 Summary of validation tests257

For each validation approach, predictions were compared to experimental data258

obtained from databases and literature to calculate prediction performance scores.259

The overall accuracy (proportion all correct prediction in relation to all predic-260

tions made) of model predictions with experimental data was 66% (CarveMe), 70%261
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Figure 6: Summary of different validation tests. The specificity and sen-

sitivity for all compared methods are shown. This includes results from bench-

marks concerning enzyme activities, energy sources, fermentation products, gene

essentiality, and metabolite production/consumption in an anaerobic food web.

(ModelSEED), and 81% (gapseq)(Table 1). Sensitivity measures the proportion of262

correctly predicted positives, whereas specificity accounts for the accurate predic-263

tion of negatives. All approaches showed a high specificity > 0.7 with highest values264

for fermentation product and gene essentiality tests. Notably, gapseq showed the265

highest sensitivity over all tests (Figure 6). In summary, gapseq outperformed other266

methods in terms of accuracy and sensitivity while showing similar specificity.267

3 Discussion268

Here, we introduced gapseq - a new tool for metabolic pathway analysis and269

genome-scale metabolic network reconstruction. The novelty of gapseq lies in the270

combination of (i) a novel reaction prediction that is based both on genomic se-271

quence homology as well as pathway topology, (ii) a profound curation of the re-272

action and transporter database to prevent thermodynamically infeasible reaction273

cycles, and (iii) a reaction evidence score-oriented gap-filling algorithm. In order to274

scrutinise gapseq metabolic models, we compared the models’ network structures275

and predictions with large-scale experimental data sets, which were retrieved from276

publicly available databases. Furthermore, the ability of gapseq to predict bacterial277

phenotypes was compared to two other commonly used automatic reconstruction278

methods, namely, CarveMe [39] and ModelSEED [24] (Table 1). ModelSEED is also279

implemented in the KBASE online software platform [90].280

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.03.20.000737doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000737
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zimmermann et al. Page 11 of 30

Table 1: Summary of different methods that were compared in this work. Accuracy,

sensitivity, and specificity scores are based on 14, 895 tested phenotypes includ-

ing energy sources, enzyme activity, fermentation products, gene essentiality, and

anaerobic food web structure predictions.
Metric CarveMe gapseq ModelSEED
Implementation
Infrastructure local local web service
Input (FASTA file) protein nucleotide nucleotide
Programming languages python shell script, R perl/javascript
Gap-fill solver CPLEX GLPK/CPLEX not needed*
Gap-fill problem formulation MILP LP MILP

Performance
Accuracy 0.66 0.81 0.70
Sensitivity 0.34 0.73 0.32
Specificity 0.84 0.83 0.88
Model file quality** 0.32± 0.006 0.78± 0.004 0.39± 0.016

* Solver runs on ModelSEED server. No local solver is required.
** MEMOTE total score (± SD).

Crucial large-scale benchmarking of metabolic models281

The quality of genome-scale metabolic networks can be assessed by comparing model282

predictions with experimental physiological data. The protocol by Thiele and Pals-283

son (2010) for the reconstruction of genome-scale metabolic networks recommends284

the quality assessment and manual network curation using data for (i) known se-285

cretion products (e.g. fermentation end-products), (ii) single-gene deletion mutant286

growth phenotypes (i.e. gene essentiality), and (iii) the utilisation of carbon/energy287

sources [20]. Tools for the automatic reconstruction of metabolic networks should288

also make use of such physiological data whenever available for benchmarking. Here,289

we tested our gapseq approach on the basis of all three recommended phenotypic290

data and compared the performance with CarveMe and ModelSEED. Additionally,291

we included two novel benchmark tests: The comparison of model predictions with292

(iv) the activity of specific enzymes known from experimental studies [49] and (v)293

metabolic interactions (food web) among microorganisms in a multi-species com-294

munity within an anaerobic environment. Across all five benchmark tests, we could295

show that gapseq outperformed CarveMe and ModelSEED in terms of sensitivity296

while achieving specificity scores that are comparable to the other two tools (Figure297

6).298

Publicly available genome sequences of microorganisms, which can be subject for au-299

tomated metabolic network reconstruction are massively increasing in number due300

to continuing advances in high-quality and high-throughput sequencing technologies301

[18]. This development is further fueled by the the increasing number of genome as-302

semblies from metagenomic material [91]. In contrast, standardised phenotypic data303

for microorganisms remains a bottleneck for the validation of automated metabolic304

network reconstruction pipelines such as gapseq. As consequence, it is crucial for305

the future development of automated network reconstruction software to include306

possibly all available phenotypic data for benchmarking, especially data from non-307

model organisms. To benchmark gapseq in in relation to CarveMe and ModelSEED308

using phenotypic data from mainly non-model organisms, we retrieved phenotypic309

data of enzyme activity for more than 3, 000 organisms and carbon source utilisation310

for more than 500 organisms from online databases, which is, to our knowledge, the311
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yet largest phenotypic data set used for validation of automatically reconstructed312

metabolic networks. In this validation approach gapseq achieved the highest pre-313

diction accuracy among all three tools tested (Figure 1).314

Hence, those results suggest that gapseq is a powerful new tool for the automated315

reconstruction of genome-scale metabolic network models. Moreover, the underlying316

reference protein sequences as well as the pathway database can readily be updated317

using online resources, which makes gapseq flexible to include future developments318

and findings in microbial metabolic physiology.319

320

Automated network reconstructions for community modelling321

While single organisms can be considered as the building blocks of microbial com-322

munities, individual metabolic models of organisms are the building blocks of in323

silico microbial community simulations. Therefore, genome-scale metabolic models324

are increasingly applied to predict the function of multi-species microbial communi-325

ties [61, 92, 93]. To correctly infer metabolic interaction networks between different326

organisms, it is important that individual models accurately predict nutrient util-327

isation (e.g. carbon source) and metabolic end-products (e.g. fermentation prod-328

ucts). In this study, the benchmarks for carbon source utilisation and fermentation329

end-product identity indicated that gapseq has the highest prediction performance330

compared to other reconstruction tools (Figure 1 and Figure 3).331

To illustrate the applicability of gapseq-reconstructed metabolic models for the332

simulation of multi-species community metabolism, we generated models for micro-333

bial strains from the human gut microbiota and simulated their growth in a shared334

environment. Without further curation, the community simulation reproduced all335

important hallmarks of intestinal anaerobic food webs [64, 86]. Above all, short chain336

fatty acids (SCFA) were predicted to be the primary end products of fermentation.337

This prediction is important to represent intestinal metabolism, because SCFA are338

crucially involved in host physiology by affecting regulatory response in intestinal339

and immune cells [94, 95]. Furthermore, the simulation accurately predicted the340

exchange of metabolites between different members of the microbial community341

(Figure 4). Cross-feeding of metabolites and the formation of anaerobic food chains342

have been associated with a healthy microbiome [9, 96]. For instance, the cross-343

feeding of lactate has been reported to be vital for the early establishment of a344

healthy gut microbiota in infants [96]. Accordingly we observed the exchange of345

lactate between different bacterial species in the community simulations (Figure 4)346

and involved known lactate producers (e.g. Enterococcus faecalis) and consumers347

(e.g. Megasphaera elsdenii). This example illustrates that we are able to predict348

key features of the anaerobic food-web within the gastrointestinal microbiota using349

gapseq models. In addition to the ability to accurately model metabolic processes350

within existing microbial communities, gapseq will further promote the potential351

of metabolic modelling to predict how complex microbial communities can be mod-352

ulated by targeted interventions. Specific interventions, which could for instance be353

predicted, are the introduction of new species to the community (i.e. probiotics) or354

microbiome-modulating compounds (prebiotics) to the environment. Predictions of355

potential intervention strategies that target the microbiome are of vast relevance356
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for biomedical research. Furthermore, metabolic interactions between microbiome357

members are difficult to detect in vivo due to the simultaneous production and358

uptake of metabolites. Thus, in silico predictions of metabolite cross-feeding in-359

teractions are highly valuable for hypothesis generation about the function and360

dynamics of microbial communities.361

Taken together, the results obtained with gapseq suggest, that metabolic models362

which are reconstructed using gapseq are promising starting points to construct363

ecosystem-scale models of inter-species biochemical processes and to predict tar-364

geted strategies to modulate microbiome structure and function.365

Pathway analysis of microbial communities366

The construction of genome-scale metabolic models is based on metabolic networks367

that are inferred from genomic sequences in the context of biochemical databases368

[20]. Although, the reconstruction of metabolic networks is closely related to the369

prediction of metabolic pathways, metabolic modelling and pathway analysis are370

often treated separately [97]. In gapseq, the prediction of metabolic pathways is371

intrinsically tied to the reconstruction of metabolic networks and gap-filling. In ad-372

dition, reaction, transporter, and pathway predictions can also be used to evaluate373

the functional capacities of microorganisms without the need of metabolic mod-374

elling. As an example for metabolic pathway analysis, we compared the predicted375

energy metabolism of two large microbial communities that occur in soil and the hu-376

man gut. We could show that the predicted distribution of pathways differ between377

both communities based on the habitat, which usually accommodates the members378

of the respective community. Gut microorganisms showed a less versatile energy379

metabolism and a specialisation towards fermentation pathways, which lead to the380

formation of acetate, hydrogen, and lactate. Variations in pathways distributions381

between both communities may be explained by distinct evolutionary histories. The382

habitat of the diverse group of soil microorganisms more likely represents an open383

ecosystem, whereas the gut microbiome is directly constraint by a multi-cellular384

host that potentially affect microbial phenotypic traits [98]. In general, metabolic385

modelling should be accompanied by the analysis of pathways based on statistical386

methods [97] to compensate for additional assumptions, which are introduced in387

constraint-based metabolic flux modelling [4].388

Limitations and outlook389

gapseq requires 1-2h for the reconstruction of a single model, whereas ModelSEED390

and CarveMe operate faster (10min) on a standard desktop computer. Nonetheless,391

CarveMe needs as input gene sequences (protein or nucleotide), which has to be392

predicted first, and ModelSEED works as a web service, which can complicate the393

handling of large-scale reconstruction projects. In gapseq, pathways were predicted394

based on topology and sequence homology searches. However, the assignment of395

enzymatic function from sequence comparisons has been shown to potentially miss396

protein domain structures and thus can cause false annotations [99, 100]. In ad-397

dition, gapseq uses many resources to find potential sequences for reactions in398

pathway databases. Together this might explain why although gapseq performed399

better than other methods on predicting positive phenotypes (function present),400
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it went head to head with regard to negative phenotype predictions (function not401

present). CarveMe takes a different approach when inferring function by taking care402

of functional regions (protein domains) [101], resulting in orthologous groups [102],403

which results in a slightly better specificity (true negative phenotype predictions)404

in benchmarks (Figure 6). Future developments of gapseq will address orthologous405

groups by using multiple inference methods. Furthermore, the integration of func-406

tional predictions coming from phylogenetic inference without the need of genomic407

sequences [103] might also be promising for further developments of gapseq.408

Conclusion409

We provide a new software tool called gapseq that is suitable for metabolic net-410

work analysis and metabolic model reconstruction. To enhance phenotype predic-411

tions, gapseq employs various data sources and a novel gap-filling procedure that412

reduces the impact of arbitrary growth medium requirements. We further brought413

together the so far largest benchmarking of genome-scale metabolic models, in which414

gapseq outperformed comparable alternative tools. With the increased model qual-415

ity of automated network reconstructions, gapseq will provide new insights into the416

metabolic phenotypes of non-model and yet-uncultured bacteria whose genomes are417

assembled from metagenomic material. In this way, the models and their simulations418

allow predictions on the organisms’ ecological role in their natural environments.419

Taken together, we consider gapseq as important contribution to the modelling of420

microbial communities in the age of the microbiome.421

4 Methods422

4.1 Program overview & source code availability423

The source code is accessible and maintained at https://github.com/jotech/424

gapseq. The program is called by ./gapseq, which is a wrapper script for the425

main modules. Important program calls are ./gapseq find (pathway and reac-426

tion finder), ./gapseq find-transport (transporter detection), ./gapseq draft427

(draft model creation), ./gapseq fill (gap-filling), or ./gapseq doall to per-428

form all in line. When ever necessary, method sections directly refer to config,429

data and source code files from the gapseq package, which contains the main sub-430

directory src/ with source code files and dat/, which contains databases and also431

the sequence files in dat/seq/. Figure 7 shows an overview of the different gapseq432

modules.433

4.2 Pathway and sequence databases434

Pathways are considered as a list of reactions with enzyme names and EC numbers.435

Pathway definition were obtained from MetaCyc [27], KEGG [28], and ModelSEED436

[24]. For MetaCyc, PathwayTools [29] was used in combination with Python-437

Cyc to obtain pathway definitions [30] (src/meta2pwy.py). Information on Kegg438

pathways were retrieved directly from the KEGG homepage: reactions (http://439

rest.kegg.jp/list/reaction), and EC numbers (http://rest.kegg.jp/link/440

pathway/ec) and further processed (src/kegg pwy.R). In case of ModelSEED,441

subsystem definition were obtained from the homepage: http://modelseed.org/442

genomes/Annotations (src/seed pwy.R). In addition, manual defined and revised443
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Figure 7: Chart showing the main components and workflow of gapseq.

Free icons were used from https://www.flaticon.com (creators: Freepik, Gre-

gor Cresnar, Freepik, Smashicons).

pathways are stored in the file dat/custom pwy.tbl.444

Sequence data needed for pathway prediction were downloaded from UniProt [31] for445

each reaction identified by EC number, enzyme name, or gene name. Both reviewed446

and unreviewed sequences are considered and stored as clustered UniPac sequences447

(src/uniprot.sh). To increase the sequence pool for a given reaction, alternative448

EC numbers from BRENDA [32] and from the Enzyme Nomenclature Commit-449

tee https://www.qmul.ac.uk/sbcs/iubmb/enzyme/ are integrated (src/altec.R,450

dat/brenda ec.csv).451

4.3 Pathway prediction452

For each pathway selected from a pathway database (MetaCyc, KEGG, Mod-453

elSEED, custom), gapseq searches for sequence evidence and a pathway is defined454

as present if enough of its reactions were found to have sequence evidence. In more455

detail, sequence data (section 4.2) is used for homology search by tblastn [33] with456

the protein sequence as query and the genome as database. By default, a bitscore457

≥ 200 and a coverage of at least 75% is needed for a match. For certain reac-458

tions, the user can define additional criteria, for example an identity of ≥ 75%459

(dat/exception.tbl). In case of protein complexes with subunits, a more complex460

procedure is followed (section 4.4). Spontaneous reactions, which do not need an461

enzyme, were set to be present in any case. In general, a pathway is considered to462

be present if at least 80% of the reactions are found (completenessCutoffNoHints463

threshold). This pathway completeness threshold is lowered for pathways in follow-464

ing cases:465

1 If the pathway contains key reactions, as it is defined for some pathways in466

MetaCyc, and all key reactions are found, then completenessCutoff of the467

total reactions needed to be found. We used a value of 2/3 for this threshold.468

2 In cases in which no sequence data is available for specific reactions, the status469

of the reactions is set to ”vague” and these reactions do not count as missing470
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if they account for less than vagueCutoff of the total reactions of a pathway.471

We used a value of 1/3 for this threshold.472

The pathway prediction algorithm is implemented in the bash shell script473

src/gapseq find.sh, which uses GNU parallel [34] and fastaindex/fastafetch from474

exonerate [35].475

4.4 Protein complex prediction476

A problem with automatic sequence download for reactions (as FASTA files) comes477

with protein complexes, for which a single blast hit may be not sufficient to predict478

enzyme presence. In gapseq, subunits are detected by text matching in the FASTA479

headers. Search terms are: ”subunit”, ”chain”, ”polypeptide”, ”component”, and480

different numbering systems (roman, arabic, greek) are homogenised. To avoid ar-481

tifacts in text matching, subunits that occur less than five times in the sequence482

file are not considered, and in cases in which a subunit occurs almost exclusively483

(≥ 66%) the other entries are not taken into account. All FASTA entries, which484

could not matched by text mining, or which are excluded because of the coverage,485

are labeled ’undefined subunit’ and do not add to the total amount of subunits.486

For each recognised subunit, a blast search is done. A protein complex counts as487

present if more than 50% of the subunits could be found, whereby the presence of488

’undefined subunits’ tip the balance if exactly 50% of the subunits were found. The489

text matching with regular expressions is done with R’s stringr [36] and biostrings490

[37] as defined in src/complex detection.R. The script is called from within the491

shell script src/gapseq find.sh.492

4.5 Transporter prediction493

For transporter search, sequence data from the Transporter Classification Database494

is employed [38]. In addition, manual defined sequences can be defined in495

dat/seq/transporter.fasta. The sequence set is reduced to a subset of trans-496

porters that involve metabolites known to be produced or consumed by microor-497

ganisms (dat/sub2pwy.csv). Subsequently, the genome is queried by the reduced498

sequences using tblastn [33]. For each hit (default cutoffs: bitscore ≥ 200 and cov-499

erage ≥ 75%), the transporter type (1. Channels and pores, 2. Electrochemical500

potential-driven transporter, 3. Primary active transporters, 4. Group transloca-501

tors) is determined using the TC number mentioned in the FASTA header. A502

suitable candidate reaction is searched in the reaction database. If there is a hit for503

a transporter of a substance but no candidate reaction for the respective transporter504

type can be found, then other transporter types are considered. The transporter505

search is done by the shell script src/transporter.sh that uses GNU parallel [34]506

and fastaindex/fastafetch from exonerate [35].507

Candidate transporters are selected from the reaction database by transporter type508

and substance name. This is done by text search and is currently implemented509

only for the ModelSEED namespace. From the ModelSEED reaction database510

all reaction with the flag is transport = 1 are taken and the transporter type511

is predicted by keywords: ”channel”, ”pore” (1. Channels and pores); ”uniport”,512

”symport”, ”antiport”, ”permease”, ”gradient” (2. Electrochemical potential-driven513

transporters); ”ABC”, ”ATPase”, ”ATP”(3. Primary active transporters); ”PTS”514

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.03.20.000737doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000737
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zimmermann et al. Page 17 of 30

(4. Group translocators). If no transporter type could be identified by keywords,515

additional string matching is done for ATPases, proton/sodium antiporter, and516

PTS by considering the stoichiometry of the involved metabolites. The transported517

substance is identified as the substance that occurs on both sides of the reaction. In518

addition, reactions from the reaction database can be linked manually to substances519

and transporter types (dat/seed transporter custom.tbl). The text matching520

with regular expressions is done with stringr [36] (src/seed transporter.R).521

4.6 Biochemistry database curation and construction of universal metabolic model522

For the construction of genome-scale metabolic network models, gapseq uses a re-523

actions and metabolite database that is derived from the ModelSEED database [24]524

as from January 2018. In addition, 30 new reactions and 2 new metabolites were525

introduced to the gapseq biochemistry database (see suppl. table S1). All reactions526

and metabolites from the database were included for the construction of a full uni-527

versal metabolic network model; an approach that is also used in CarveMe [39]. We528

curated the underlying biochemistry database in order to correct inconsistencies in529

reaction stoichiometries and reversibilities. Inconsistencies were identified by opti-530

mising the universal network model for ATP-production without any nutritional531

input to the model using flux balance analysis. In case of ATP-production, the flux532

distributions of such thermodynamically infeasible reaction cycles were investigated533

by cross-checking the involved reactions with literature information, the BRENDA534

database for enzymes [32], and the MetaCyc database [27]. Stochiometries and535

reversibilities of erroneous reactions were corrected accordingly. This curation pro-536

cedure was repeated until no theromodynamically infeasible and ATP-generating537

reaction cycles were observed.538

Hits from the pathway prediction (4.3) and transporter prediction (4.5) are mapped539

to the gapseq reaction database using different common identifiers. A majority of540

reactions are directly matched via their corresponding Enzyme Commission (EC)541

system identifier [40] and Transporter Classification (TC) system identifier [38], re-542

spectively. For this mapping, also alternative EC-numbers for enzymatic reactions543

as defined in the BRENDA database [32] are considered. Moreover, the databases544

used for pathway and transporter predictions often provide cross-links to the reac-545

tion’s KEGG ID, which is also assigned to most reactions in the gapseq database546

and used to match reactions. Additionally, the MNXref database [41] provides cross547

links between several biochemistry databases, which gapseq also utilises to trans-548

late hits from the pathway predictions to model reactions. Finally, a manual trans-549

lation of enzyme names to model reactions is done for some reactions, which we550

identified as important reactions but which failed to match between the pathway551

databases (4.3) and the gapseq model reactions using other reaction identifiers552

(dat/seed Enzyme Name Reactions Aliases.tsv). The overall mapping is done553

by the function getDBhit() as defined in ./src/gapseq find.sh.554

4.7 Model draft generation555

A draft genome-scale metabolic model is constructed based on the results from the556

pathway and transporter predictions (see above). A reaction is added to the draft557

model if the corresponding enzyme/transporter was directly found or if the pathway558
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was predicted to be present (i.e. due to pathway completeness and key enzymes) in559

which the reaction participates. Additionally, spontaneous reactions as defined in560

the MetaCyc database as well as transport reaction of compounds, which are know561

to be able to cross cell membranes by means of diffusion (e.g. H2), are directly562

added to every draft model. As part of the draft model construction gapseq adds a563

biomass reaction to the network that aims to describe the composition of molecular564

constituents that the organism needs to produce in order to form 1 g dry weight (1565

gDW) of bacterial biomass. gapseq uses the biomass composition definition from566

the ModelSEED database for Gram-positive (dat/seed biomass.DT gramPos.tsv)567

and Gram-negative bacteria (dat/seed biomass.DT gramNeg.tsv). If no Gram-568

staining property is specified by the user, gapseq predicts the Gram-staining-569

dependent biomass reactions by finding the closest 16S-rRNA-gene neighbor us-570

ing a blastn search against reference 16S-rRNA gene sequences from 4647 bac-571

terial species with known Gram-staining properties that are obtained from the572

PROTRAITS database [42]. The model draft generation is done by the R script573

src/generate GSdraft.R.574

4.8 Gap-filling algorithm575

gapseq provides a gap-filling algorithm that adds reactions to the model in order to576

enable biomass production (i.e. growth) and likely anabolic and catabolic capabili-577

ties. The algorithm uses the alignment statistics (i.e. the bitscore) from the pathway-578

and transporter prediction steps of gapseq (see above) to preferentially add reac-579

tions to the network, which have the highest genetic evidence. This approach is580

especially relevant in cases where the sequence similarity to known enzyme-coding581

reference genes was close to but did not reach the cutoff value b, which is required582

for a reaction to be included directly into the draft network. In contrast to the gap-583

filling algorithms described in previous works [43] and [39], which also use genetic584

evidence-weighted gap-filling, the gap-filling problem in gapseq is not formulated as585

Mixed Integer Linear Program (MILP) but as Linear Program (LP), and is derived586

from the parsimonious enzyme usage Flux Balance Analysis (pFBA) algorithm de-587

veloped by Lewis et al., 2010 [3]. Therefore, the alignment statistics (i.e. bitscore)588

are translated into weights for the corresponding model reactions and incorporated589

into the problem formulation:590

max: vj − c
∑
iεRall

wi|vi| , (1)

wi =


wmin bi ≥ u | i εRdraft

(bi − u)
(
wmin−wmax

u−l

)
+ wmin l ≤ bi < u

wmax bi < l

s.t.

S · v = 0

lb ≤ v ≤ ub
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Where Rall is the set of all reaction in the universal model, Rdraft are the reac-591

tions, which are already part of the draft network before gap-filling, vj is the flux592

through the objective reactions (e.g. biomass production), vi the flux through reac-593

tion i, wi the weight for reaction i, v the flux vector for all reactions, and c a scalar594

factor that determines the contribution of the absolute reduction of weighted fluxes595

to the overall FBA solution (default: c = 0.001). Moreover, a maximum weight value596

wmax (default: 100) is assigned if the reaction’s highest bitscore is smaller than a597

threshold l (default: 50). A minimum reaction weight wmin (default: 0.005) is as-598

signed to reactions with a bitscore higher than u (default: 200) or if the reactions599

are already part of the draft model. S is the stoichiometric matrix and lb and ub600

the lower and upper flux bound vectors.601

Two other LP-based gap-filling algorithms that incorporate reaction evidence scores602

have been formulated by Dreyfuss et al. (2013) [44] and Medlock et al. (2020) [45],603

respectively. These approaches require a definition of a minimum flux through the604

biomass reaction to ensure growth. The pFBA-derived LP formulation of gapseq605

(equation 1) includes the flux through the biomass/objective reaction vj together606

with the reaction evidence scores in a single objective function.607

In gapseq and following the solution of the LP (1), reactions carrying a flux and608

which are not part of the draft model are added to the network model. The algo-609

rithm is implemented in src/gapfill4.R.610

4.9 Gap-filling of biomass, carbon sources, and fermentation products611

Gap-filling of a draft model in gapseq requires only for the first step a user-defined612

growth medium that is ideally known to support growth of the organism of interest613

in vivo. If no growth medium is specified by the user, a complete medium (ALLmed)614

is chosen by gapseq (as done for the large-scale benchmarks of enzyme activity and615

carbon sources, cf. 4.11, 4.12). A set of common microbial growth media (e.g. LB,616

TSB, M9) is provided in the gapseq software directory dat/medium/. In addition,617

the user can provide a custom growth medium definition. The above described618

gap-filling algorithm is used to improve the generated draft model in four steps.619

1 Biomass production: To ensure that the model is able to produce biomass620

under the given nutritional input (medium) the gap-filling algorithm is applied621

while the objective is defined as the flux through the biomass reaction. This622

step will add all missing reactions that are essential for in silico growth.623

2 Individual biomass components: It is checked whether the model supports624

the biosynthesis of biomass components. Therefore, model is re-constrained625

to a M9-like minimal medium with a carbon source for which an exchange626

reactions is found (default: glucose if available). The objective function is627

set to the production of one biomass component at a time and the gap-fill628

algorithm is performed. This gap-filling step is repeated for each biomass629

component metabolite twice, with and without oxygen to potentially allow630

aerobic and anaerobic growth for facultative anaerobe species.631

3 Alternative energy sources: gapseq attempts to gap-fill likely metabolic632

pathways, which enable the utilisation of alternative energy sources, which633

might not be part of the defined growth medium from step (1). To this end,634

the model is re-constrained to a M9-like minimal medium containing a single635
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carbon source of interest at the time. As objective function, the summed flux636

of artificial reactions that accept electrons from the electron carriers ubiquinol,637

menaquinol, or NADH is defined. This test can be considered as an in silico638

simulation of the commonly used BIOLOG carbon source utilisation test ar-639

rays [46] in which the colometric effect is coupled to a dehydrogenase [47]. This640

gap-filling step is performed for all metabolites defined in dat/sub2pwy.csv.641

4 Metabolic products: Finally, the same list of compounds as for step (3), is642

used to check whether the network can be gap-filled to allow the formation643

of these metabolites given the original medium. For each compound the gap-644

filling algorithm is applied with the production of the focal compound as645

objective function.646

While step (1) considers all reaction from the universal model as potential can-647

didate reactions for gap-filling, steps (2-4) allow only the addition of candidate648

reactions to the model with a corresponding bitscore from the pathway prediction649

(4.3) higher than a threshold value b (default: 50). Thus, these so-termed ’core re-650

actions’ represent only reactions, for which gapseq has found genomic sequence or651

pathway evidence. This approach for steps (2-4) is chosen to avoid the addition652

of biosynthetic capabilities to the model, which the organism presumably does not653

possess.654

4.10 Formal and functional model file testing655

The validity of genome-scale metabolic model files was checked with MEMOTE656

(0.10.2) [48]. For all models used in the anaerobic food web (4.16), the total MEM-657

OTE score was computed for the respective SBML-Model files. MEMOTE was exe-658

cuted using the parameter --skip test find metabolites not produced with open bounds659

and --skip test find metabolites not consumed with open bounds since these660

tests do not contribute to the total MEMOTE score but require long computation661

time.662

4.11 Validation with enzymatic data (BacDive)663

The Bacterial Diversity Metadatabase (BacDive) [49] was used to obtain enzy-664

matic activity data. For this purpose, a list of type strains IDs where downloaded665

using the advanced search. Afterwards the IDs were used to query the database666

via the R package BacDiveR (0.9.1) to obtain the data [50]. If the stored data667

contained non-zero entries for enzymatic activity and if a genome assembly was668

available on NCBI, the type strain was considered for the validation analysis.669

The respective genome assemblies were downloaded with ncbi-genome-download670

(https://github.com/kblin/ncbi-genome-download). If multiple genomes were671

available for one type strain, ’representative’ and ’complete’ (NCBI tags) genomes672

were preferred and, in case there were still multiple candidate genomes available,673

the most complete genome was selected. Genome completeness was estimated by674

employing the software BUSCO (3.0.2) [51]. In total, 3017 type strain genomes675

were taken as input for ModelSEED (2.5.1), CarveMe (1.2.2), and gapseq to create676

metabolic models. The gap-filling parameters were set to default values for each677

program, i.e. a complete medium was assumed. The final test whether a reaction678

activity is covered by a model was done by checking if the corresponding reaction679
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is present in the model. This was done by matching enzymes and reactions via EC680

numbers. For CarveMe the vmh (https://www.vmh.life) and for ModelSEED and681

gapseq the ModelSEED (http://modelseed.org) reaction database was used to682

match reactions and EC numbers. For the EC numbers 3.1.3.1, 3.1.3.2, the corre-683

sponding reactions were the same, and thus unspecific, so that both EC numbers684

were not considered for the validation analysis. In general, the enzyme activities685

in the BacDive database have the form active (”+”) or not active (”-”) but some686

entries were ambiguous (e.g.: ”+/-”). The ambiguous entries were omitted from the687

analysis.688

4.12 Validation with carbon sources data (ProTraits)689

Data for the validation of carbon source utilisation was obtained from the ”atlas690

of prokaryotic traits” database (ProTraits) [42]. A tab-separated table with bina-691

rised predictions with a stringent threshold of precision of ≥ 0.95 were downloaded692

from http://protraits.irb.hr/data.html. For organisms which had at least one693

carbon source prediction, the corresponding genome was obtained from NCBI Ref-694

Seq [52] if available. In cases where a genome assembly was found, it was taken695

as input for ModelSEED, CarveMe, and gapseq to create metabolic models. The696

number of potential carbon sources was reduced to a subset for which a map-697

ping from substance name to ModelSEED and CarveMe model namespace existed698

(dat/sub2pwy.csv). The tests for D-lyxose were removed because it was listed as699

all negative in ProTraits and also all compared pipelines predicted no utilisation.700

The main test whether a carbon source can be used by a model was done in a701

BIOLOG-like manner as described above (see 4.9). To this end, temporary reac-702

tions to recycle reduced electron carriers as carbon source utilisation indicators were703

added to the respective model. The objective for optimisation was set to maximise704

the flux through these recycling reactions. The exchange reactions were limited to a705

minimal medium with minerals and the focal potential carbon source. This theoret-706

ical approach tested, whether the model is able to pass electrons from the potential707

carbon source to electron carrier metabolites. A carbon source was predicted to be708

able to serve as energy source if the recycle reactions carried a positive flux.709

4.13 Prediction of gene essentiality710

To predict the essentiality of genes we performed in silico single gene deletion711

phenotype analysis for the network reconstructions of Escherichia coli str. K-712

12 substr. MG1655 (RefSeq assembly accession: GCF 000005845.2), Bacillus sub-713

tilis substr. subtilis str. 168 (GCF 000789275.1), Shewanella oneidensis MR-1714

(GCF 000146165.2), Pseudomonas aeruginosa PAO1 (GCF 000006765.1), and My-715

coplasma genitalium G37 (GCF 000027325.1). The analysis was performed on the716

basis of the models’ Gene-Protein-Reaction (GPR) mappings and according to the717

protocol by Thiele and Palsson, 2010 [20]. To this end, the contingency tables of pre-718

dicted growth/no growth phenotypes from the network models and experimentally719

determined growth phenotypes of gene deletion mutants were constructed. Genes720

were predicted to be conditionally essential under the given growth environment if721

the predicted growth rates of the models were below 0.01 hr-1. The growth media722

compositions for growth predictions were defined as M9 with glucose as carbon-723
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and energy source for E. coli, lysogeny broth (LB) for B. subtilis and S. oneidensis,724

M9 with succinate as carbon and energy-source for P. aeruginosa, and a complete725

medium (all external metabolites available for uptake) for M. genitalium. Experi-726

mental data for gene essentiality was obtained from [53, 54, 55, 56, 57].727

4.14 Fermentation product tests728

The release of by-products from anaerobic metabolism was predicted using Flux729

Balance Analysis (FBA) coupled with a minimisation of total flux [58] to avoid730

fluxes that do not contribute to the objective function of the biomass production.731

In addition, Flux-Variability-Analysis (FVA) [59] was applied to predict the maxi-732

mum fermentation product release of individual metabolites across all possible FBA733

solutions. Metabolites with a positive exchange flux (i.e. outflow) were considered734

as fermentation products. The analysis was performed for 18 different bacterial or-735

ganisms, which (1) have a genome assembly available in the RefSeq database [52],736

(2) are known to grow in anaerobic environments, and (3) for which the fermenta-737

tion products have been described in the literature based on anaerobic cultivation738

experiments (suppl. table S2). The gap-filling of the network models using gapseq,739

CarveMe, and ModelSEED as well as the simulations of anaerobic growth were740

all performed assuming the same growth medium that comprised several organic741

compounds (i.e. carbohydrates, polyols, nucleotides, amino acids, organic acids) as742

potential energy sources and nutrients for growth (see media file dat/media/FT.csv743

at the gapseq github repository).744

Since the amount of fermentation product release depends on the organism’s growth745

rate, we normalised the outflow of the individual fermentation products, which has746

the unit mmol ∗ gDW−1 ∗ hr−1, by the predicted growth rate of the respective747

organism which has the unit hr−1. Thus, we report the amount of fermentation748

product production in the quantity of the metabolite that is produced per unit of749

biomass: mmol ∗ gDW−1.750

4.15 Pathway prediction of soil and gut microorganisms751

The pathway analysis was done by comparing predicted pathways of soil and gut752

microorganisms. For this means, genomes were downloaded from a resource of ref-753

erence soil organisms [60] and gut microbes [61]. The default parameter of gapseq754

were used for pathway prediction. The principal component analysis was done in755

R using the factoextra package [62]. For predicted pathways for soil and gut mi-756

croorganisms, it was checked if samples belong to different distributions using a757

bootstrap version of the Kolmogorov-Smirnov test [63].758

4.16 Anaerobic food web of the human gut microbiome759

Representative bacterial organisms known to be relevant in the human intestinal760

cross-feeding of metabolites were selected based on the proposed food webs by Louis761

et al., 2014 [64] and Rivera-Chavez et al., 2015 [65]. The genomes of organisms762

were obtained from NCBI RefSeq [52] and metabolic models reconstructed using763

gapseq, carveme, and modelseed. A medium containing minerals, vitamins, amino764

acids, fermentation- and metabolic by-products (namely acetate, formate, lactate,765

butyrate, propionate, H2, CH4, ethanol, H2S, succinate), and carbohydrates (glu-766

cose, fructose, arabinose, ribose, fucose, rhamnose, lactose) was used for gap-filling.767
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Furthermore, a published model of Methanosarcina barkeri was added to the com-768

munity [66] to represent archaea that are also known to be part of anaerobic food769

webs [67]. All organisms of the modeled community and their respective genome770

assembly accession numbers are listed in supplementary table S3. All metabolic771

models were then simulated with BacArena [68] by using the described medium772

but without the fermentation and by-products, plus sulfite and 4-aminobenzoate773

which were needed for growth by the M. barkeri model. The community was sim-774

ulated for five time steps (corresponding to 5 hours simulated time). The analysis775

of metabolite uptake and production were done after the third time step, for which776

all organisms were still growing exponentially.777

4.17 Model reconstructions from metagenomic assemblies778

4, 930 species-level genome bins (SGBs) assembled from shotgun metagenome se-779

quencing reads were obtained from the study of Pasolli et al., 2019 [69]. Only those780

SGBs were considered for further analysis, which were already classified as bacteria781

on a species-level in the original publication by Pasolli et al.. For each SGB, closely782

related reference assemblies from the RefSeq database [52] were identified by con-783

structing a multi-locus phylogenetic tree using autoMLST (version as of April 7th784

2020, [70]). RefSeq assemblies were considered as genomes from the same species-785

level taxonomic group as the focal SGB if their predicted MASH distance (D)[71]786

were below or equal to 0.05. This threshold was shown before to cluster bacterial787

genomes at the taxonomic level of species [71]. Only SGBs with 10 or more assigned788

reference assemblies were considered for further analysis, which yielded in total 127789

SGBs. Metabolic models were reconstructed using gapseq for each SGB and their790

10 closest reference assemblies (Suppl. Table S5).791

Next, similarity of SGB models with their respective reference models was calcu-792

lated using the following metabolic network similarity score TSGB :793

TSGB =

∑
i

aibi∑
i

bi
, i ∈ RSGB Ref , 0 ≤ bi ≤ 1

with

ai =

{
0 if i 6∈ RSGB
1 if i ∈ RSGB

(2)

RSGB Ref is the union set of reactions with associated genes that are part of the794

network models reconstructed for the ten reference genome assemblies of the focal795

SGB. RSGB is the set of reactions part of the SGB’s model reconstruction. bi is the796

frequency of reaction i among the ten SGB’s reference models.797

Completion of the genome sequence of SGBs was estimated by using BUSCO (ver-798

sion 4.0.6, [51]) using the specific completion score.799

4.18 Technical details800

The pathway prediction part of gapseq is implemented as Bash shell script and801

the metabolic model generation part is written in R. Linear optimisation can be802
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performed with a different solvers (GLPK or CPLEX). Other requirements are803

exonerate, bedtools, and barrnap. In addition, the following R packages are needed:804

data.table [72], stringr [73], sybil [74], getopt [75], reshape2 [76], doParallel [77],805

foreach [78], R.utils [79], stringi [80], glpkAPI [81], and BioStrings [82]. Models can806

be exported as SBML [83] file using sybilSBML [74] or R data format (RDS) for807

further analysis in R, for example with sybil [74] or BacArena [68].808
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42. Brbić, M., Pǐskorec, M., Vidulin, V., Krǐsko, A., Šmuc, T., Supek, F.: The landscape of microbial phenotypic944

traits and associated genes. Nucleic Acids Research, 964 (2016). doi:10.1093/nar/gkw964945

43. Benedict, M.N., Mundy, M.B., Henry, C.S., Chia, N., Price, N.D.: Likelihood-based gene annotations for gap946

filling and quality assessment in genome-scale metabolic models. PLOS Computational Biology 10(10), 1–14947

(2014). doi:10.1371/journal.pcbi.1003882948

44. Dreyfuss, J.M., Zucker, J.D., Hood, H.M., Ocasio, L.R., Sachs, M.S., Galagan, J.E.: Reconstruction and949

validation of a genome-scale metabolic model for the filamentous fungus neurospora crassa using FARM.950

PLoS Computational Biology 9(7), 1003126 (2013). doi:10.1371/journal.pcbi.1003126951

45. Medlock, G.L., Papin, J.A.: Guiding the refinement of biochemical knowledgebases with ensembles of952

metabolic networks and machine learning. Cell Systems 10(1), 109–1193 (2020).953

doi:10.1016/j.cels.2019.11.006954

46. Smalla, K., Wachtendorf, U., Heuer, H., Liu, W.-t., Forney, L.: Analysis of biolog gn substrate utilization955

patterns by microbial communities. Applied and Environmental Microbiology 64(4), 1220–1225 (1998).956

https://aem.asm.org/content/64/4/1220.full.pdf957

47. Bochner, B.R.: Global phenotypic characterization of bacteria. FEMS Microbiology Reviews 33(1), 191–205958

(2009). doi:10.1111/j.1574-6976.2008.00149.x959

48. Lieven, C., Beber, M.E., Olivier, B.G., Bergmann, F.T., Ataman, M., Babaei, P., Bartell, J.A., Blank, L.M.,960
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Table S3 — Organisms used in modelling of the anaerobic food web of the human

gut microbiome.
RefSeq Assembly Organism name Reconstruction method
GCF 000173975.1 Anaerobutyricum hallii DSM 3353 gapseq / modelseed / carveme
GCF 000025985.1 Bacteroides fragilis NCTC 9343 gapseq / modelseed / carveme
GCF 001314975.1 Bacteroides thetaiotaomicron gapseq / modelseed / carveme
GCF 000196555.1 Bifidobacterium longum subsp. longum JCM 1217 gapseq / modelseed / carveme
GCF 000157975.1 Blautia hydrogenotrophica DSM 10507 gapseq / modelseed / carveme
GCF 000013285.1 Clostridium perfringens ATCC 13124 gapseq / modelseed / carveme
GCF 003434235.1 Coprococcus catus gapseq / modelseed / carveme
GCF 000155875.1 Coprococcus comes ATCC 27758 gapseq / modelseed / carveme
GCF 000154425.1 Coprococcus eutactus ATCC 27759 gapseq / modelseed / carveme
GCF 000189295.2 Desulfovibrio desulfuricans ND132 gapseq / modelseed / carveme
GCF 000391485.2 Enterococcus faecalis EnGen0107 gapseq / modelseed / carveme
GCF 000005845.2 Escherichia coli str. K-12 substr. MG1655 gapseq / modelseed / carveme
GCF 000162015.1 Faecalibacterium prausnitzii A2-165 gapseq / modelseed / carveme
GCF 003047065.1 Lactobacillus acidophilus gapseq / modelseed / carveme
GCF 001304715.1 Megasphaera elsdenii 14-14 gapseq / modelseed / carveme
GCF 000195895.1 Methanosarcina barkeri str. Fusaro manually curated (BiGG-ID: iAF692)[66]
GCF 000144405.1 Prevotella melaninogenica ATCC 25845 gapseq / modelseed / carveme
GCF 900101355.1 Ruminococcus bromii gapseq / modelseed / carveme
GCF 000006945.2 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 gapseq / modelseed / carveme
GCF 900637515.1 Veillonella dispar gapseq / modelseed / carveme
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Figure S1 — Validation of substance production and consumption in anaerobic

gut communities (see Supplementary Table S4).
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Figure S2 — Similarity of gapseq models reconstructed for 127 species-level

genome bins (SGBs) from metagenomes compared to models reconstructed for

reference genomes (RefSeq Prokaryotic Genomes). The x-axis represents the

genome assembly completion of SGBs estimated using the BUSCO software ver-

sion 4.0.6 [51]. The line shows the result of non-linear regression using a loga-

rithmic function of form y(x) = c+ b ∗ log(x). Sequences of SGBs were obtained

from Pasolli et al., 2019 [69].
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