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Abstract 

The recent outbreak of SARS-CoV-2 (2019-nCoV) virus has highlighted the need for fast and 

efficacious vaccine development. Stimulation of a proper immune response that leads to 

protection is highly dependent on presentation of epitopes to circulating T-cells via the HLA 

complex. SARS-CoV-2 is a large RNA virus and testing of all overlapping peptides in vitro to 

deconvolute an immune response is not feasible. Therefore HLA-binding prediction tools are 

often used to narrow down the number of peptides to test. We tested 15 epitope-HLA-binding 

prediction tools, and using an in vitro peptide MHC stability assay, we assessed 777 peptides 

that were predicted to be good binders across 11 MHC allotypes. In this investigation of 

potential SARS-CoV-2 epitopes we found that current prediction tools vary in performance 

when assessing binding stability, and they are highly dependent on the MHC allotype in 

question. Designing a COVID-19 vaccine where only a few epitope targets are included is 

therefore a very challenging task. Here, we present 174 SARS-CoV-2 epitopes with high 

prediction binding scores, validated to bind stably to 11 HLA allotypes. Our findings may 

contribute to the design of an efficacious vaccine against COVID-19.  
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Introduction 

2019-nCoV (SARS-CoV-2) was first reported in Wuhan, China, on 31 December 2019, following 

a series of unexplained pneumonia cases (WHO 2020a) . Currently, the disease is intensifying 

with case reports over a continuously growing geographical area. WHO now gives the risk 

assessment ‘Very High’ on a global level and classifies the situation as pandemic (WHO 2020b, 

[c] 2020) . Vaccine development is of high priority at this stage, and a number of public and 

private initiatives are focused on this task (Chen et al. 2020) .  Most, if not all, ongoing vaccine 

development efforts are focused on raising an immune response against the spike protein. 

However, the spike protein only makes up 1/8 of the COVID-19 genome, so this vaccine 

strategy may inadvertently miss a lot of potential immune reactivity. SARS-CoV-2  has a large 

proteome (F. Wu et al. 2020) . Immune deconvolution to identify T cell epitopes will require 

initial filtering to assess which SARS-CoV-2 -derived peptides are likely to bind a given HLA 

allotype and to be presented on the surface of infected cells from where it can activate 

passing T cells. The core binding groove of most MHC molecules can accommodate 9 peptides, 

with some variation or suspected impact of flanking positions (Bassani-Sternberg et al. 2016; 

Rammensee 1995) .  
 

Several tools (a selection is presented in Table 1) have been developed that can predict the 

binding of peptides to HLA. Traditionally, these tools were trained using data from affinity 

assays (Harndahl et al. 2009) , but more recently many of them also incorporate data from 

peptides identified by HLA ligandome analysis. Most tools rely on small neural networks (NN) 

or variations of position-specific weight matrices (PSSM), to calculate the probability of a 

peptide matching a consensus motif or model. 

NetMHC tools (such as netMHC, netMHCII, netMHCpan, netMHCIIpan and others) have been 

under constant development and have consistently performed well throughout the last 

decade, (Peters, Nielsen, and Sette 2020; Mei et al. 2019; Saethang et al. 2012; Bhattacharya 

et al. 2017) . Several tools are restricted in terms of which allotypes are available for 

prediction, in particular for MHC class II. This restriction is primarily determined by the 

availability of training data, for which the large public collection is currently IEDB (Sidney et 

al. 2006) . Attempts to overcome this limitation have been made via sequence-to-sequence 

predictions, most notably for netMHCpan (Jurtz et al. 2017) . A number of recent publications 

makes use of prediction tools to suggest vaccine candidate epitopes for SARS-CoV-2 (Fast, 

Altman, and Chen 2020; Grifoni et al. 2020; Abdelmageed et al. 2020) . 
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Table 1. Current best-performing or novel HLA prediction tools (Mei et al. 2019). Webservers checked on 2 March 

2020, NN: Neural network, Cons: Consensus, PSSM: Position specific scoring matrix.  

*availability as a fraction of allotypes included in study (10 HLA class I and 1 of HLA class II) 

HLA    Tool  Allotypes available *  Year  Algorithm  Web server  Reference 

Class I    ANN 4.0  9/10  2003  NN  Yes  (Nielsen et al. 2003) 

  IEDB-AR Consensus  9/10  2006  Cons  Yes  (Moutaftsi et al. 2006) 

  ConvMHC  6/10   2017  NN  Yes  (Han and Kim 2017) 

  DeepHLAPan  10/10  2019  NN  Yes  (J. Wu et al. 2019) 

  HLAthena  10/10  2020  NN  Yes  (Sarkizova et al. 2020) 

  MixMHCpred2.0.2  10/10  2017  PSSM  No  (Bassani-Sternberg et al. 

2017) 

  MHCFlurry1.3.0  8/10  2018  NN  No  (O’Donnell et al. 2018) 

  NetMHCcons1.1  10/10  2012  Cons  Yes  (Karosiene et al. 2012) 

  NetMHCpan_BA4.0  10/10   2017  NN  Yes  (Jurtz et al. 2017) 

  NetMHCpan_EL4.0  10/10  2017  NN  Yes  (Jurtz et al. 2017) 

  NetMHCstab1.0  10/10  2014  NN  Yes  (Jørgensen et al. 2014) 

  PickPocket1.1  10/10   2009  PSSM  Yes  (Zhang, Lund, and Nielsen 

2009) 

  PSSMHCpan1.0  10/10  2017  PSSM  No  (Liu et al. 2017) 

  SMM1.0  8/10  2005  PSSM  Yes  (Peters and Sette 2005) 

  SMMPMBEC1.0  8/10  2009  PSSM  Yes  (Kim et al. 2009) 

Class 

II 

  Consensus2.22  1/1  2008  Cons  Yes  (Wang et al. 2008) 

  NetMHCIIpan3.2  1/1  2018  NN  Yes  (Jensen et al. 2018) 

  NN_Align2.3  1/1  2018  NN  Yes  (Jensen et al. 2018) 

  SMM-align  1/1  2007  PSSM  Yes  (Nielsen, Lundegaard, and 

Lund 2007) 

  Sturniolo  1/1  1999  PSSM  Yes  (Sturniolo et al. 1999) 

 

  

To assess whether current peptide-HLA prediction tools could be suitable for identification of 

epitopes relevant in a vaccine against SARS-CoV-2, we tested predicted binders from the 

netMHC tools, using a new MHC:peptide complex stability assay NeoScreen Ⓡ
. We found that 

algorithmically predicting binding between epitopes from SARS-CoV-2 and HLA outputs many 

complexes that turned out to exhibit low stability. Such peptides are thus very unlikely to 

elicit an immune response against SARS-CoV-2 and are therefore unsuitable for vaccine 

development. To investigate if this finding was a result of the quality of available training 

data, we constructed a proof-of-concept prediction model, which we trained on 2,193 historic 

in-house stability data, and found that it outperforms other tools. Training data was primarily 

human cancer-derived or based on random sequences. SARS-CoV-2 peptides that we validated 

as binding or non-binding in this study are freely available for use to assist in vaccine design 

against COVID-19. 
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Results 

We set out to identify peptides with epitope potential in a future COVID-19 vaccine. We 

commenced by translating the reference sequence of SARS-CoV-2 ( ACCESSION MN908947, 

VERSION MN908947.3) to protein-coding sequence and predicted potential epitopes in a 

sliding window of 9 using netMHC tools (netMHC/II and “-pan” versions, when allotype was not 

available). We identified the top 94 predicted peptides for 11 HLA allotypes (94 x 11 = 1034), 

and went further to validate the binding of these 94 peptides to each allotype in an in vitro 

MHC:peptide complex stability assay (NeoScreen Ⓡ
). We removed eight peptides that were 

synthetically introduced when translating the DNA sequence to protein sequence. Of the 

remaining 1,026 peptides we observed a high degree of overlap between different allotypes, 

resulting in 777 unique peptides. We found that 174 of the 777 unique peptides formed a 

stable peptide-HLA complex. Of these 174 peptides, 48 were previously measured and 

deposited in IEDB in relation to SARS and the remaining 126 peptides are novel. The full list of 

predicted binders (excluding synthetic peptides) can be found in the supplementary material 

(Supplementary Data S1). 

 

In order to first assess potential variability across the stability measurements we made 

replicate measurements ( n= 4) of 120 peptides on 8 HLA alleles. Each peptide was measured 

with urea in 4 different concentrations (0M, 2M, 4M, 6M), and we observed an average 

standard deviation between replicates of 0.10 with an average mean of 0.56. All remaining 

experiments were performed in duplicate for all concentrations.  

 

To further address whether alternative prediction tools would have higher concordance with 

measured stability, we performed predictions for all tools listed in Table 1.  Predictions for 

the 15 different tools were performed either through their web server or a stand-alone 

version, (see Materials and methods section for details). Furthermore, using in-house stability 

data, we developed PrdX 1.0, a prediction tool for a single allele HLA-A*02:01, where all 

other tools performed most poorly.  

 

We assessed the false positive rate for each tool via Receiver Operating Characteristic (ROC) 

curves, and their Area under curve (AUC) for all allotypes that had more than 10 binders. The 

analysis revealed that ANN 4.0 achieved the highest score for allotype HLA-A*01:01 (AUC = 

97,47; Figure 1A), closely followed by NetMHCcons 1.1, NetMHCpan_BA 4.0 and IEDB-AR 

Consensus. PrdX 1.0 scored highest for HLA-A*02:01 (AUC = 85.54; Figure 1B), NetMHCcons 1.1 

scored highest for HLA-A*03:01 (AUC = 79.25; Figure 1C), and MHCflurry 1.3.0 performed best 

for HLA-B*40:01 (AUC = 91.06; Figure 1F). NetMHCstab 1.0 was the only tool that achieved the 

highest score for more than 1 allotype: HLA-A*11:01 and HLA-A*24:02  
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Figure 1. ROC curves for each allotype that bound more than 10 peptides stably (subplots A, B, C, D, E, 

F, G), H) tools used in the benchmark,  I) precision-recall curves for HLA-A*02:01. Corresponding area 

under curve (AUC) values are listed in Table 2. 

 

(AUC = 89.80; 86.03; Figure 1D, E, respectively). Out of the tools tested for HLA class II, 

IEDB-AR Consensus achieved the highest score for HLA-DRB1*04:01 (AUC = 81,31; Figure 1G). 

Table 2 provides all AUC values, and the result obtained for each allotype is marked in bold. 

Notably, in the case of HLA-A*02:01 we observed  
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Table 2. AUC values for ROC curves from Figure 1 for allotypes with more than 10 stable complexes. First 6 six 

columns contain HLA class I, last column contains HLA class II. Only four tools are tested for HLA class II. PrdX 1.0 

is only available for allotype A*02:01. Highest value for each allotype is marked in bold. 

Tool / allotype  A*01:01  A*02:01  A*03:01  A*11:01  A*24:02  B*40:01  DRB1*

04:01 

ANN 4.0  97,47  70,3  77,06  83,81  82,96  89,76  - 

IEDB-AR Consensus  97,06  69,44  77,36  87,05  83,89  90,03  81,31 

ConvMHC  85,13  47,71  72,53  76,33  66,88  79,80  - 

DeepHLAPan  91,82  62,90  52,49  80,84  69,87  80,95  - 

HLAthena  89,74  65,41  75,52  87,41  76,48  83,08  - 

MixMHCpred 2.0.2  92,54  70,04  75,29  80,82  78,68  76,29  - 

MHCFlurry 1.3.0  94,48  66,88  75,52  88,46  76,24  91,06  - 

NetMHCcons 1.1  97,42  65,93  79,25  86,21  79,52  90,25  - 

NetMHCpan_BA 4.0  97,15  65,84  76,32  86,76  85,40  88,79  - 

NetMHCpan_EL 4.0  93,40  75,89  75,84  80,11  78,36  84,27  - 

NetMHCstab 1.0  89,15  76,75  77,98  89,80  86,03  86,13  - 

PickPocket 1.1  88,65  57,32  65,53  75,03  80,93  88,44  - 

PrdX 1.0  -  85,54  -  -  -  -  - 

PSSMHCpan1.0  90,33  67,97  75,75  76,62  82,12  77,94  - 

SMM 1.0  95,25  60,09  75,15  87,26  80,26  88,82  - 

SMMPMBEC 1.0  92,13  60,48  75,36  87,26  80,13  86,34  - 

NetMHCIIpan3.2  -  -  -  -  -  -  76,63 

NN_Align2.3  -  -  -  -  -  -  78,14 

SMM-align1.1  -  -  -  -  -  -  74,42 

Sturniolo1.0  -  -  -  -  -  -  75,19 

 

particularly poor performance among all tested tools despite the extensive amount of data 

available for this allotype. 

 

To assess the correlation between the predicted and measured peptide-HLA complexes, 

Spearman correlation was calculated for all allotypes. This revealed significant 

inconsistencies in performance depending on the predicted allotype. PSSMHCpan 1.0 

displayed the highest consistency, taking into account its coverage (Table 1), but the 

correlation mean scored lower than other tools such as IEDB-AR Consensus, MixMHCpred 2.0.2, 

NetMHCpan_EL 4.0 or PrdX 1.0. The results of the Spearman correlations are summarised in 

Figure 2. 
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Figure 2. Plot of Spearman correlation between predicted values and results of Neoscreen Ⓡ
 stability 

assay for each available allotype. Each colour represents an individual allotype. Whiskers accord for 1.5 

distance between the median and quartile hinges. Data points beyond the end of the whiskers are 

outliers.  

Discussion 

Here we benchmark a number of tools to identify epitopes for SARS-CoV-2 virus, and validate 

via stability assay the binding of candidate epitopes to 10 allotypes of HLA class I and one 

allotype of HLA class II. We find that the false positive rate is high for all tested tools when 

testing for predicted HLA-binding peptides from SARS-CoV-2 virus. This creates a challenge for 

vaccine development efforts, especially for the design of epitope vaccines, where only a 

limited number of epitopes may be included. Furthermore, it highlights the risk for failed 

vaccine design (for any pathogen or disease) if predicted HLA-binding protein regions in 

reality do not bind and allow immune presentation and response. 

 

We observed, remarkably, that all tools tested performed poorly for HLA-A*02:01, which is 

the allotype with most training data available (Kim et al. 2014) . Based on our observations we 

hypothesise that publicly available training data is not of high enough quality. This is 

supported by the fact that AUC and Spearman correlations indicate that performance seems 
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to correlate with the allotypes and not the tools; thus suggesting that either the training data 

or the difficulty of modelling the allotype is responsible for poor predictions. To test the 

hypothesis that training data is limiting for tool performance, we trained a vanilla NN on only 

2,193 historic in-house stability measurements, and found that our model outperformed all 

tested prediction tools in this setting. This observation could also be explained by more 

similar data distributions between test and training data for PrdX 1.0. 

 

We identified 174 potential SARS-CoV-2 vaccine candidate peptides, out of which 48 have 

been previously deposited in IEDB following various studies (Qu et al. 2019; Blicher et al. 

2005; Sylvester-Hvid et al. 2004; Harndahl et al. 2006; Sidney et al. 2006; Ishizuka et al. 

2009) . The majority of the previously deposited peptides were measured in one or multiple 

affinity assays and reached low Kd (<50 nM) values, indicating strong affinity. Additionally, 9 

of these peptides were previously measured in another stability assay and were recognised as 

stable binders (Rasmussen et al. 2014) , independently confirming our approach and 

measurements. Of the 48 peptides deposited in IEDB, two (FLLPSLATV 

https://www.iedb.org/epitope/16743, FLNRFTTTL https://www.iedb.org/epitope/16786) 

have previously been assessed for their ability to provoke T cell responses, with negative T 

cell responses for both.  

 

To further assess the potential of the SARS-CoV-2 epitopes we explored their overlap with T 

cell-confirmed epitopes from SARS that are deposited in the IEDB. We identified 21 peptides 

within our candidates that are represented within these confirmed epitopes, either as 9-mers 

or partial motifs.  

 

In conclusion, we make freely available the identities of 174 COVID-19 epitopes that we have 

predicted and validated in vitro to be HLA-binding. We hope that this contribution will aid the 

development of a vaccine against SARS-CoV-2. We performed a benchmark analysis of 16 tools 

on 777 peptides that were predicted by state-of-the-art prediction tools from netMHC to be 

binders, and revealed high false positive rates for all benchmarked tools. We observed 

improved performance after training our own prediction tool PrdX 1.0 on allotype A*02:01 

using in-house generated stability data. Our findings suggest that the performance of current 

state-of-the-art epitope prediction tools are impacted by the varying quality of publicly 

available data.  

 

Data availability 

All epitopes are available at the vendor webpage ( www.immunitrack.com) and in 

supplemental materials (Data S2.). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2020. ; https://doi.org/10.1101/2020.03.20.000794doi: bioRxiv preprint 

https://paperpile.com/c/YRNWyx/naee+Gndc+q8Yo+5tV0+M2Iq+rvX8
https://paperpile.com/c/YRNWyx/naee+Gndc+q8Yo+5tV0+M2Iq+rvX8
https://paperpile.com/c/YRNWyx/naee+Gndc+q8Yo+5tV0+M2Iq+rvX8
https://paperpile.com/c/YRNWyx/WVRG
http://www.immunitrack.com/
https://doi.org/10.1101/2020.03.20.000794
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and methods 

Fifteen prediction tools tested on a relevant dataset of peptides from the SARS-CoV-2 genome 

(assembly MN908947.3 ). The genome sequence was downloaded from the NCBI database 

( https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3 ) (F. Wu et al. 2020) . Using NetMHC we 

predicted the top 94 peptides to A*0101, A*0201, A0301, A*2402, B*40:01, C01:02, C04:01 

(NetMHCpan), C*07:01, C*07:02 and DRB1*04:01 (NetMHCII). Subsequently, the peptides were 

analysed for binding stability to the respective HLA allotype. Taking into account the 

cross-reactivity between the two allotypes, peptides predicted to bind A*0301 were also 

measured on A*1101. 

 

Peptides were synthesised on a modified cellulose support with a ramage linker between the 

membranes covalently bound to beta-alanine and the synthesised peptides. 

Peptides were synthesised using standard Fmoc solid-phase synthesis. 

After synthesis, peptides were cleaved off the membranes with 95% trifluoroacetic acid (TFA), 

3% triisopropylsilane (TIS) & 2% H 
2 O. Peptides were then precipitated with diethylether (7 

times the peptide volume), and washed with methyl-tert-butylether. 

Peptides were then dissolved in Lyo-Mix (proprietary) and lyophilised using a speed vac. The 

anticipated yield per spot was 50 µg. 5% of the peptides were analysed by MALDI-TOF to 

confirm correct molecular weight.  

 

NeoScreen assayⓇ 

The NeoScreen Ⓡ
 stability assay utilises urea denaturation to assess peptide:MHC complex 

stability. Briefly, peptides were dissolved in 200 µl DMSO with 1 mM β- mercaptoethanol and 

subsequently diluted into an assay buffer in 96 well plates at a final concentration of 2 µM. 

Positions A1 and H12 were reserved for a mixture of reference peptides with known stable 

binding to the MHC of interest. MHC I was diluted into an assay buffer with beta 2 

microglobulin and added at a 1:1 ratio to diluted peptides. For MHC II, the urea-denatured 

alpha and beta chains were diluted into an assay buffer and added at a 1:1 ratio to diluted 

peptides. The concentration of MHC depended on the actual chain but final concentrations 

were in the range of 2-10  nM (hence peptide was added in excess). Upon folding, 

peptide:MHC complexes were transferred to 384 well plates where they were challenged with 

4 different urea concentrations. Following the period of urea-induced stress the plates were 

developed in a conventional ELISA as described previously (Justesen et al. 2009; 

Sylvester-Hvid et al. 2002) . The ABS450 nm signals from the 4 different wells were averaged 

and normalised to the included reference to the included reference peptides in wells A1 and 

H12. 
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Benchmarking of tools 

Table 1 provides a summary of tools tested in this benchmark analysis. It features the year of 

their development, the algorithm used, web server availability and a reference. Most of the 

tested tools are available at the IEDB Analysis Resource web page ( http://tools.iedb.org/main/ ) 
and were run through their web interface ( http://tools.iedb.org/mhci/  or 

http://tools.iedb.org/mhcii/ ). MixMHCpred, MHCflurry and PSSMHCpan were downloaded from 

their respective github pages ( https://github.com/GfellerLab/MixMHCpred , 
https://github.com/openvax/mhcflurry , https://github.com/BGI2016/PSSMHCpan , respectively). 

ConvMHC, DeepHLApan and HLAthena were used from their privately hosted web servers 

( http://jumong.kaist.ac.kr:8080/convmhc , http://biopharm.zju.edu.cn/deephlapan/ , 
http://hlathena.tools/ , respectively).  

 

All tested peptides were subjected to in silico predictions (with each prediction tool) 

regarding their available allotype. Predictions were compared against measured stability 

determinations obtained through the NeoScreen Ⓡ
 assay. Measurements were normalised to an 

allotype-specific reference peptide (stability = 100). The list of reference peptides used is 

available in supplementary material (Table S1.). The threshold for a stable binder was set to 

60. Predictions were subsequently evaluated according to commonly-used metrics such as the 

Receiver Operating Characteristic (ROC) and Area Under Curve (AUC) to visualise the 

relationship between sensitivity and specificity. Spearman correlation was also used to 

compare the ranked correlation of predicted and measured data.  

 

PrdX 

To assess the performance of predictors trained on stability data we used PyTorch (Paszke et 

al. 2017)  to train a fully connected, feed-forward neural network with 64 and 32 hidden units 

on historic in-house stability data from allotype A*02:01. This data contains a mixture of 

human cancer-related stability measurements and measurements made on synthetic random 

peptides. We used BLOSUM62 matrix for encoding, simple network architecture, train-test 

split and early stopping for training.  

 

 

   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2020. ; https://doi.org/10.1101/2020.03.20.000794doi: bioRxiv preprint 

http://tools.iedb.org/main/
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhci/
https://github.com/GfellerLab/MixMHCpred
https://github.com/openvax/mhcflurry
https://github.com/BGI2016/PSSMHCpan
http://jumong.kaist.ac.kr:8080/convmhc
http://biopharm.zju.edu.cn/deephlapan/
http://hlathena.tools/
https://paperpile.com/c/YRNWyx/QWvR
https://paperpile.com/c/YRNWyx/QWvR
https://doi.org/10.1101/2020.03.20.000794
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

 

Abdelmageed, Miyssa I., Abdelrahman H. Abdelmoneim, Mujahed I. Mustafa, Nafisa M. Elfadol, 

Naseem S. Murshed, Shaza W. Shantier, and Abdelrafie M. Makhawi. 2020. “Design of 

Multi Epitope-Based Peptide Vaccine against E Protein of Human COVID-19: An 

Immunoinformatics Approach.” bioRxiv. https://doi.org/ 10.1101/2020.02.04.934232 . 
Bassani-Sternberg, Michal, Eva Bräunlein, Richard Klar, Thomas Engleitner, Pavel Sinitcyn, 

Stefan Audehm, Melanie Straub, et al. 2016. “Direct Identification of Clinically Relevant 

Neoepitopes Presented on Native Human Melanoma Tissue by Mass Spectrometry.” Nature 

Communications  7 (November): 13404. 

Bassani-Sternberg, Michal, Chloé Chong, Philippe Guillaume, Marthe Solleder, Huisong Pak, 

Philippe O. Gannon, Lana E. Kandalaft, George Coukos, and David Gfeller. 2017. 

“Deciphering HLA-I Motifs across HLA Peptidomes Improves Neo-Antigen Predictions and 

Identifies Allostery Regulating HLA Specificity.” PLoS Computational Biology 13 (8): 

e1005725. 

Bhattacharya, Rohit, Ashok Sivakumar, Collin Tokheim, Violeta Beleva Guthrie, Valsamo 

Anagnostou, Victor E. Velculescu, and Rachel Karchin. 2017. “Evaluation of Machine 

Learning Methods to Predict Peptide Binding to MHC Class I Proteins.” 

https://doi.org/ 10.1101/154757 . 
Blicher, Thomas, Jette Sandholm Kastrup, Søren Buus, and Michael Gajhede. 2005. 

“High-Resolution Structure of HLA-A*1101 in Complex with SARS Nucleocapsid Peptide.” 

Acta Crystallographica. Section D, Biological Crystallography 61 (Pt 8): 1031–40. 

Chen, Wen-Hsiang, Ulrich Strych, Peter J. Hotez, and Maria Elena Bottazzi. 2020. “The 

SARS-CoV-2 Vaccine Pipeline: An Overview.” Current Tropical Medicine Reports. 
https://doi.org/ 10.1007/s40475-020-00201-6 . 

Fast, Ethan, Russ B. Altman, and Binbin Chen. 2020. “Potential T-Cell and B-Cell Epitopes of 

2019-nCoV.” bioRxiv. https://doi.org/ 10.1101/2020.02.19.955484 . 
Grifoni, Alba, John Sidney, Yun Zhang, Richard H. Scheuermann, Bjoern Peters, and 

Alessandro Sette. 2020. “A Sequence Homology and Bioinformatic Approach Can Predict 

Candidate Targets for Immune Responses to SARS-CoV-2.” Cell Host & Microbe, March. 

https://doi.org/ 10.1016/j.chom.2020.03.002 . 
Han, Youngmahn, and Dongsup Kim. 2017. “Deep Convolutional Neural Networks for 

Pan-Specific Peptide-MHC Class I Binding Prediction.” BMC Bioinformatics 18 (1): 585. 

Harndahl, Mikkel, Sune Justesen, Kasper Lamberth, Gustav Røder, Morten Nielsen, and Søren 

Buus. 2009. “Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput 

Screening, and Affinity Assays.” Journal of Biomolecular Screening 14 (2): 173–80. 

Harndahl, Mikkel, Kasper Lamberth, Sune Justesen, Gustav Røder, Michael Madsen, Christina 

Sylvester-Hvid, Morten Nielsen, et al. 2006. “Large Scale Analysis of Peptide-HLA Class I 

Interactions.” 2006. https://www.iedb.org/reference/1000945 . 
Ishizuka, Jeffrey, Kristie Grebe, Eugene Shenderov, Bjoern Peters, Qiongyu Chen, Yanchun 

Peng, Lili Wang, et al. 2009. “Quantitating T Cell Cross-Reactivity for Unrelated Peptide 

Antigens.” Journal of Immunology  183 (7): 4337–45. 

Jensen, Kamilla Kjaergaard, Massimo Andreatta, Paolo Marcatili, Søren Buus, Jason A. 

Greenbaum, Zhen Yan, Alessandro Sette, Bjoern Peters, and Morten Nielsen. 2018. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2020. ; https://doi.org/10.1101/2020.03.20.000794doi: bioRxiv preprint 

http://paperpile.com/b/YRNWyx/MBg6
http://paperpile.com/b/YRNWyx/MBg6
http://paperpile.com/b/YRNWyx/MBg6
http://paperpile.com/b/YRNWyx/MBg6
http://paperpile.com/b/YRNWyx/MBg6
http://paperpile.com/b/YRNWyx/MBg6
http://dx.doi.org/10.1101/2020.02.04.934232
http://paperpile.com/b/YRNWyx/MBg6
http://paperpile.com/b/YRNWyx/qHaI
http://paperpile.com/b/YRNWyx/qHaI
http://paperpile.com/b/YRNWyx/qHaI
http://paperpile.com/b/YRNWyx/qHaI
http://paperpile.com/b/YRNWyx/qHaI
http://paperpile.com/b/YRNWyx/qHaI
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/xkXe
http://paperpile.com/b/YRNWyx/3Uo7
http://paperpile.com/b/YRNWyx/3Uo7
http://paperpile.com/b/YRNWyx/3Uo7
http://paperpile.com/b/YRNWyx/3Uo7
http://dx.doi.org/10.1101/154757
http://paperpile.com/b/YRNWyx/3Uo7
http://paperpile.com/b/YRNWyx/Gndc
http://paperpile.com/b/YRNWyx/Gndc
http://paperpile.com/b/YRNWyx/Gndc
http://paperpile.com/b/YRNWyx/Gndc
http://paperpile.com/b/YRNWyx/8rlO
http://paperpile.com/b/YRNWyx/8rlO
http://paperpile.com/b/YRNWyx/8rlO
http://paperpile.com/b/YRNWyx/8rlO
http://paperpile.com/b/YRNWyx/8rlO
http://dx.doi.org/10.1007/s40475-020-00201-6
http://paperpile.com/b/YRNWyx/8rlO
http://paperpile.com/b/YRNWyx/zlh3
http://paperpile.com/b/YRNWyx/zlh3
http://paperpile.com/b/YRNWyx/zlh3
http://paperpile.com/b/YRNWyx/zlh3
http://dx.doi.org/10.1101/2020.02.19.955484
http://paperpile.com/b/YRNWyx/zlh3
http://paperpile.com/b/YRNWyx/pzzx
http://paperpile.com/b/YRNWyx/pzzx
http://paperpile.com/b/YRNWyx/pzzx
http://paperpile.com/b/YRNWyx/pzzx
http://paperpile.com/b/YRNWyx/pzzx
http://paperpile.com/b/YRNWyx/pzzx
http://dx.doi.org/10.1016/j.chom.2020.03.002
http://paperpile.com/b/YRNWyx/pzzx
http://paperpile.com/b/YRNWyx/s4C9
http://paperpile.com/b/YRNWyx/s4C9
http://paperpile.com/b/YRNWyx/s4C9
http://paperpile.com/b/YRNWyx/s4C9
http://paperpile.com/b/YRNWyx/fQxZ
http://paperpile.com/b/YRNWyx/fQxZ
http://paperpile.com/b/YRNWyx/fQxZ
http://paperpile.com/b/YRNWyx/fQxZ
http://paperpile.com/b/YRNWyx/fQxZ
http://paperpile.com/b/YRNWyx/5tV0
http://paperpile.com/b/YRNWyx/5tV0
http://paperpile.com/b/YRNWyx/5tV0
https://www.iedb.org/reference/1000945
http://paperpile.com/b/YRNWyx/5tV0
http://paperpile.com/b/YRNWyx/rvX8
http://paperpile.com/b/YRNWyx/rvX8
http://paperpile.com/b/YRNWyx/rvX8
http://paperpile.com/b/YRNWyx/rvX8
http://paperpile.com/b/YRNWyx/rvX8
http://paperpile.com/b/YRNWyx/AbGs
http://paperpile.com/b/YRNWyx/AbGs
https://doi.org/10.1101/2020.03.20.000794
http://creativecommons.org/licenses/by-nc-nd/4.0/


“Improved Methods for Predicting Peptide Binding Affinity to MHC Class II Molecules.” 

Immunology 154 (3): 394–406. 

Jørgensen, Kasper W., Michael Rasmussen, Søren Buus, and Morten Nielsen. 2014. 

“NetMHCstab - Predicting Stability of Peptide-MHC-I Complexes; Impacts for Cytotoxic T 

Lymphocyte Epitope Discovery.” Immunology 141 (1): 18–26. 

Jurtz, Vanessa, Sinu Paul, Massimo Andreatta, Paolo Marcatili, Bjoern Peters, and Morten 

Nielsen. 2017. “NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions 

Integrating Eluted Ligand and Peptide Binding Affinity Data.” Journal of Immunology  199 

(9): 3360–68. 

Justesen, Sune, Mikkel Harndahl, Kasper Lamberth, Lise-Lotte B. Nielsen, and Søren Buus. 

2009. “Functional Recombinant MHC Class II Molecules and High-Throughput 

Peptide-Binding Assays.” Immunome Research 5 (May): 2. 

Karosiene, Edita, Claus Lundegaard, Ole Lund, and Morten Nielsen. 2012. “NetMHCcons: A 

Consensus Method for the Major Histocompatibility Complex Class I Predictions.” 

Immunogenetics 64 (3): 177–86. 

Kim, Yohan, John Sidney, Søren Buus, Alessandro Sette, Morten Nielsen, and Bjoern Peters. 

2014. “Dataset Size and Composition Impact the Reliability of Performance Benchmarks 

for Peptide-MHC Binding Predictions.” BMC Bioinformatics 15 (July): 241. 

Kim, Yohan, John Sidney, Clemencia Pinilla, Alessandro Sette, and Bjoern Peters. 2009. 

“Derivation of an Amino Acid Similarity Matrix for Peptide: MHC Binding and Its 

Application as a Bayesian Prior.” BMC Bioinformatics 10 (November): 394. 

Liu, Geng, Dongli Li, Zhang Li, Si Qiu, Wenhui Li, Cheng-Chi Chao, Naibo Yang, et al. 2017. 

“PSSMHCpan: A Novel PSSM-Based Software for Predicting Class I Peptide-HLA Binding 

Affinity.” GigaScience 6 (5): 1–11. 

Mei, Shutao, Fuyi Li, André Leier, Tatiana T. Marquez-Lago, Kailin Giam, Nathan P. Croft, 

Tatsuya Akutsu, et al. 2019. “A Comprehensive Review and Performance Evaluation of 

Bioinformatics Tools for HLA Class I Peptide-Binding Prediction.” Briefings in 

Bioinformatics , June. https://doi.org/ 10.1093/bib/bbz051 . 
Moutaftsi, Magdalini, Bjoern Peters, Valerie Pasquetto, David C. Tscharke, John Sidney, 

Huynh-Hoa Bui, Howard Grey, and Alessandro Sette. 2006. “A Consensus Epitope 

Prediction Approach Identifies the Breadth of Murine T(CD8+)-Cell Responses to Vaccinia 

Virus.” Nature Biotechnology 24 (7): 817–19. 

Nielsen, Morten, Claus Lundegaard, and Ole Lund. 2007. “Prediction of MHC Class II Binding 

Affinity Using SMM-Align, a Novel Stabilization Matrix Alignment Method.” BMC 

Bioinformatics  8 (July): 238. 

Nielsen, Morten, Claus Lundegaard, Peder Worning, Sanne Lise Lauemøller, Kasper Lamberth, 

Søren Buus, Søren Brunak, and Ole Lund. 2003. “Reliable Prediction of T-Cell Epitopes 

Using Neural Networks with Novel Sequence Representations.” Protein Science: A 

Publication of the Protein Society 12 (5): 1007–17. 

O’Donnell, Timothy J., Alex Rubinsteyn, Maria Bonsack, Angelika B. Riemer, Uri Laserson, and 

Jeff Hammerbacher. 2018. “MHCflurry: Open-Source Class I MHC Binding Affinity 

Prediction.” Cell Systems 7 (1): 129–32.e4. 

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary Devito, 

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. “Automatic 

Differentiation in PyTorch.” 

https://pdfs.semanticscholar.org/b36a/5bb1707bb9c70025294b3a310138aae8327a.pdf. 
Peters, Bjoern, Morten Nielsen, and Alessandro Sette. 2020. “T Cell Epitope Predictions.” 

Annual Review of Immunology, February. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2020. ; https://doi.org/10.1101/2020.03.20.000794doi: bioRxiv preprint 

http://paperpile.com/b/YRNWyx/AbGs
http://paperpile.com/b/YRNWyx/AbGs
http://paperpile.com/b/YRNWyx/AbGs
http://paperpile.com/b/YRNWyx/1V0z
http://paperpile.com/b/YRNWyx/1V0z
http://paperpile.com/b/YRNWyx/1V0z
http://paperpile.com/b/YRNWyx/1V0z
http://paperpile.com/b/YRNWyx/1V0z
http://paperpile.com/b/YRNWyx/36m4
http://paperpile.com/b/YRNWyx/36m4
http://paperpile.com/b/YRNWyx/36m4
http://paperpile.com/b/YRNWyx/36m4
http://paperpile.com/b/YRNWyx/36m4
http://paperpile.com/b/YRNWyx/36m4
http://paperpile.com/b/YRNWyx/qzAe
http://paperpile.com/b/YRNWyx/qzAe
http://paperpile.com/b/YRNWyx/qzAe
http://paperpile.com/b/YRNWyx/qzAe
http://paperpile.com/b/YRNWyx/qzAe
http://paperpile.com/b/YRNWyx/RxYu
http://paperpile.com/b/YRNWyx/RxYu
http://paperpile.com/b/YRNWyx/RxYu
http://paperpile.com/b/YRNWyx/RxYu
http://paperpile.com/b/YRNWyx/7K00
http://paperpile.com/b/YRNWyx/7K00
http://paperpile.com/b/YRNWyx/7K00
http://paperpile.com/b/YRNWyx/7K00
http://paperpile.com/b/YRNWyx/7K00
http://paperpile.com/b/YRNWyx/Vw7t
http://paperpile.com/b/YRNWyx/Vw7t
http://paperpile.com/b/YRNWyx/Vw7t
http://paperpile.com/b/YRNWyx/Vw7t
http://paperpile.com/b/YRNWyx/Vw7t
http://paperpile.com/b/YRNWyx/9N8I
http://paperpile.com/b/YRNWyx/9N8I
http://paperpile.com/b/YRNWyx/9N8I
http://paperpile.com/b/YRNWyx/9N8I
http://paperpile.com/b/YRNWyx/9N8I
http://paperpile.com/b/YRNWyx/38vo
http://paperpile.com/b/YRNWyx/38vo
http://paperpile.com/b/YRNWyx/38vo
http://paperpile.com/b/YRNWyx/38vo
http://paperpile.com/b/YRNWyx/38vo
http://paperpile.com/b/YRNWyx/38vo
http://dx.doi.org/10.1093/bib/bbz051
http://paperpile.com/b/YRNWyx/38vo
http://paperpile.com/b/YRNWyx/Me4l
http://paperpile.com/b/YRNWyx/Me4l
http://paperpile.com/b/YRNWyx/Me4l
http://paperpile.com/b/YRNWyx/Me4l
http://paperpile.com/b/YRNWyx/Me4l
http://paperpile.com/b/YRNWyx/Me4l
http://paperpile.com/b/YRNWyx/K89N
http://paperpile.com/b/YRNWyx/K89N
http://paperpile.com/b/YRNWyx/K89N
http://paperpile.com/b/YRNWyx/K89N
http://paperpile.com/b/YRNWyx/K89N
http://paperpile.com/b/YRNWyx/ttEx
http://paperpile.com/b/YRNWyx/ttEx
http://paperpile.com/b/YRNWyx/ttEx
http://paperpile.com/b/YRNWyx/ttEx
http://paperpile.com/b/YRNWyx/ttEx
http://paperpile.com/b/YRNWyx/ttEx
http://paperpile.com/b/YRNWyx/RQ01
http://paperpile.com/b/YRNWyx/RQ01
http://paperpile.com/b/YRNWyx/RQ01
http://paperpile.com/b/YRNWyx/RQ01
http://paperpile.com/b/YRNWyx/RQ01
http://paperpile.com/b/YRNWyx/QWvR
http://paperpile.com/b/YRNWyx/QWvR
http://paperpile.com/b/YRNWyx/QWvR
https://pdfs.semanticscholar.org/b36a/5bb1707bb9c70025294b3a310138aae8327a.pdf
http://paperpile.com/b/YRNWyx/QWvR
http://paperpile.com/b/YRNWyx/PI1K
http://paperpile.com/b/YRNWyx/PI1K
http://paperpile.com/b/YRNWyx/PI1K
https://doi.org/10.1101/2020.03.20.000794
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/ 10.1146/annurev-immunol-082119-124838 . 
Peters, Bjoern, and Alessandro Sette. 2005. “10.1186/1471-2105-6-132.” BMC Bioinformatics. 

https://doi.org/ 10.1186/1471-2105-6-132 . 
Qu, Zehui, Zibin Li, Lizhen Ma, Xiaohui Wei, Lijie Zhang, Ruiying Liang, Geng Meng, Nianzhi 

Zhang, and Chun Xia. 2019. “Structure and Peptidome of the Bat MHC Class I Molecule 

Reveal a Novel Mechanism Leading to High-Affinity Peptide Binding.” Journal of 

Immunology  202 (12): 3493–3506. 

Rammensee, Hans-Georg. 1995. “Chemistry of Peptides Associated with MHC Class I and Class 

II Molecules.” Current Opinion in Immunology. 
https://doi.org/ 10.1016/0952-7915(95)80033-6 . 

Rasmussen, Michael, Mikkel Nors Harndahl, Anne Bregnballe Kristensen, Ida Kallehauge 

Nielsen, Kasper W. Jorgensen, Anette Stryhn, Morten Nielsen, and Sören Buus Buus. 2014. 

“Large Scale Analysis of Peptide - HLA-I Stability.” 2014. 

https://www.iedb.org/reference/1028288 . 
Saethang, Thammakorn, Osamu Hirose, Ingorn Kimkong, Vu Anh Tran, Xuan Tho Dang, Lan Anh 

T. Nguyen, Tu Kien T. Le, Mamoru Kubo, Yoichi Yamada, and Kenji Satou. 2012. 

“EpicCapo: Epitope Prediction Using Combined Information of Amino Acid Pairwise 

Contact Potentials and HLA-Peptide Contact Site Information.” BMC Bioinformatics 13 

(November): 313. 

Sarkizova, Siranush, Susan Klaeger, Phuong M. Le, Letitia W. Li, Giacomo Oliveira, Hasmik 

Keshishian, Christina R. Hartigan, et al. 2020. “A Large Peptidome Dataset Improves HLA 

Class I Epitope Prediction across Most of the Human Population.” Nature Biotechnology 38 

(2): 199–209. 

Sidney, John, Jason Botten, Benjamin Neuman, Michael Buchmeier, and Alessandro Sette. 

2006. “Epitopes Described in - Immune Epitope Database (IEDB).” 2006. 

https://www.iedb.org/reference/1000425 . 
Sturniolo, T., E. Bono, J. Ding, L. Raddrizzani, O. Tuereci, U. Sahin, M. Braxenthaler, et al. 

1999. “Generation of Tissue-Specific and Promiscuous HLA Ligand Databases Using DNA 

Microarrays and Virtual HLA Class II Matrices.” Nature Biotechnology 17 (6): 555–61. 

Sylvester-Hvid, C., N. Kristensen, T. Blicher, H. Ferré, S. L. Lauemøller, X. A. Wolf, K. 

Lamberth, M. H. Nissen, L. Ø. Pedersen, and S. Buus. 2002. “Establishment of a 

Quantitative ELISA Capable of Determining Peptide - MHC Class I Interaction.” Tissue 

Antigens 59 (4): 251–58. 

Sylvester-Hvid, C., M. Nielsen, K. Lamberth, G. Røder, S. Justesen, C. Lundegaard, P. 

Worning, et al. 2004. “SARS CTL Vaccine Candidates; HLA Supertype-, Genome-Wide 

Scanning and Biochemical Validation.” Tissue Antigens 63 (5): 395–400. 

Wang, Peng, John Sidney, Courtney Dow, Bianca Mothé, Alessandro Sette, and Bjoern Peters. 

2008. “A Systematic Assessment of MHC Class II Peptide Binding Predictions and 

Evaluation of a Consensus Approach.” PLoS Computational Biology 4 (4): e1000048. 

WHO. 2020a. “Novel Coronavirus (2019-nCoV) SITUATION REPORT - 1 21 JANUARY 2020.” 

WHO. 

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitr

ep-1-2019-ncov.pdf?sfvrsn=20a99c10_4 . 
———. 2020b. “Coronavirus Disease 2019 (COVID-19) Situation Report – 46.” WHO. 

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200307-sitr

ep-47-covid-19.pdf?sfvrsn=27c364a4_2 . 
———. 2020c. “Coronavirus Disease 2019 (COVID-19) Situation Report – 52.” WHO. 

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200312-sitr

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2020. ; https://doi.org/10.1101/2020.03.20.000794doi: bioRxiv preprint 

http://paperpile.com/b/YRNWyx/PI1K
http://dx.doi.org/10.1146/annurev-immunol-082119-124838
http://paperpile.com/b/YRNWyx/PI1K
http://paperpile.com/b/YRNWyx/A0dX
http://paperpile.com/b/YRNWyx/A0dX
http://paperpile.com/b/YRNWyx/A0dX
http://paperpile.com/b/YRNWyx/A0dX
http://dx.doi.org/10.1186/1471-2105-6-132
http://paperpile.com/b/YRNWyx/A0dX
http://paperpile.com/b/YRNWyx/naee
http://paperpile.com/b/YRNWyx/naee
http://paperpile.com/b/YRNWyx/naee
http://paperpile.com/b/YRNWyx/naee
http://paperpile.com/b/YRNWyx/naee
http://paperpile.com/b/YRNWyx/naee
http://paperpile.com/b/YRNWyx/fdD3
http://paperpile.com/b/YRNWyx/fdD3
http://paperpile.com/b/YRNWyx/fdD3
http://paperpile.com/b/YRNWyx/fdD3
http://paperpile.com/b/YRNWyx/fdD3
http://dx.doi.org/10.1016/0952-7915(95)80033-6
http://paperpile.com/b/YRNWyx/fdD3
http://paperpile.com/b/YRNWyx/WVRG
http://paperpile.com/b/YRNWyx/WVRG
http://paperpile.com/b/YRNWyx/WVRG
https://www.iedb.org/reference/1028288
http://paperpile.com/b/YRNWyx/WVRG
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/YiVs
http://paperpile.com/b/YRNWyx/MtLZ
http://paperpile.com/b/YRNWyx/MtLZ
http://paperpile.com/b/YRNWyx/MtLZ
http://paperpile.com/b/YRNWyx/MtLZ
http://paperpile.com/b/YRNWyx/MtLZ
http://paperpile.com/b/YRNWyx/MtLZ
http://paperpile.com/b/YRNWyx/M2Iq
http://paperpile.com/b/YRNWyx/M2Iq
https://www.iedb.org/reference/1000425
http://paperpile.com/b/YRNWyx/M2Iq
http://paperpile.com/b/YRNWyx/Qbi9
http://paperpile.com/b/YRNWyx/Qbi9
http://paperpile.com/b/YRNWyx/Qbi9
http://paperpile.com/b/YRNWyx/Qbi9
http://paperpile.com/b/YRNWyx/Qbi9
http://paperpile.com/b/YRNWyx/HTSj
http://paperpile.com/b/YRNWyx/HTSj
http://paperpile.com/b/YRNWyx/HTSj
http://paperpile.com/b/YRNWyx/HTSj
http://paperpile.com/b/YRNWyx/HTSj
http://paperpile.com/b/YRNWyx/HTSj
http://paperpile.com/b/YRNWyx/q8Yo
http://paperpile.com/b/YRNWyx/q8Yo
http://paperpile.com/b/YRNWyx/q8Yo
http://paperpile.com/b/YRNWyx/q8Yo
http://paperpile.com/b/YRNWyx/q8Yo
http://paperpile.com/b/YRNWyx/bVu5
http://paperpile.com/b/YRNWyx/bVu5
http://paperpile.com/b/YRNWyx/bVu5
http://paperpile.com/b/YRNWyx/bVu5
http://paperpile.com/b/YRNWyx/bVu5
http://paperpile.com/b/YRNWyx/i3yj
http://paperpile.com/b/YRNWyx/i3yj
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4
http://paperpile.com/b/YRNWyx/i3yj
http://paperpile.com/b/YRNWyx/kqoE
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200307-sitrep-47-covid-19.pdf?sfvrsn=27c364a4_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200307-sitrep-47-covid-19.pdf?sfvrsn=27c364a4_2
http://paperpile.com/b/YRNWyx/kqoE
http://paperpile.com/b/YRNWyx/b10W
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200312-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_4
https://doi.org/10.1101/2020.03.20.000794
http://creativecommons.org/licenses/by-nc-nd/4.0/


ep-52-covid-19.pdf?sfvrsn=e2bfc9c0_4 . 
Wu, Fan, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, et al. 2020. “A 

New Coronavirus Associated with Human Respiratory Disease in China.” Nature 579 

(7798): 265–69. 

Wu, Jingcheng, Wenzhe Wang, Jiucheng Zhang, Binbin Zhou, Wenyi Zhao, Zhixi Su, Xun Gu, 

Jian Wu, Zhan Zhou, and Shuqing Chen. 2019. “DeepHLApan: A Deep Learning Approach 

for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity.” 

Frontiers in Immunology  10 (November): 2559. 

Zhang, Hao, Ole Lund, and Morten Nielsen. 2009. “The PickPocket Method for Predicting 

Binding Specificities for Receptors Based on Receptor Pocket Similarities: Application to 

MHC-Peptide Binding.” Bioinformatics  25 (10): 1293–99. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2020. ; https://doi.org/10.1101/2020.03.20.000794doi: bioRxiv preprint 

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200312-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_4
http://paperpile.com/b/YRNWyx/b10W
http://paperpile.com/b/YRNWyx/27zx
http://paperpile.com/b/YRNWyx/27zx
http://paperpile.com/b/YRNWyx/27zx
http://paperpile.com/b/YRNWyx/27zx
http://paperpile.com/b/YRNWyx/27zx
http://paperpile.com/b/YRNWyx/bAw1
http://paperpile.com/b/YRNWyx/bAw1
http://paperpile.com/b/YRNWyx/bAw1
http://paperpile.com/b/YRNWyx/bAw1
http://paperpile.com/b/YRNWyx/bAw1
http://paperpile.com/b/YRNWyx/24LN
http://paperpile.com/b/YRNWyx/24LN
http://paperpile.com/b/YRNWyx/24LN
http://paperpile.com/b/YRNWyx/24LN
http://paperpile.com/b/YRNWyx/24LN
https://doi.org/10.1101/2020.03.20.000794
http://creativecommons.org/licenses/by-nc-nd/4.0/

