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Iff Technologies has constructed a tool named Polar+ that can predict protein-to-protein binding
sites on a given receptor protein that operates faster and at a higher quality than the prominent
industry standards for protein binding, including Autodock Vina and SwissDock. The ability to
provide this advantage comes from a new approach to biophysics, dubbed many-body biological
quantum systems, that are modeled using quantum processing units and quantum algorithms. This
paper provides both experimental and theoretical evidence behind the validity of the quantum
biology approach to protein modeling, an overview of the first experimental work completed by
Polar+, and a review of the results obtained.

I. INTRODUCTION

Succinctly modeling protein binding is essential for un-
derstanding the interactivity of different biological sys-
tems between one another, for designing impactfully new
biological compounds, and for building biomaterials that
combine both biological systems and non-biological sys-
tems, such as crystalline and amorphous systems. This
has been made especially important recently by the ad-
vent of gene therapeutics’ promises of curing various dis-
eases that has been further amplified through the devel-
opment of CRISPR.

Precise modeling is still difficult because of the com-
plexity associated with each amino acid. While there are
many exacting models describing a protein’s interaction
with other proteins or within certain solvents, it is still
incredibly difficult to also model the effects of tempera-
ture, the effects of perturbations caused by other systems
within the same area, and others[1].

If one were to assign function classes to this entire
function, the function for binding becomes exponentially
more difficult to solve as the number of amino acids in-
creases, making it infeasible for computers that can only
work in polynomial time to effectively solve for every pos-
sible combination.

There have been two classes of solutions to this prob-
lem. One class involves the use of machine learning and
artificial intelligence in the space of biological model-
ing. This requires an exponential model to be approx-
imated with a polynomial one, and would use large data
sets of protein information and high performance cluster-
ing to recognize the similarities and differences between
the analyzed protein and the test data. While this has
seen huge success, especially through the demonstration
greater precision in binding models, the data intensity of
the models means that the machine learning is only pre-
cise as the data fed to it. While this is not a problem for
other areas that machine learning has impacted, such as
in speech recognition, where data sets are readily avail-
able for many types of speech patterns, protein modeling
still depends on nanoscale imaging and assay techniques
to characterize docking sites and linkages between amino

acids, exacerbating the expense of machine learning for
protein binding determination. Recently, other organi-
zations have developed quantum algorithms to help in-
crease the speed and precision of machine learning al-
gorithms. This is part of the growing interest amongst
machine learning researchers to experiment with quan-
tum circuits with the goal of dynamically improving their
classifiers by being able to evaluate a formula’s multiple
parameters at a fraction of the time[2]. This has tremen-
dous potential to increase both the speed and precision
of protein binding as more combinations can be tried at
the same time, but would still require data stores for each
protein to be thorough.

However, all of these methods are based on the theory
that amino acids in proteins interact with each other in
a classical manner, and that the entire process is just se-
quential and highly parallelized in continuous operation
of living systems[3]. But the speed, directional change,
and magnetic fields of these interactions indicate a quan-
tum effect that could occur between and within macro-
scopic biological systems.

Over the past decade, a large body of work has been
completed to prove these quantum biology effects in a
variety of different forms and at different scales, ranging
from models of electron clouds in DNA to new theories
around metabolic pathways. Thus, with this newfound
interpretation of how biological systems actually work,
the best way to model these systems must also take into
account the quantum interactions within each system.

Polar+ is the first platform to take quantum biological
modeling, apply it to a quantum computer, and treat the
quantum computer as an analog for a protein. As such,
it provides an advantage over all competitors, classical or
quantum, in speed, precision, and cost.

This paper reviews how a quantum mechanical model
of proteins simulated using a quantum computer can pro-
vide a distinct advantage over all other protein binding
implementations. As such, the paper serves to answer
two questions:

1. Can a protein be effectively modeled using super-
conducting Josephson Junctions?
2. What is the improvement of using a quantum mechan-
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ical model for binding over other algorithms?

A. Part 1: Using Josephson Junctions to Model
Proteins

Using quantum mechanical models to describe biolog-
ical systems is not novel; one of the foremost confer-
ences regarding quantum biology in all history, The Ver-
sailles Conference on Theoretical Physics and Biology,
was held in 1967, with some of the most impactful work
in the field published around the same time[4]. How-
ever, much of this work was theory, and existed before
the tools for proving quantum mechanical interactions,
both mathematically and experimentally, were invented.
The most well-known example of early quantum biol-
ogy work is Lowdin’s work around DNA mutations[5],
which states that the movement of protons across dif-
ferent amino acids in a protein to create mutations is a
result of proton tunneling to reach an energy minimum
or maximum, rather than a sequentially static process
between two points.

But, as mathematical tools for describing quantum sys-
tems have become more widely used across disciplines, es-
pecially with Hartree-Fock chemical models[6], quantum
biology research began to reemerge, with conferences and
research groups dedicated to the study occurring world-
wide, especially over the past decade. This was most
apparent with Phillip Kurian’s[7] and Elisabeth Rieper’s
work in endonuclease splitting[8], which characterized a
Hamiltonian to describe the energy across a strand of
DNA given a set of N nucleotides:
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can be rewritten in terms of polar coordinates as:
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where λ refers to the distance between frequency events,
which can be seen as the functions wavelength

While this model was developed for a helical structure
in mind, the Hamiltonian is evaluated on a “rung-by-
rung” basis, which means that it can be applied to other
geometries as well, such as a protein that consists of more
variations of the same nucleotides than exist within DNA,
where A is equal to the distance from equilibrium and x,
y, and z represent the difference in distance of each axis
between the electron cloud

The live proof for this Hamiltonian has been observed
by a few different sources. Most notably, an effort from
Erling Thyrhaug [9] shows the correlation between a
theoretical quantum system and biological interactions
within a cellular system built off of this Hamiltonian
further.
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Where QB represents quantum beat, Re represents the
real aspect of the wave, and Im represents the imaginary
part of the wave. However, the Re and Im parts really
represent a damping adjustment on the quantum beats
that exist in the Fenna Matthews Olson (FMO) com-
plex, a cohesive grouping of pigments and proteins found
in bacteria, as the experimental model is based on the
premise that the entire system is an underdamped cir-
cuit. Thus, taking what’s remaining of the FMO equa-
tion for energy between the different biological molecules,
it can be rewritten in terms of sine and cosine as:

E(t2) =
∑
m

AQBm e−(t2/τ
QB
m )((wmt+ φm)sin(θ)

+ ((wmt+ φm)cos(θ))

Further experimental evidence from the past decade
strongly suggests that utilizing the Rigetti system
for modeling of these quantum biological systems is
appropriate. In November 2019, Armin Shayeghi and
a team at the University of Vienna proved that gram-
icidin , an amino acid within some proteins, behaves
in a quantum mechanical manner, with amino acids
interacting with one another over magnetic fields with a
positively-correlated Wigner function[10].

Additionally, there has been more interest in the
quantum behavior of pigments, with a specific focus
on cryptochrome[11], a protein that is found in avian
and mammalian retinae that is believed to be a strong
magnetoreceptor utilizing quantum transport that helps
to guide avian direction.

Given this Hamiltonian interpretation, a chain of
amino acids can be related to a quantum system. More-
over, it can directly relate to a macroscopic, many-bodied
quantum system, such as a Josephson Junction, but more
specifically a noisy Josephson Junction, who’s Hamilto-
nian is defined here:
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While these are equivalent and a Josephson Junction in
theory could represent these biological systems, the ac-
tual setup of the Rigetti superconducting circuits needs
to be evaluated to see if their system is a good fit for
biomolecular modeling. Based on the work that Chad
Rigetti[12] had completed leading up to the creation of
the Rigetti Aspen 4Q used in this study, the supercon-
ducting circuit he had designed followed a circuit Hamil-
tonian of this form:

HRigetti =
N∑
1

γnσn + ωnσn+

wxx[σxncos(φn + wrnft)− σxn
sin(φn + wrnft)]

Thus, a multiple qubit system built using Rigetti’s archi-
tecture should be a perfect analog of the energy interac-
tions that exist within a protein’s amino acids. The only
issue is that of noise. All quantum models for biological
systems highlight the noisiness of the systems that each
of them operate in, regardless of coherence and deco-
herence; noiseless systems are unusual, but for practical
purposes can be described with an updated Heisenberg
limit provided that parameterization of priors is flat and
no randomness is assumed, or at least if noise is elim-
inated using quantum error correction techniques[13],
techniques which are not documented or used in this
work. This is particularly highlighted in Filippo Caruso’s
work on noise in quantum biological systems, and in par-
ticular the FMO complex [14]. The dephasing for this
complex was found to be:
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Where +/- represents operators that raise and lower the
energy states of the given sites m and n and represents
the current density between the two sites. According to
Rigetti’s documentation [15], the noise on their qubits
can be modeled by:

ρ =
1

N

N∑
n=1

p−1jn Kjn 〈|ψ′〉 〈ψ′|〉KT
jn

in which p is equal to probability, K is equal to a +/- op-
erator depending on state, ψ represents the expectation
value, and N represents the number of qubits. There-
fore, since the k

Np performs the same function as the

sigma in the FMO equation, the ψ represents γ in the
first equation and both are equivalent. Thus, the Rigetti
Quantum Processing Unit should be able to serve as the
perfect analog for a biological system’s modeling.

B. Part 2: Improvements of a Quantum
Mechanical Model for Modeling over Classical

models

1. The Best in Protein Binding Modeling

Protein binding is usually broken up into the categories
of protein docking and protein-to-protein binding. Pro-
tein docking involves the connection of a protein to a lig-
and, which is a biomolecule that provides a signal when
bound to a protein in the form of the distribution of
some resource or some charge, while protein-to-protein
binding usually involves complete protein chains binding
to one another to produce a more complicated energy
pathway with a cell. While protein-to-protein binding is
important, understanding protein docking from a compu-
tational perspective is non-trivial, as it can be the core
work performed by a multitude of lab tests when search-
ing for new proteins or ligands for different use cases. It
is for this reason that protein docking software is one of
the most commonly used computational biology tools.

The most prominent of these tools is AutoDock [16].
Having existed for 30 years, Autodock has established it-
self as the industry standard for binding, and has made
consistent updates to stay at the cutting edge. Most
notably, the last major update was provided with the
launch of the Vina platform in 2013, which provided sig-
nificant improvements to the scoring function used within
Autodock for calculating binding affinities by employing
“force fields” and more algorithmic work beyond geomet-
ric modeling. Other algorithms, such as CBDock, use
similar methods for modeling, with SwissDock using a
grid based system and a rDock using a sphere based sys-
tem to help identify potential binding sites [16].

While the performance that each algorithm can pro-
vide is definitely improved, there are little to no adjust-
ments to changes of solvent, to changes due to tempera-
ture, to free energy perturbations, or to magnetic effects.
The researcher is put in charge of determining these char-
acteristics before or after running a binding test, which
results in many researchers needing to run many trials
and being unable to completely model protein interac-
tion in silico.

Menten AI [17] and ProteinQure [18] both provide
novel ways of using quantum computers in biological
modeling work. While Menten’s work focuses more
on sidechain additions to a protein and the creation
and expression of peptides, ProteinQure’s work focuses
on protein-ligand docking. ProteinQure’s solutions fo-
cus only on pharmacore points, which are pre-screened
points-of-importance to pharmaceutical processes, rather
than the entire protein’s binding site mapped for other
modeling purposes. Their sampling methods are able to
provide a speedup to the classical methods for modeling
these points. However, they do not take into account the
quantum nature of the biological macromolecules. Thus,
the precision and universality of their binding points are
still approximations of a much more complicated struc-
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ture, rather than exact simulations of the entire pro-
teomic systems.

2. Polar+

The Polar+ system for protein binding modeling im-
proves on current binding affinity algorithms by better
defining the best and most polarized binding sites that
exist within a protein. This allows for protein binding
modeling beyond ligand binding, and can present a way
to improve protein modeling universally. For the pur-
poses of comparison, Polar+ will be reviewed for its abil-
ity to produce protein maps that can improve results in
protein-ligand binding models.

Polar+ achieves an improvement in protein modeling
by utilizing pre-processing of protein geometries from an
atom-by-atom perspective, with binding site calculations
through simulation of amino acid using qubits, and post-
processing that effectively takes the final site calculations
into account when presenting a final set of binding sites.

In order to effectively compare Polar+ to the indus-
try leaders, Polar+ will be run in tandem with Swiss-
Dock, CBDock, RDock, and Autodock Vina over a given
protein. These results will then be compared to results
gained in the lab for actual protein binding observed. In
order to effectively compare Polar+’s speeds to similar
products, its speed will be compared to RDock and to
classical protein binding site modeling using k -nearest
neighbors clustering.

3. Experimental Setup

As a first test of the advantage that a direct analog, the
quantum computer, can provide over classical algorithms,
the Iff team developed an algorithm for mapping the best
potential binding sites within a protein.

The algorithm used to complete this reduction of
sites was the Quantum Approximate Optimization Algo-
rithm(QAOA). Given a graph of nodes N, the algorithm
applies an Ising Hamiltonian onto an abstracted graph of
N qubits and uses current density between these qubits
to decide the cutting points of the graph [19].

In order to utilize this algorithm for a graph of atoms
that make up a protein, pre-processing was completed
to map sets of atoms with similar arrangements to the
qubits within the 13 qubit Aspen 4Q-13E quantum com-
puter provided by Rigetti, the only quantum computer
with a geometry most adaptable to the different struc-
tures within the protein.

Once the mapping is completed, the splitting process
can begin within the quantum computer. The outputs
of this process are a set of bitstrings that correspond to
different combinations of cuts, as described in Rigetti’s
documentation. Using these cuts, one can find both re-
dundant and energetically unfavorable binding sites, and
eliminate them.

FIG. 1. Binding sites within the protein 4Q2S. The Green
are the Polar+ binding sites

FIG. 2. Binding sites within the protein 4Q2S interfacing
with Resveratrol. The purple are the Polar+ binding sites.
The salmon are the Resveratrol sites. The rest of the figure
is the 4Q2S structure

For this experiment, the 4Q2S protein, one of the
largest receptor proteins within the yeast cytoplasm was
mapped, and it’s top binding sites were identified. To
verify the validity of these binding sites, they were uti-
lized to find potential binding conformations with the
ligand, resveratrol.

4. Experimental Results

After running this algorithm 4 times, the binding sites
obtained were the same for each time the algorithm was
run. The average run time for the algorithm on the QPU
was 1 minute and 17 seconds.

While the average time taken to run this algorithm is
much longer and slower than the times obtained for any
of the docking softwares, a simple comparison between
them does not take into account the level of complexity
that QAOA can provide that docking softwares cannot.

While docking software is focused mainly on geometric
configurations and is not at all times for energy perturba-
tions, QAOA can provide a probabilistic distribution of
potential energy values that can be utilized for far more
binding models beyond protein to protein binding. The
only algorithms, then, that can effectively be a classical
measure against QAOA in this use case would have to be
a probabilistic energy function for each and every atom.
GROMACS [20] is currently the leader in this area. How-
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ever, the average run time on an 8-core machine for their
algorithm is 5-6 hours. Thus, not only does Polar+ offer
more precise information, it does so in a faster time.

C. Complexity Class Comparisons

Most notably, the major difference that exists between
modeling proteins and their binding sites on a quantum
computer versus on any classical machine is the difference
in complexity classes available to solve within. Looking
at the most recently well-cited model for statistical mod-
eling and classifications of proteins by Dr. Susanne Ger-
ber at the University of Mainz[21], the highest degree of
complexity achieved was a 3rd Degree polynomial time
O(n) with bounds in Z. While this seems to be sufficient
for a summation with 2 bounds, the complexity of com-
pleting this summation for an entire protein quickly be-
comes factorial, as each functional addition brings about
another set of parameters to work through, as described
here for just the kinetic energy of a protein, without tak-
ing into account the different material affects with each
solvent.

E(S, PX)atom =
T∑
t=1

dists(X(t), γX(t))

+ σsφs(S) + σγφγ(γX)

+ dists(Y (t), γY (t)) + σsφs(S) + σγφγ(γY )

+ dists(Z(t), γZ(t)) + σsφs(S) + σγφγ(γZ)

Eprotein = Eatom1 + Eatom2 + Eatom1+2...

Eprotein = Eatom!

as every one of the internal terms is made
factorial

Thus, with the Rigetti quantum computer really as an
analog for this system, the calculations for these energy
states do not need to be completed; rather, the quan-
tum computer would complete energy transformations
according to gate transformations.

The exact amino acids to which these energetics be-
long to would be reaffirmed in a post-selection process,
which would only need to be done in polynomial time.
Therefore, not only would the quantum calculation actu-
ally be completed in O(

√
n) space due to an effective use

of the hadamard gates, but the algorithmic work would
be completed in O(n) time.

D. Conclusion

This paper successfully demonstrates an advantage of a
Rigetti-enabled algorithm over a classically demonstrated
algorithm in the use case of protein binding. By identi-
fying the most optimal binding sites within a protein,
Polar+ running on the Rigetti Aspen 4Q-13E was able
to provide more detail at a lower time than achieved clas-
sically.

However, the QAOA algorithm is really not the perfect
algorithm for the modeling of quantum systems. In this
use case, QAOA still treats the different protein binding
sites as classical objects of set states, and uses a quantum
algorithm between them to find the most optimal sites.
But, this could be vastly improved if each binding site
were instead initialized with a quantum wave function,
rather than a set, classical state.

Moreover, the experimental setup could have greatly
improved. Access to the QPU was obtained through the
use of the Quantum Machine Image on top of a Ama-
zon Web Services (AWS) EC2 Container. This level of
abstraction away from the host computer could have re-
sulted in a decrease in the speed obtained over a more
direct setup with the QPU.

Therefore, while the results obtained through this ex-
periment were encouraging and do provide an improve-
ment to protein docking techniques, there still exist a
multitude of unexplored experimental setups that could
lead to a further advantage when truly utilizing the abil-
ity of the Rigetti machine to act as an analog to biological
macromolecules.
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