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Abstract 

Objective: Adolescence is a period of rapid brain development when symptoms of mood, anxiety, 

and other disorders often first emerge, suggesting disruptions in maturing reward circuitry may 

play a role in mental illness onset. Here, we characterized associations between resting-state 

network properties and psychiatric symptomatology in medication-free adolescents with a wide 

range of symptom severity. 

Methods: Adolescents (age 12-20) with mood and/or anxiety symptoms (n=68) and healthy 

controls (n=19) completed diagnostic interviews, depression/anhedonia/anxiety questionnaires, 

and 3T resting-state fMRI (10min/2.3mm/TR=1s). Data were preprocessed (HCP Pipelines), 

aligned (MSMAll), and parcellated into 750 nodes encompassing the entire cortex/subcortex 

(Cole-Anticevic Brain-wide Network Partition). Weighted graph theoretical metrics (Strength 

Centrality=CStr; Eigenvector Centrality=CEig; Local Efficiency=ELoc) were estimated within Whole 

Brain and task-derived Reward Anticipation/Attainment/Prediction Error networks. Associations 

with clinical status and symptoms were assessed non-parametrically (two-tailed pFWE<0.05). 

Results: Relative to controls, clinical adolescents had increased ventral striatum CEig within the 

Reward Attainment network. Across subjects, depression correlated with subgenual cingulate CStr 

and ELoc, anhedonia correlated with ventromedial prefrontal CStr and lateral amygdala ELoc, and 

anxiety negatively correlated with parietal operculum CEig and medial amygdala ELoc within the 

Whole Brain network. 

Conclusions: Using a data-driven analysis approach, high-quality parcellation, and clinically 

diverse adolescent cohort, we found that symptoms within positive and negative valence system 

constructs differentially associated with resting-state network abnormalities: depression and 

anhedonia, as well as clinical status, involved greater influence and communication efficiency in 

prefrontal and limbic reward areas, whereas anxiety was linked to reduced influence/efficiency in 

amygdala and cortical regions involved in stimulus monitoring.  
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Introduction 

Adolescent depression represents a major public health concern and is associated with 

significant morbidity, including academic and occupational failure, social dysfunction, substance 

use, and, critically, suicide (1). Depression incidence rises dramatically during adolescence, with 

an estimated 15% of the population experiencing at least one major depressive episode between 

ages 15-24 (2). This increase has been attributed to deviations from normal maturational 

processes involving synaptic pruning, myelination, neurotransmission, and intrinsic functional 

circuits (3). In particular, the reward system undergoes extensive neurodevelopmental changes 

during adolescence, creating a window of vulnerability when abnormalities in reward processing 

can potentially arise (4).  

While reward dysfunction is a core aspect of depression, it is a salient feature across other 

psychiatric conditions, yet is highly variable even within the same disorder. Our laboratory has 

documented that severity of anhedonia, a direct manifestation of reward deficits, is widely 

distributed even in adolescents with moderate-to-severe current depressive episodes: some 

report extremely low subjective hedonic experience, while others report little or no reward 

impairment (5). Similarly, we found that anhedonia and overall depression levels were associated 

with distinct striatum-based resting-state functional connectivity patterns in depressed youths (6). 

These results highlight the need to account for inter-individual variations in symptom severity 

during clinical research. Indeed, a persistent challenge in delineating the neural underpinnings of 

mental illness has been reliance on heterogeneous diagnostic categories: a given disorder may 

include patients who share few clinical features, while nominally distinct disorders often share 

several features (7). Mood and anxiety disorders are especially notorious for having high rates of 

comorbidity and symptom overlap. In response, our group and others have increasingly focused 

on specific symptoms, which represent narrowly defined clinical features with potentially distinct 

etiologies, rather than broad categorical diagnoses. 
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Separately, recent developments in neuroimaging methodology have significantly 

advanced the understanding of in vivo brain function and hold great promise to elucidate the 

biological underpinnings of mental illness. Much of this work has been spearheaded by the 

Human Connectome Project (HCP) (8), which released a landmark cortical parcellation in 2016 

identifying 360 distinct areas based on multimodal measures of cortical thickness, myelination, 

resting-state functional connectivity, and task activation patterns in an extensively sampled cohort 

of healthy young adults (9). Recently, the Cole-Anticevic Brain-wide Network Partition (CAB-NP) 

has extended this parcellation scheme to the subcortex, identifying 358 further regions on the 

basis of resting-state network assignments and providing a detailed map of discrete functional 

areas across the entire brain (10). In addition to revealing fundamental aspects of neural 

organization, high-quality parcellations provide an invaluable framework for further data-driven 

research. Principled data reduction is especially crucial in graph theory, which models complex 

systems like the brain as collections of nodes (e.g. cortical areas) linked by edges (e.g. functional 

connectivity) (11). In addition to concisely representing resting-state networks, graph theory can 

reveal numerous subtle network features, including nodal measures of centrality (i.e. influence 

over other nodes) and efficiency (i.e. ease of communication with other nodes) that compliment 

and transcend the information provided by traditional connectivity analyses. Anomalous network 

properties have been reported across a wide range of psychiatric and neurological conditions 

(12). Unfortunately, widespread differences in methodology, overly simplistic network models, 

and functionally inaccurate node boundaries have contributed to inconsistent findings (13, 14), 

limiting the utility of graph theory for understanding mental illness to date. 

In the current study, we sought to use high-quality parcellations and detailed network 

models to examine the neural correlates of depression, anhedonia, and anxiety, assessed 

quantitatively in psychotropic-medication-free adolescents with diverse psychiatric symptoms. As 

clinical symptomatology is salient across disorders and lies on a continuum within each disorder, 

our study was designed to capture the full range of symptom severity by recruiting a large, 
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transdiagnostic sample that included adolescents with comorbid and subthreshold diagnoses as 

well as healthy controls. Using graph theory, we examined relationships between clinical 

symptomatology and resting-state network properties of centrality and efficiency within the 

functionally accurate CAB-NP network (10). As reward circuitry plays a central role in the 

emergence of psychiatric conditions during adolescence, we also repeated analyses within three 

functionally defined reward networks derived from the Reward Flanker Task (RFT) (15). We 

hypothesized that clinical status and symptom severity would be associated with resting-state 

network properties in regions related to reward processing. 
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Methods and Materials 

Recruitment 

Adolescents, ages 12-20, were recruited from the greater New York City area. The study 

was approved by the Institutional Review Board at Icahn School of Medicine at Mount Sinai 

(ISMMS). Prior to the study, procedures were explained to adolescents and legal guardians. 

Participants age 18+ provided written consent; those under 18 provided written assent and a 

guardian provided written consent. 

Inclusion and Exclusion Criteria 

All Participants: Adolescents were excluded if they had any significant medical or 

neurological condition, estimated IQ<80, claustrophobia, any MRI contraindication, or a positive 

urine toxicology or pregnancy test. 

Psychiatric Group: Clinical participants were psychotropic-medication-free for 30+ days, 

or 90+ days for long half-life medications (e.g. fluoxetine). Exclusionary diagnoses were pervasive 

developmental disorders, current psychosis, or a substance use disorder in the past year. All 

other psychiatric conditions were allowed, regardless of whether full diagnostic criteria were met. 

Healthy Control Group: Control participants did not meet criteria for any current or past 

psychiatric diagnoses and were psychotropic-medication-naïve. 

Clinical Measures 

Diagnostic Procedures: Clinical and sub-clinical DSM-IV-TR diagnoses were obtained 

using the Kiddie Schedule for Affective Disorders and Schizophrenia – Present and Lifetime 

Version (K-SADS-PL) (16). Interviews were administered to all adolescent participants, as well 

as a guardian if the participant was under 18. Evaluations were discussed between the 

interviewing clinician and Principal Investigator (VG), a board-certified child and adolescent 

psychiatrist, in order to enhance reliability. 

Depression: Overall depression severity was assessed using the Beck Depression 

Inventory-II (BDI), a 21-item scale that assesses symptoms and features of depression over the 
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previous two weeks. The BDI has high internal consistency in both clinical and non-clinical 

adolescent populations (17). 

Anhedonia: Severity was assessed by the state-based Temporal Experience of Pleasure 

Scale (TEPS). This 18-item self-report separately quantifies anticipatory (TEPS-A) and 

consummatory (TEPS-C), as well as total (TEPS-T), anhedonia symptoms over the past week 

(18). Since the TEPS is reverse-scored (higher scores à lower anhedonia), analyses were 

performed using negative TEPS values (higher scores à higher anhedonia) for consistency with 

other scales. 

Anxiety: Severity was examined using the Multidimensional Anxiety Scale for Children 

(MASC), a 39-item scale validated in both clinical and non-clinical populations (19). 

Imaging Data Acquisition 

Data were acquired on a 3T Skyra MR system (Siemens, Germany) with 16/4-channel 

head/neck coil using protocols similar to the HCP Lifespan study (20). Sequences included: T1-

weighted MPRAGE (TR=2400ms; TE=2.06ms; TI=1000ms; flip angle=8°; 224 frames, no gap; 

matrix=256×256; FOV=230×230mm2; 0.9mm isotropic), T2-weighted SPACE (TR=3200ms; 

TE=565ms; flip angle=120°; 224 frames, no gap; matrix=256×256; FOV=230×230mm2; 0.9mm 

isotropic), and resting-state gradient-recalled EPI (TR=1000ms; effective TE=31.4ms; flip 

angle=60°; 600 frames of 60 slices parallel to AC-PC, no gap; 5× multiband acceleration; anterior-

to-posterior phase encoding; matrix=98×98; FOV=228×228mm2; 2.3mm isotropic; 10min). 

Matched single-band EPI and spin-echo fieldmaps were collected for registration and distortion 

correction purposes. Subjects were presented with a fixation cross and instructed to rest with their 

eyes open. Four RFT fMRI runs (15) were also acquired later in the session. 

Imaging Data Processing 

Data were visually inspected before preprocessing with HCP Pipelines v3.4 (21). For 

anatomical data, preprocessing included gradient non-linearity correction, b0 distortion correction, 

AC-PC alignment, coregistration, brain extraction, bias-field correction, nonlinear transformation 
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to MNI space, FreeSurfer segmentation, and cortical ribbon extraction. Functional data were 

corrected for gradient nonlinearity and EPI readout distortion, realigned, transformed to MNI 

space, intensity normalized, and mapped to the cortical ribbon. Structured noise components in 

concatenated resting-state and RFT fMRI runs were automatically identified via ICA-FIX classifier 

(22, 23), manually reviewed, and regressed out. Cortical surface data were robustly aligned 

across subjects based on a combination of functional and anatomical features using multimodal 

surface matching (MSMAll), developed and advocated by the HCP (24, 25). Resting-state data 

were further denoised by regressing out 24 movement parameters (6 affine + temporal derivatives 

+ squares of each) and the five largest principle components associated with white matter and 

cerebrospinal fluid (CompCor), identified using Conn v17f (26). Finally, fMRI data were 

parcellated (see below) and bandpass filtered (0.1-0.01Hz). No spatial smoothing kernel was 

applied. All analyses were performed in 32k-CIFTI grayordinate space, which combines 2D left 

and right cortical surface representations with 3D subcortical data in MNI space. 

Functional data were divided into and averaged within nodes using CAB-NP v1.0.5, which 

extends the HCP cortical parcellation (9) to include functionally similar subcortical parcels (10). 

As in previous work (27), we slightly modified the cortical parcellation by subdividing the 

somatomotor strip along somatotopic boundaries, yielding the final Whole Brain network (750 

nodes). Additionally, we identified three reward-related networks (Figure 1) based on a separate 

analysis of RFT fMRI data collected in the same sample (manuscript in preparation), which builds 

on our previous RFT studies (15, 28). Briefly, these networks comprised the 10% of nodes most 

activated by Reward Anticipation (114 nodes), Reward Attainment (103 nodes), and Reward 

Prediction Error (117 nodes) RFT contrasts, as well as any corresponding contralateral nodes. 
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Figure 1: Nodes from the Whole Brain network corresponding to the Reward Anticipation (green), 

Reward Attainment (blue), and Reward Prediction Error (red) RFT networks. Nodes included in 

more than one network are indicated by additive color mixing, as shown at the top. 
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Graph Theoretical Metrics 

Subject-level association matrices were generated by cross-correlating node timeseries 

within the Whole Brain (750×750), Reward Anticipation (114×114), Reward Attainment 

(103×103), and Reward Prediction Error (117×117) networks in MATLAB v2017a and retaining 

all positive r values. Within each network, graph theoretical metrics were then estimated using 

weighted, undirected measures from Brain Connectivity Toolbox v2019-03-03 (11): 

1. Strength Centrality (CStr): The sum of all edge weights (i.e. positive r values) at 

each node. CStr is the weighted analogue of the binary Degree Centrality metric. 

2. Eigenvector Centrality (CEig): The eigenvector with the largest eigenvalue for each 

node. This measurement is self-referential, such that nodes with high CEig are 

those most closely associated with other high-CEig nodes. 

3. Local Efficiency (ELoc): The inverse shortest path length (i.e. minimum number of 

edges, adjusted for edge weights) between each node and its neighborhood. 

Graph Theory Analysis 

Group differences (clinical vs. control) in graph theoretical metrics were assessed using 

two-sample t-tests. Relationships between graph theoretical metrics and symptom scales (BDI, 

MASC, negative TEPS) were assessed using Pearson partial correlations in the full sample. All 

analyses controlled for participant age and sex. Statistical significance was determined using non-

parametric permutation tests (10,000 iterations), as implemented in FSL PALM v111alpha (29). 

Non-parametric tests provide better familywise error (FWE) control than their parametric 

equivalents (30) and are robust to skewed data distributions (31), as was the case for symptom 

scales in our study (skewness: BDI=1.32; MASC=0.58; TEPS-A=-0.94; TEPS-C=-0.75; TEPS-

T=-1.00). Results were considered significant at the two-tailed pFWE<0.05 level. All results data 

are freely available through BALSA (32) at https://balsa.wustl.edu/study/show/x278x (data will be 

released upon peer-reviewed publication). 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.20.001032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.001032


 11 

Results 

Clinical Characteristics 

The sample included 87 adolescents, of whom 68 had psychiatric symptoms and 19 were 

healthy controls. Table 1 provides participant demographic and clinical characteristics. Relative 

to controls, adolescents with psychiatric symptoms had significantly higher BDI and MASC scores 

(pFWE<10-3). Groups did not differ significantly in age, sex, race, ethnicity, or TEPS scores 

(pFWE>0.1). 

 

Table 1: Clinical and Demographic Information 

Measure Control (n=19) Clinical (n=68) All (N=87) 

Age (M ± SD) 15.3 ± 2.5 15.1 ± 2.1 15.2 ± 2.2 

Sex F=9, M=10 F=44, M=24 F=53, M=34 

Race a Af=8, As=0, E=7, O=4 Af=24, As=2, E=30, O=12 Af=32, As=2, E=37, O=16 

Ethnicity b H=5, N=14 H=33, N=35 H=38, N=49 

BDI (M ± SD) 1.8 ± 2.1 (n=19) 13.6 ± 11.4 (n=66) 11.0 ± 11.2 (N=85) 

MASC (M ± SD) 27.0 ± 11.7 (n=17) 44.7 ± 17.3 (n=66) 41.1 ± 17.8 (N=83) 

TEPS-A (M ± SD) 49.4 ± 6.8 (n=18) 45.0 ± 8.9 (n=52) 46.1 ± 8.6 (N=70) 

TEPS-C (M ± SD) 35.0 ± 8.7 (n=18) 33.2 ± 7.5 (n=52) 33.6 ± 7.8 (N=70) 

TEPS-T (M ± SD) 84.4 ± 13.7 (n=18) 78.1 ± 14.5 (n=52) 79.7 ± 14.5 (N=70) 

Mood Symptoms c 0 49 49 

Anxiety Symptoms c 0 43 43 

Behavioral Symptoms c 0 28 28 

Other Symptoms c 0 7 7 

a Af=African American, As=Asian American, E=European American, O=Other/Mixed Race 
b H=Hispanic, N=Non-Hispanic 
c Includes past and/or subthreshold symptoms 

 

Table 1: Demographic and diagnostic information for the healthy control, clinical, and combined 

adolescent groups. 
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Group Differences 

Adolescents with psychiatric symptoms had significantly higher CEig in both the left ventral 

striatum and right extrastriate visual cortex within the Reward Attainment network (Figure 2, 

Table 2). Group differences were non-significant for all other metrics and networks. 

 

 

 

 

Figure 2: Within the Reward Attainment network, adolescents with psychiatric symptoms had 

significantly higher CEig in the left ventral striatum (left) and area V3 of the right extrastriate visual 

cortex (right) than healthy controls. Maps show effect size (Cohen’s d), adjusted for age and sex. 

Significant (two-tailed pFWE<0.05) nodes are indicated by white outlines and labels; non-significant 

nodes are displayed at 50% saturation.  
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Table 2: Graph Theory Group Contrast and Symptom Correlation Results 

Network Metric Location CAB-NP Label (HCP Label) a Effect Size b pFWE 

Clinical vs. Control Adolescents 

Reward Attainment CEig 
Right Ventral Striatum Orbito-Affective-3 0.947 0.048 

Right Visual Cortex Visual2_3 (V3) 0.945 0.047 

Depression Severity 

Whole Brain 
CStr Right sgACC Default_34 (25) 0.426 0.023 

ELoc Right sgACC Default_34 (25) 0.392 0.045 

Anticipatory Anhedonia Severity 

Whole Brain 

CStr 
Left vmPFC Default_46 (10r) 0.451 c 0.030 

Left Pulvinar Thalamus Auditory-24 0.442 c 0.044 

ELoc 

Left Pulvinar Thalamus Auditory-24 0.469 c 0.013 

Left Central Amygdala Dorsal Attention-1 0.432 c 0.048 

Right Lateral Amygdala Posterior_Multimodal-2 0.434 c 0.044 

Total Anhedonia Severity 

Whole Brain ELoc Left Pulvinar Thalamus Auditory-24 0.431 c 0.050 

Anxiety Severity 

Whole Brain 
CEig 

Right dlPFC Frontoparietal_12 (a9-46v) 0.428 0.025 

Right Parietal Operculum Cingulo-Opercular_16 (PFcm) -0.413 0.044 

ELoc Right Medial Amygdala Somatomotor-3 -0.390 0.050 

Reward Anticipation CStr Left Ventral Visual Stream Visual2_40 (PIT) -0.367 0.036 

Reward Prediction Error CStr Left Ventral Visual Stream Visual2_36 (FFC) -0.360 0.044 

a Labels per Cole-Anticevic Brain-wide Network Partition v1.0.5 (equivalent cortical labels per HCP S1200 release) 
b Cohen’s d for group contrasts and Pearson’s r for symptom correlations, adjusted for age and sex 
c Correlations reported with negative TEPS scores for consistency with other scales (see Methods and Materials) 

 

Table 2: Detailed results including parcellation labels, effect sizes, and two-tailed pFWE values for 

each significant node. 
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Depression Severity 

Depression severity (BDI) was positively correlated with both CStr and ELoc in the right 

subgenual anterior cingulate cortex (sgACC) within the Whole Brain network (Figure 3, Table 2). 

No significant associations with depression were found for CEig or within RFT networks. 

 

 

 

 

Figure 3: Within the Whole Brain network, overall depression severity was positively correlated 

with both CStr (left) and ELoc (right) in the right sgACC across all adolescents. Maps show effect 

size (Pearson’s r), adjusted for age and sex. Significant (two-tailed pFWE<0.05) nodes are 

indicated by white outlines and labels; non-significant nodes are displayed at 50% saturation. 
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Anhedonia Severity 

Within the Whole Brain network, anticipatory anhedonia severity (negative TEPS-A) was 

significantly correlated with CStr in the left ventromedial prefrontal cortex (vmPFC) and left medial 

pulvinar thalamus, as well as with ELoc in the right lateral amygdala, left central amygdala, and left 

medial pulvinar thalamus (Figure 4, Table 2). Total anhedonia severity (negative TEPS-T) was 

also significantly correlated with Whole Brain ELoc in the left medial pulvinar thalamus (Table 2). 

No significant correlations with consummatory anhedonia severity (negative TEPS-C) or within 

RFT networks were detected. 
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Figure 4: Within the Whole Brain network, anticipatory anhedonia was positively correlated with 

CStr in the left vmPFC (top left) and left medial pulvinar thalamus (top right), as well as with ELoc 

in the bilateral amygdala (bottom left) and left medial pulvinar thalamus (bottom right) across all 

adolescents. Maps show effect size (Pearson’s r), adjusted for age and sex. Significant (two-tailed 
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pFWE<0.05) nodes are indicated by white outlines and labels; non-significant nodes are displayed 

at 50% saturation. 
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Anxiety Severity 

Within the Whole Brain network, anxiety severity (MASC) was positively correlated with 

CEig in the right dorsolateral prefrontal cortex (dlPFC), negatively correlated with CEig in the right 

parietal operculum, and negatively correlated with ELoc in the right medial amygdala (Figure 5, 

Table 2). Additionally, anxiety was negatively correlated with CStr in parts of the left ventral visual 

stream, specifically the PIT Complex within the Reward Anticipation network and the adjacent FF 

complex within the Reward Prediction Error network. No significant anxiety correlations were 

found within the Reward Attainment network. 
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Figure 5: Within the Whole Brain network, anxiety severity correlated positively with right dlPFC 

CEig and negatively with right parietal operculum CEig (top left), and also correlated negatively with 

ELoc in the right medial amygdala (top right) across all adolescents. Additionally, anxiety was 

negatively correlated with CStr in two left ventral visual stream nodes: the PIT Complex within the 

Reward Anticipation network (bottom left) and the adjacent FF Complex within the Reward 

Prediction Error network (bottom right). Maps show effect size (Pearson’s r), adjusted for age and 
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sex. Significant (two-tailed pFWE<0.05) nodes are indicated by white outlines and labels; non-

significant nodes are displayed at 50% saturation. 
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Discussion 

The present study capitalized on recent advances in neuroimaging methodology to 

examine resting-state network properties in the context of adolescent mental illness. Our 

approach included high-quality multiband fMRI sequences to achieve excellent spatial (2.3mm 

isotropic) and temporal (1s) resolution, HCP-style preprocessing including highly accurate 

MSMAll surface alignment, and a large sample of psychotropic-medication-free adolescents with 

diverse clinical symptomatology. A key element of our study was the CAB-NP parcellation, which 

enabled us to model networks using functionally discrete nodes across the entire cortex and 

subcortex. To further preserve neurobiological detail, we derived graph theoretical metrics of 

centrality (CStr, CEig) and efficiency (ELoc) using weighted association matrices, rather than the 

simpler binary approach where association matrices are arbitrarily thresholded and all surviving 

correlations are treated as equivalent. In addition to Whole Brain analyses, we also examined 

graph theoretical metrics within specific Reward Anticipation, Reward Attainment, and Reward 

Prediction Error networks, which we defined empirically using task fMRI data collected in the 

same subjects. Importantly, these analyses within smaller RFT networks did not simply reduce 

multiple comparison penalties, as in small-volume correction (33), but directly altered the 

calculation of graph theoretical metrics by restricting the underlying association matrix to nodes 

involved in the corresponding reward process. 

As hypothesized, findings from both the group comparison and symptom correlation 

analyses implicated key reward-related areas, supporting the notion that alterations in reward 

circuitry during adolescent brain development play an important role in the emergence of 

psychiatric disorders. Specifically, adolescents with clinical symptoms vs. controls had 

significantly higher CEig in the ventral striatum within the Reward Attainment network. Across all 

adolescents, moreover, higher depression severity was associated with increased Whole Brain 

CStr and ELoc in the sgACC, while higher anhedonia severity was associated with the increased 

Whole Brain CStr in the vmPFC. Taken together, these findings suggest that elevated tonic (i.e. 
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resting-state) communication with reward areas may be related to the initial development of 

positive valence system (PVS) deficits. By contrast, the negative valence system (NVS) construct 

of anxiety was mainly associated with reduced tonic communication with areas related to salience 

and threat monitoring. 

Our group-level results highlight the importance of studying specific reward sub-systems, 

especially for a heterogeneous cohort: we found that adolescents with mood, anxiety, and/or 

behavioral disorder symptoms were only distinguishable from their healthy counterparts based on 

network topology within the Reward Attainment network. Within this network, clinical adolescents 

had elevated CEig in the left ventral striatum, specifically the ventromedial caudate bordering the 

nucleus accumbens (NAc). The ventral striatum plays a highly conserved role in primary reward 

processing, receiving dopaminergic inputs from the ventral tegmental area in response to 

pleasant stimuli via the mesolimbic reward pathway (34, 35). Similar to our results, a previous 

resting-state fMRI study in children aged 6-12 found that, within a network consisting of 12 reward-

related nodes, only left ventral striatum CStr significantly predicted the emergence of depression 

and was associated at the trend level with development of ADHD and anxiety at 3-year follow-up 

(36). Our finding of significant differences in left ventral striatal CEig (i.e. association with influential 

nodes), rather than CStr (i.e. association with all nodes), may be due to the much larger number 

of nodes in our Reward Attainment network or differences in CStr calculation. In addition to the 

ventral striatum, we also detected significantly higher CEig in area V3 of the right visual cortex in 

the clinical cohort. Although the extrastriate visual cortex is unlikely to play a direct role in reward 

processing, reward responses are often contingent on sensory inputs, and area V3 was notably 

the only node to appear in all three reward networks (white in Figure 1). The lack of significant 

group differences in other networks may have been related to the heterogeneity of the clinical 

group. 

Supporting this conclusion, clinical symptoms were primarily associated with the resting-

state properties of nodes within the Whole Brain network. Specifically, overall depression severity 
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was positively correlated with both CStr and ELoc in the right sgACC, an area that is heavily 

implicated in depression. Increased sgACC activity is frequently reported in neuroimaging studies 

of depressed adults (37) and adolescents (38), while sgACC activity decreases following many 

types of depression treatment, including traditional antidepressants, ketamine, and deep brain 

stimulation (39-41). Resting-state fMRI studies have indicated that depression severity is 

associated with sgACC connectivity changes in adults with clinical (42) and subclinical (43) 

depression as well as depressed adolescents (44, 45), which may be related to early-life changes 

in white mater microstructure (46, 47). Our findings add to this body of evidence, showing that 

higher overall sgACC connectivity (CStr) and shorter connectivity paths to the sgACC (ELoc) are 

associated with increased depression severity across a large cohort of clinically diverse 

adolescents. 

In addition to overall depression levels, our analyses also revealed distinct correlations 

between Whole Brain network properties and anhedonia severity. Of note, these findings were 

driven by anticipatory anhedonia, which involves undervaluation of expected rewards and is 

associated with motivational deficits, rather than consummatory anhedonia, which reflects 

diminished experience of pleasure once rewards are obtained. Together with our group contrast 

results, which only detected significant differences within the Reward Attainment network 

associated with reward consummation, this finding highlights the importance of considering 

discrete phases of reward processing, even at rest. We found that anticipatory anhedonia severity 

correlated with overall vmPFC connectivity (CStr) and with shorter connectivity paths to the mid-

lateral amygdala (ELoc). The vmPFC receives extensive reward-related inputs from the 

dopaminergic midbrain and ventral striatum via the mesocorticolimbic pathway (48) and is 

responsive to many types of primary rewarding stimuli (49). Previous studies have reported a link 

between anticipatory anhedonia and reduced vmPFC activation to rewarding stimuli regardless 

of diagnosis (50), and reduced vmPFC connectivity with subcortical reward structures is 

associated with anhedonia as well as inflammation in depression (51). Moreover, a transcranial 
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magnetic stimulation treatment study in adults with depression found that non-responders relative 

to responders had both higher anhedonia scores and higher betweenness centrality (a related 

graph theoretical measure) only in the vmPFC (52). Reduced amygdala resting-state functional 

connectivity with the vmPFC has also been repeatedly reported in adolescents with depression 

relative to controls (53, 54), whereas the opposite pattern was observed in a large meta-analysis 

of depressed vs. healthy adults (55), suggesting a potential effect of illness chronicity or treatment 

on these regions. Although the amygdala has been a frequent target of fMRI research, a major 

strength of our approach was the ability to discriminate between functionally distinct subregions 

of this and other heterogeneous subcortical structures. In particular, the basolateral nucleus of 

the amygdala plays a well-characterized role in motivation through glutamatergic projections to 

the ventral striatum, which converge on many of the same reward-encoding cells in the nucleus 

accumbens that receive mesolimbic dopamine inputs (56). Consistent with this, our analyses 

specifically identified a link between the lateral amygdala and anticipatory anhedonia in 

adolescents. 

Our anxiety analyses, meanwhile, revealed the opposite relationship with ELoc in the 

medial amygdala, in line with extensive literature tying the amygdala to fear, anxiety, and related 

NVS constructs (57). Others have previously reported amygdala functional connectivity was 

reduced with the orbitofrontal cortex/vmPFC in adults with social anxiety disorder (58) and with 

the anterior cingulate and insula in adults with generalized anxiety disorder (59). In adults with 

depression, reduced amygdala connectivity with the dorsomedial PFC, mid-/posterior cingulate, 

and lateral temporal areas was predictive of comorbid anxiety (60), and amygdala-vmPFC 

connectivity negatively correlated with anxiety levels (61). Possibly related to its unique position 

as an NVS, rather than PVS, construct, anxiety was the only symptom to have predominantly 

negative associations with graph theoretical metrics in our study. In addition to the amygdala, 

anxiety was anticorrelated with Whole Brain CEig in a parietal operculum node associated with the 

salience (a.k.a. cingulo-opercular) network, a group of regions involved in identifying and directing 
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attention towards important stimuli. Due to its role in monitoring imminent threats as well as 

potential rewards, the salience network has been frequently implicated in both NVS and PVS 

dysfunction (62). The association between anxiety and brain regions involved in stimulus 

monitoring may also account for our findings in the ventral visual stream. Per the two-stream 

model, the ventrolateral occipital and temporal cortices form a “ventral stream” preferentially 

involved in determining the identity and salient characteristics of objects, whereas dorsolateral 

occipital and parietal areas form a “dorsal stream” primarily aimed at locating objects in space 

(63). In our study, adolescents with higher anxiety had lower overall connectivity (CStr) with ventral 

stream nodes within both the Reward Anticipation network, which is engaged during periods 

expectation when a reward has yet to be received, and the Reward Prediction Error network, 

which is differentially responsive to uncertain vs. certain reward attainment (15). As such, our 

findings indicate that brain regions important to externally oriented tasks of salience monitoring 

and reward discrimination have reduced tonic influence in adolescents with high anxiety levels. 

As always, several caveats should be noted for this study. Foremost, although we 

recruited a relatively large cohort of 87 adolescents, sampling was more limited within major 

clinical categories of mood symptoms (n=49), anxiety symptoms (n=43), behavioral symptoms 

(n=28), and especially healthy controls (n=19). This study design was intended to capture the full 

range of clinical symptomatology by including subjects with significant comorbidity and 

subthreshold symptoms. As such, analyses focused primarily on associations with symptom 

severity in the full cohort; additional research is needed to determine how resting-state network 

properties differ between specific diagnostic groups and healthy adolescents. Second, although 

symptom severity is a more specific indicator of underlying PVS and NVS abnormalities than 

categorical diagnosis (7), clinical symptoms are also heterogeneous to some extent. We were 

able to address this directly for anhedonia by separately analyzing anticipatory and 

consummatory TEPS subscales; our future work will employ more granular assessments of 

depression and anxiety symptoms to allow comparable analyses. Finally, although we used the 
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best whole-brain parcellation currently available, there has been limited validation of the CAB-NP 

due to its recent release. However, all cortical boundaries were taken directly from the multimodal 

surface parcellation meticulously derived by the HCP (9), which has been found to outperform 

other contemporary atlases and is widely considered a gold standard of human brain 

segmentation (64, 65). Subcortical parcels in the CAB-NP were then determined using a 

consensus partitioning approach based on data from over 300 HCP subjects divided into 

independent discovery and validation sets to ensure reproducibility and reliability (10). 

In conclusion, our study prioritized high-quality clinical and neuroimaging measures, 

recruiting a large cohort of psychotropic-medication-free adolescents to examine the full range of 

illness severity using sophisticated fMRI acquisition and analysis techniques. We found that PVS 

constructs of depression and anhedonia severity as well as clinical status were associated with 

increased tonic communication with key reward-related nodes in the medial PFC and ventral 

striatum. Conversely, the NVS construct of anxiety was linked to reduced communication metrics 

in regions important to threat detection and stimulus monitoring. These results showcase the 

power of carefully constructed network models and data-driven analyses to detect specific 

functional anomalies underlying emergent clinical symptoms. Identifying and characterizing these 

aberrant neurodevelopmental processes is crucial for understanding and ultimately stopping the 

course of mental illness. 
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