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Abstract 11 

Improvement of feed efficiency (FE) is key for sustainability and cost reduction in pig 12 

production. Our aim was to characterize the muscle transcriptomic profiles in Danbred 13 

Duroc (Duroc) and Danbred Landrace (Landrace), in relation to FE for identifying 14 

potential biomarkers. RNA-seq data was analyzed employing differential gene expression 15 

methods, gene-gene interaction and network analysis, including pathway and functional 16 

analysis. We compared the results with genome regulation in human exercise data.  In the 17 

differential expression analysis, 13 genes were differentially expressed, including: 18 

MRPS11, MTRF1, TRIM63, MGAT4A, KLH30. Based on a novel gene selection method, 19 

the divergent count, we performed pathway enrichment analysis. We found 5 significantly 20 

enriched pathways related to feed conversion ratio (FCR). These pathways were mainly 21 

mitochondrial, and summarized in the mitochondrial translation elongation (MTR) 22 

pathway. In the gene interaction analysis, highlights include the mitochondrial genes: 23 

PPIF, MRPL35, NDUFS4and the fat metabolism and obesity genes:  AACS, SMPDL3B, 24 

CTNNBL1, NDUFS4 and LIMD2. In the network analysis, we identified two modules 25 

significantly correlated with FCR. Pathway enrichment of modules identified MTR, 26 

electron transport chain and DNA repair as enriched pathways. In the network analysis, 27 

the mitochondrial gene group NDUF was a key hub group, showing potential as 28 

biomarkers. Comparing with human transcriptomic exercise studies, genes related to 29 

exercise displayed enrichment in our FCR related genes. We conclude that mitochondrial 30 

activity is a driver for FCR in muscle tissue, and mitochondrial genes could be potential 31 

biomarkers for FCR in pigs.  We hypothesize that increased FE mimics processes 32 

triggered in exercised muscle.  33 

 34 

 35 
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Introduction 36 

In commercial pig production, the cost of feed is the highest individual economic factor (Jing, Hou et 37 

al. 2015, Gilbert, Billon et al. 2017). Furthermore, reduction in feed consumption per unit growth is 38 

beneficial for the environment, which is a key factor in being able to maintain sustainable and 39 

resource efficient production.  In this context, there have been continuous efforts to increase feed 40 

utilization efficiency in pigs through selective breeding. In the Danish Production pig population, 41 

breeding is done at a core central facility where potential breeding sires are tested for FCR through 42 

accurate individual measurements of feed intake and growth. Danish production pigs are crossbreds, 43 

with the maternal line being  Landrace x Danbred Yorkshire, and the paternal line being  Durocs The 44 

Durocs are well-known for being heavily selected for growth and efficiency, while the two other 45 

breeds have had more heavy selection on litter size or piglet survival related traits.  46 

Feed efficiency can be defined in several ways, with the main ones being Residual Feed Intake 47 

RFI(Koch 1963) and FCR. FCR is the ratio between feed consumed and growth, while RFI is based 48 

on the residual between predicted feed intake and actual feed intake given growth. In general, it is 49 

reported that selection for low FCR will result in co- selection for related traits, namely growth rate 50 

and body composition (Nkrumah, Basarab et al. 2007, Gilbert, Billon et al. 2017, Yi, Li et al. 2018). 51 

In contrast, selection for RFI is more directly focused on metabolic efficiency irrespective of daily 52 

gain and growth (Nkrumah, Basarab et al. 2007, Gilbert, Billon et al. 2017, Yi, Li et al. 2018). In 53 

general, RFI and FCR are strongly correlated, with a correlation above 0.7 and both show low to 54 

medium heritability(Do, Strathe et al. 2013). In general, FCR is simpler to calculate, as RFI 55 

calculation is dependent on individual population and production factors (Hoque, Kadowaki et al. 56 

2009, Do, Strathe et al. 2013).  However, in pig production, the side effects of FCR selection and 57 

simplicity are desired traits, thus perhaps explaining why the pig population in Denmark and in 58 

general pig production, FCR has been the main efficiency phenotype used for selection (Gilbert, 59 

Billon et al. 2017). One can also hypothesize that FCR is more easily translatable between 60 

breeds/populations, as it is a simple dimensionless ratio, which has a simple and generally 61 

comparable interpretation.  In contrast, it is more difficult to easily compare RFI values across 62 

different populations or breeds. In regards to the biological and/or genetic background of FCR in 63 

pigs, the results remain somewhat elusive(Ding, Yang et al. 2018), thus inviting for further analysis 64 

on the topic.  65 
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The key tissue in pig production is muscle, as pig carcasses are valued according to lean meat 66 

content.  Skeletal muscle is a key organ in carbohydrate and lipid metabolism and plays a large part 67 

in the storage of energy from feed (Turner, Cooney et al. 2014, Morales, Bucarey et al. 2017), 68 

especially as lean growth has been one of the main goals of pig breeding programs. Increased 69 

efficiency has also been positively associated with various meat quality parameters (Czernichow, 70 

Thomas et al. 2010, Lefaucheur, Lebret et al. 2011, Smith, Gabler et al. 2011, Faure, Lefaucheur et 71 

al. 2013, Horodyska, Oster et al. 2018), showing that improved FE can have multiple positive 72 

outcomes. There are only a few studies analyzing muscle tissue transcriptome pf pigs in a FE 73 

context(Jing, Hou et al. 2015, Vincent, Louveau et al. 2015, Gondret, Vincent et al. 2017, 74 

Horodyska, Wimmers et al. 2018), and thus our knowledge of the muscle transcriptomic background 75 

of FE is somewhat limited. In general, the studies available have relied on small samples sizes, weak 76 

statistical thresholds and categorical division of lines divergently selected for FE. This means that 77 

more studies are still needed to uncover the true underlying transcriptomic background of FE in 78 

muscle tissue. 79 

Here, in our study, we aim to characterize the transcriptomic profiles and link them to FE traits 80 

measured in Duroc and Landrace, purebred pigs, by fitting FE as a continuous trait over a full 81 

spectrum of efficiency, from high to low. Furthermore, the pigs selected for the study all came out of 82 

the potential breeding sire population, with no pigs negatively selected for FE, thus better 83 

representing real world breeding scenarios than using negative FE selection.  We analyzed the muscle 84 

transcriptome based on several layers of statistical-bioinformatics analyses: differential expression 85 

(DE), gene-gene interaction and network analysis, which was followed up by pathway and functional 86 

analysis. The rationale behind the approach was to reveal potential biomarkers that are functionally 87 

important and are predictive of FE in pigs. Dealing with complex yet subtle phenotypes can be a 88 

challenging, as the signal to noise ratio can be high, and it may be impractical or costly to collect 89 

large sample sizes. Therefore, we also suggest a novel method for selecting features based on overall 90 

p-value distributions, the divergent count.  91 

To gain more insight on the molecular and functional background of FE, we also hypothesized, that 92 

the mechanism between differences in the muscle transcriptome of breeds with different efficiency 93 

could be similar to the differences between a rested and an exercised muscle, We adapted a 94 

translational genomics approach to investigate this, comparing human data with our data. 95 

Materials and Methods 96 
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Sampling and Sequencing 97 

In total, 41 purebred male uncastrated pigs where sampled for this study from two breeds, with 13  98 

Danbred Durocand 28  Danbred Landrace pigs. All pigs were raised at a commercial breeding station 99 

at Bøgildgard owned by the pig research Centre of the Danish Agriculture and Food Council (SEGES). 100 

The pigs where raised from ~7kg until ~100kg at the breeding station. During this time, all feed intake 101 

was measured starting at 28kg and for a period of 40-70 days based on the viability of each pig. All 102 

pigs were routinely weighed several times, including at testing start and end for calculation of FCR. 103 

FCR was calculated by dividing the growth in the testing period with the feed consumption.  Residual 104 

Feed Intake (RFI) was also estimated based on the residuals of the following model, from Do et al(Do, 105 

Strathe et al. 2013): 106 

𝐷𝐹𝐼𝑖𝑗 = 𝜇 + 𝐷𝑊𝐺𝑖 + 𝛽𝑗 107 

  Where DFI is daily feed intake and DWG is daily weight gain in the period, and β is the batch effect. 108 

RFI was calculated separately for each breed, and based on data from a larger population (Duroc n=59 109 

and Landrace n=50).  110 

Muscle tissue samples from the psoas major muscle were extracted immediately post slaughter and 111 

preserved in RNAlater (Ambion, Austin, Texas). Sample were kept at -25 C, as per protocol, until 112 

sequencing 113 

Sequencing  114 

Sequencing was done on BGISEQ-500 platform using the PE100 (pair end, 100bp length) with Oligo 115 

dT library prep at BGI Genomics.  116 

 117 

QC, Mapping and Read Quantification 118 

Reads were trimmed and adapters removed using Trimmomatic (Bolger, Lohse et al. 2014) version 119 

0.39 with default setting for paired end reads. The QC on the data was done both pre- and post-120 

trimming using FastQC v0.11.9(. The reads were mapped using STAR aligner(Dobin, Davis et al. 121 

2013) version 2.7.1a using default parameters with a genome index based on sus scrofa version 11.1 122 

and using ensemble annotation sus scrofa 11.1 version 96 for splice site reference. Default 123 
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parameters were used for mapping except for the addition of read quantification during mapping 124 

using the --quantMode GeneCounts setting. All statistic for the reads can be found in supplementary 125 

data 1.   126 

 127 

Differential Expression Analysis 128 

To analyze the relationship between FCR and gene expression, we applied the following overall 129 

model, and implemented it using several different methods: 130 

 𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 +  𝛽1𝑖
(𝐹𝐶𝑅) + 𝛽2𝑗

(𝑅𝐼𝑁) + 𝛽2𝑘
(𝑎𝑔𝑒) +  𝐵𝑅𝑙 + 𝐵𝐴𝑚 +  ϵ         (1) 132 

𝑦 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 133 

𝛽1 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑓𝑒𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 134 

𝛽2 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑅𝐼𝑁 (𝑅𝑁𝐴 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 135 

𝛽3 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑆𝑙𝑎𝑢𝑔𝑡𝑒𝑟 𝐴𝑔𝑒(𝑑𝑎𝑦𝑠) 136 

𝐵𝑅 = 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐵𝑟𝑒𝑒𝑑 137 

𝐵𝐴 = 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐵𝑎𝑡𝑐ℎ 138 

 131 

RNA integrity value (RIN) should be corrected for, as it affects expression, and the most appropriate 139 

way to correct this is to include it in the model(Gallego Romero, Pai et al. 2014). As the samples had 140 

different slaughter days, which affected the collection conditions, we also deemed it necessary to 141 

correct for this via the batch effect. Finally, we correct for Breed and age at slaughter, as these are 142 

biological factors, which can cause differences in expression.  143 

We used the following 3 methods for the DEA: Limma (Ritchie, Phipson et al. 2015), edgeR 144 

(Robinson, McCarthy et al. 2010) and Deseq2(Love, Huber et al. 2014). This was done to increase 145 

the robustness of our analysis, as our phenotype of interest is expected to have a subtle effect on the 146 

transcriptome due to the complex nature of FE. In addition, we also fit the model for each breed 147 

separately using Deseq2, just removing the Breed as a covariate. 148 

Deseq2 149 

We used Deseq2 version 1.22.2. In the Deseq2 analysis, the counts were filtered a priori requiring a 150 

minimum of 5 reads for each sample, resulting in a total of 10765 out of 25880 genes being included 151 
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in the DE analysis in the common breed analysis, and 10687 and 11107 in Landrace and Duroc 152 

respectively. As the overall read counts were very similar across experiments ( see supplementary 153 

data 1), it was deemed sufficient to filter pre normalizing. We then used the default analysis method 154 

based on our specified model.  155 

Limma 156 

We used Limma version 3.38.3. For the Limma analysis, the counts were filtered based on the edgeR 157 

filterByExprfunction and normalized using calcNormFactors from the same package, as suggested in 158 

the limma manual.  This resulted in the inclusion of 11146 genes in the analysis. To fit the model we 159 

used the eBayes  method in conjunction with our specified model. 160 

EdgeR 161 

We used edgeR 3.24.3. We used the same normalization and filtering as in the Limma analysis, thus 162 

including the same number of genes. We used the glmQLfit function and glmQLTest to implement 163 

our model. 164 

While we used to different set sizes in the analysis, this does not affect the results significantly, as the 165 

genes omitted in the Deseq2 analysis are all lowly expressed. Furthermore, in our further analysis we 166 

elected to use the smaller and more conservative Deseq2 set to become our reference set for 167 

selections and analysis. Gene Pathway Analysis 168 

Gene selection 169 

To select a robust set of genes for a gene enrichment analysis when we have non-conservative p-170 

value but only a limited number of genes with a FDR below 0.05, we applied the following strategy: 171 

- Identify the overrepresentation of (low) p-values in comparison to a uniform p-value 172 

distribution in our data. We will call this the divergent count. 173 

- Select the top N genes by p-value, where N is the estimated divergent count 174 

- Among the top N genes, select those that are found in all three methods.  175 

To find the divergent count D, we find the interval with the maximum positive divergence between 176 

our observed empirical p-values and the same number of uniformly distributed p-values. It is 177 

calculated as follows:    178 
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(1) 𝑑𝑖 = (∑ 𝑥𝑖 {
0 𝑓𝑜𝑟 𝑥𝑖 ≥

𝑖

𝑛

1 𝑓𝑜𝑟 𝑥𝑖 <  
𝑖

𝑛

𝑖=1
𝑛 ) − 𝑖 179 

(2) 𝐷 = max {𝑑1, 𝑑2 … 𝑑𝑛} 180 

Where n is the total number of p-values, 𝑥𝑖 is the i’th observed p-value in increasing order. Here i is 181 

both the index for x and the expected number of p-values between 0 and 
𝑖

𝑛
  given a uniform 182 

distribution. D is the final divergent count, which is the maximum over all possible values of 𝑑..   183 

GOrilla 184 

To perform gene enrichment in GOrilla (Eden, Lipson et al. 2007, Eden, Navon et al. 2009), we 185 

translated our sus scrofra  ensemble gene IDs into human ensemble gene IDs. The background set of 186 

genes used in GOrilla was the set of genes  from the Deseq2 analysis. We used default settings. 187 

Furthermore, we used the Revigo (Supek, Bosnjak et al. 2011) analysis through GOrilla to generate 188 

summaries of our enrichment analysis, using default settings.  189 

Feed Efficiency measure 190 

In this study, we elected to use weight gain/feed intake as our FCR measure. It fit the data better than 191 

RFI, and FCR is the metric used in the breeding program of our pigs. 192 

Pairwise Gene interaction Analysis 193 

To continue our analysis of the top set of genes identified using the divergent counts in our DE 194 

analysis, we decided to apply a pairwise interaction model. First, we adjust the expression based on 195 

any factors and covariates that may affect expression for each gene. These factors are the same as in 196 

the general DE analysis, giving rise to the following linear model: 197 

 𝑦𝑗𝑘𝑙𝑚 = 𝜇 +  𝛽1𝑗
(𝑅𝐼𝑁) + 𝛽2𝑘

(𝑎𝑔𝑒) +  𝐵𝑅𝑙 + 𝐵𝐴𝑚 + ϵ               (2) 198 

𝑦 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 199 

𝛽1 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑅𝐼𝑁 (𝑅𝑁𝐴 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 200 

𝛽2 = 𝑟 𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑆𝑙𝑎𝑢𝑔𝑡𝑒𝑟 𝐴𝑔𝑒(𝑑𝑎𝑦𝑠) 201 

𝐵𝑅 = 𝐵𝑟𝑒𝑒𝑑 202 

𝐵𝐴 = 𝐵𝑎𝑡𝑐ℎ 203 
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We then centered and scaled the residuals and then run a model for all pairwise gene interaction in 204 

our gene set. The reason we scaled and centered is that this leads to a more flexible and interpretable 205 

model regardless of the type of interaction. The interaction model was as follows: 206 

𝑦𝑖 = 𝜇 +  𝛽1𝑥1𝑗
+ 𝛽2𝑥2𝑘

+ 𝛽3 (𝑥1𝑗
× 𝑥2𝑘

) +  ϵ              (3) 208 

𝑦 = 𝐹𝐶𝑅 𝑣𝑎𝑙𝑢𝑒𝑠 209 

                 𝛽1 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 1 207 

                    𝛽2 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 1 210 

                              𝛽3 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑒𝑛𝑒 1 𝑎𝑛𝑑 𝑔𝑒𝑛𝑒 2 211 

                             𝑥1𝑗
= 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 1 212 

                        𝑥2𝑘
= 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒 2 213 

                       (𝑥1𝑗
× 𝑥2𝑘

) = product of the two residual expression values 214 

The next step was then to identify significant interactions. As the number of interaction in a dataset 215 

grows exponentially to the square of the input space, it is often difficult to detect effects based on 216 

classical multiple testing correction methods such as Bonferroni or FDR. This is especially true when 217 

dealing with complex phenotypes, as we generally do not expect to find individual large effects.  Due 218 

to this, instead of focusing on individual results, for each gene, we calculated the divergent count, to 219 

assess the divergence of each genes distribution of interaction p-values. We then bootstrapped with 220 

replacement samples of 853 p-values from our empirical p-values 105 times, calculating the divergent 221 

count each time, giving us a bootstrapped distribution of divergent counts, to compare with our 222 

empirical distribution 223 

Network analysis 224 

To perform network analysis we used WGCNA(Langfelder and Horvath 2008). First, we filtered the 225 

read counts to only include genes with a minimum of 5 un-normalized reads, as was done for the 226 

Deseq2 analysis. We then created a correlation matrix based on all pairwise correlation in the data. 227 

The correlation matrix was based on un-normalized values as the correlation metric is based of 228 

comparison of the samples with themselves, thus it is not affected by the covariates. We then fit the ß 229 

parameter for the scaling of the network to create a scale free topology(Zhang and Horvath 2005). 230 

The scaled correlation matrix was used as an adjacency matrix that was used to generate the 231 
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Topological Overlap Measures (TOM), which represents the final calculation of the relation between 232 

genes.  233 

The TOM values of the genes where clustered using the dynamicTreeCut function from the 234 

dynamicTreeCut cut package with default setting, resulting in a number of module which are 235 

arbitrarily named based on colors.  236 

The eigenvalue of each module was then calculated based on the normalized read counts and RIN 237 

adjusted count. We did these corrections in this step to remove the technical effects of library size 238 

differences and RIN from the eigenvalues, as we did not want technical effects to affect the 239 

eigenvalues.. The counts were normalized based on the calcNormFactors function from the edgeR 240 

package. After this, the counts were adjusted for RIN by fitting the following linear model: 241 

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = μ + RIN + ϵ for all genes, and extracting the residual expression values. Highly 242 

correlating models where merged using the mergeCloseModules function using a default cut-off. We 243 

then calculated the Pearson correlation between corrected and normalized module eigenvalues and 244 

our traits and covariates. Pathway analysis was performed on the genes of highly correlated modules, 245 

with GOrilla and ReviGO as seen above. Finally, we also identified the top hub genes in relevant 246 

modules. This was done based on calculating the intramodular connectivity using the 247 

intramodularConnectivity function with default settings. We then selected the top hub genes base on 248 

the kWithin measure, which represents the connectivity within modules.  249 

Comparison to human exercise data 250 

To test the hypothesis that differences in the muscle tissue transcriptome of Duroc and Landrace 251 

and/or FCR related genes mimic differences in rested and exercised muscle tissue, we compared our 252 

results with three human data sets(Murton, Billeter et al. 2014, Devarshi, Jones et al. 2018, Popov, 253 

Makhnovskii et al. 2019). For each data set, we performed the following: 254 

1. Select the genes differentially expressed between breeds, based on the edgeR analysis 255 

2. For FCR, use the 853 genes from divergent count set  256 

3. Find the same set of genes in the human data – the breed/FCR matching genes. Genes are 257 

matched using the biomart R package, based on retrieving the external_gene_name of our sus 258 

scrofa ensemble gene identifiers.  259 

4. Separate the human data into two parts – the breed matching set and the background set 260 
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5. Using a Fisher Exact test, compare the number of differentially expressed genes for the 261 

exercised vs rested muscle in the background set vs the breed matching set. 262 

6.  The steps for the breed were also applied to our divergent count set for FCR.  263 

 264 

The reason edgeR was used in this part of the analysis, was because it was more flexible to fit to the 265 

publicly available data, allowing to compare our results to the other studies. As each dataset was 266 

formatted and analyzed differently, we had to process them individually. In the data set from 267 

Devarshi et al(dataset 1)(Devarshi, Jones et al. 2018), we chose to use the lean pre exercise vs lean 268 

post exercise group as our comparison, and significance was based on the reported cuffdiff analysis. 269 

For the set of Murton et al(dataset 2)(Murton, Billeter et al. 2014), we pooled all control vs exercise 270 

samples and analyzed them using Limma as the data was microarray data, using the same Limma 271 

pipeline as mentioned above in our FE analysis. As the results were weaker in Murton et al, we chose 272 

to use P <0.05 as a cutoff for the Fisher exact test. For the set from Popov et al(dataset 3)(Popov, 273 

Makhnovskii et al. 2019), we grouped all the 4h post exercise results vs all 4h control non-exercised 274 

and performed  DE analysis using edgeR with no other covariates using the same settings as our FE 275 

analysis above, with significance based on the found FDR values. 276 

Results 277 

Differential Expression analysis 278 

In figure 1 we can see the visualization of the PCA analysis of the count data. There is one main 279 

point: there is no clear pattern separating the breeds based on the first two components. Based on the 280 

lack of separation of the breeds we gain confidence in the application of a common breed analysis. 281 

Any of the lower variance components have a lower proportion of the variation explained than the 282 

two observed Principal Components, therefore we are confident that no major proportion of the 283 

variation is directly driven by breed. We do observe a significant and detectable effect of breed 284 

expression level (as seen further down), meaning there are features in our data which can separate the 285 

breeds.  286 

In figure S1 we can see the distribution of the uncorrected p-values for the Deseq2 analysis in our 287 

two breeds in relation to FCR with the corresponding figure for the common analysis in figure 288 

2(right). In total, the Landrace analysis had one gene with an FDR < 0.1, and  Duroc had 8, and we 289 
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found 4 in the common breed analysis. Overall, we only find a limited set of genes associated with 290 

FCR.  In table 1, we see the overview over the genes that where differentially expressed at the 0.1 291 

FDR level in the common and individual breed analysis from Deseq2. As in previous studies, we find 292 

genes related to mitochondria (MRPS11, MTRM1) and glucose a related gene (MGAT4A)(Ohtsubo, 293 

Takamatsu et al. 2005).  We also find genes that have been associated with meat quality phenotypes 294 

in cattle and pig (MTRF1,KLH30) (Jiang, Michal et al. 2009, Chung, Lee et al. 2015, Dos Santos 295 

Silva, Fonseca et al. 2019). Perhaps the most interesting result, is that one of the genes in the Duroc 296 

analysis, TRIM63, has been associated as a biomarker for differences in response to exercise induced 297 

muscle damage(Baumert, G-REX Consortium et al. 2018), which ties into our comparison to human 298 

data below. 299 

As the results were somewhat limited, we chose to continue with a different strategy in the joint 300 

breed analysis. Based on the results in figure 2, we see that p-values had an overall anti-conservative 301 

distribution for FE in the joint analysis, which showed us some promise for further analysis. We 302 

chose to calculate the DE using 3 methods, as we wanted to ensure that our results where robust and 303 

replicable, knowing that individual methods can vary in output (Seyednasrollah, Laiho et al. 2015). 304 

In figure 2 we can see the overview of the distribution of uncorrected p-values for FCR in all 3 305 

methods, showing an anti-conservative distribution regardless of the method. If FCR was unrelated to 306 

gene expression in general, we would expect a uniform p-value distribution in our model. We can 307 

statistically confirm the likelihood of our observed p-values under the null hypothesis of no relation 308 

between expression and FCR using a Kolmogorov-Smirnov test, and in all 3 methods we reject the 309 

null hypothesis with (p-value < 10^-16). This leads us to conclude that there is a relation between the 310 

muscle tissue expression and FCR. In table 2 we can see the overview over the significance of our 311 

covariates in the 3 methods used for DE analysis. The most significant covariate is RIN, highlighting 312 

the importance of correcting for the RIN values when analyzing samples acquired in a non-laboratory 313 

setting. It has been previously shown that while RIN values do have an impact on expression values, 314 

explicitly controlling for this in a modelling framework should appropriately correct the data in most 315 

data points(Gallego Romero, Pai et al. 2014). Furthermore, we see that many genes are differentially 316 

expressed between the breeds, which is expected, and that age has an impact on expression.  To 317 

quantify the observed link between expression and FE, we continue with two strategies – analyzing 318 

the overall pathway enrichments for the most significant genes and creating gene expression modules 319 

based on network analysis of our gene expression profiles.  320 
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Enrichments Analysis 321 

The first step in an enrichment analysis is to select a suitable set of genes. The most general strategy 322 

is to pick genes that are differentially expressed after multiple testing correction for such a set. In our 323 

analysis, we do not have enough of these for a meaningful enrichment analysis, but we are able to 324 

demonstrate an overall relation between FCR and gene expression as seen above in figure 2. In our 325 

case, we could select genes with an uncorrected p-value below 0.05, but this is somewhat arbitrary 326 

distinction(Butler and Jones 2018). Instead, we chose to make an estimation of the number of 327 

additional low p-values in comparison to the uniformly distributed p-values, which represents the 328 

null hypothesis of no overall relation between FCR and gene expression. We call this value the 329 

divergent count.  In essence, we are estimating the interval with the maximum positive divergence 330 

between our observed p-value frequencies and the same number of uniformly distributed p-values, 331 

assuming an approximately monotonely decreasing p-value distribution in our results. This has the 332 

advantage of not relying on arbitrary cutoffs but instead being a property of the overall p-value 333 

distribution.  In figure 3, we can see a schematic representation of the divergent count.  In Figure 4 334 

we can see the a Venn diagram showing the overall divergent counts and overlaps for all three 335 

methods, with the full overlap set being the final gene set for enrichment analysis. We can see that a 336 

majority of the selected genes are identified by all three methods. This gives us confidence in the 337 

robustness of the selected set. To identify enriched functional pathways in our dataset, we chose to 338 

use is GOrilla(Eden, Navon et al. 2009). In GOrilla it is possible to give a background set to base the 339 

analysis on, making it advantageous for expression data, as it allows us only to use genes actually 340 

expressed in our data as a background.   For the full output of the analysis, see supplementary table 2. 341 

Overall, 5 terms were significant post multiple corrections, with 4 out of these being related to 342 

mitochondrial ontologies In figure 5 we can see a summarized output of the significant post multiple 343 

testing correction GO-terms and groups based on the GOrilla analysis, using Revigo(Supek, Bosnjak 344 

et al. 2011). Based on this, the important overall pathway was translation elongation.  345 

Gene Interaction Analysis 346 

Many strategies can be used to take advantage of the interaction or co-expression between genes. We 347 

propose to apply modelling of pairwise gene interactions, which explicitly includes the phenotype of 348 

choice, which in our case is FE. This can be advantageous when dealing with complex phenotypes, 349 

as it may allow us to capture subtle biological variation. We chose to perform the gene interaction 350 

analysis based on the set of genes we identified from the divergent counts in our DE analysis. The 351 
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visualization of the empirical divergent counts and the bootstrapped counts can be found in 352 

supplementary figure 2.  Based on these results, the maximum bootstrapped divergent count was 83, 353 

and we observed 193 genes with a divergent count over 83. This means that many of the genes’ p-354 

value distributions are very anticonservative, and not very likely to happen by chance. There is 355 

however, the issue of data independence, as the genes’ results are not independent from each other. 356 

Due to this, and general concern of data size and weak effects we used a conservative qualitative 357 

heuristic and focused on the top 20 genes based on our methodology.  From the top 20 genes (see 358 

supplementary data 3 for the full results), the overall highlights were several transcription regulators:  359 

ETV1( an androgen receptor activate gene), LF1 (transcription factor) and  KDM4C (transcription 360 

activator and  growth related gene) (Bray and Kafatos 1991, Cai, Hsieh et al. 2007, Gregory and 361 

Cheung 2014); two mitochondrial genes,  KMO and MRPS11(Meinke, Kerr et al. 2019),; two genes 362 

related to muscular atrophy - GEMIN7 and PLPP7 (Baccon, Pellizzoni et al. 2002, Meinke, Kerr et 363 

al. 2019);  on gene implicated in heart development BIN1 (Nicot, Toussaint et al. 2007),  two lipid 364 

metabolism/obesity related genes ACOT11 and GPD1 (ADAMS, CHUI et al. 2001) (Park, Berggren 365 

et al. 2006); and finally 3 genes associated with specific traits in pig IL2RG (Immune system in 366 

pigs)(Suzuki, Iwamoto et al. 2012), GGPS1 ( meat quality) and PPARA  (weak association with fat 367 

percentage) (Szczerbal, Lin et al. 2007). Interestingly, MRPS11 was also differentially expressed. 368 

 369 

Gene Network Analysis 370 

Based on our network analysis, we identified 19 distinct modules after correcting for RIN and 371 

merging the modules based on similarity. Based on the DE analysis, we decided not to focus 372 

individually on Landrace or Duroc pigs in the network analysis, and thus the network was generated 373 

combining both breeds. Looking at the the clustering in figure 6a,, initially one might think that the 374 

network is poorly constructed, as the module dendrogram representation is not very clear. In general, 375 

we see that some modules look closely clustered based on the dendrogram, such as the red module, 376 

while other are more diffuse. We should however realize that the modules themselves are based on N 377 

x N matrix, where n is >10.000. Thus, it is not easy to represent the modules properly in lower 378 

dimensions. Therefore, we rely on the module eigenvalue trait correlation and pathway analysis of 379 

the modules to asses if they are biologically meaningful.  In figure 6b we can see the correlation 380 

between the eigenvalue of the modules and the traits and covariates we included in the DE analysis. 381 

We observe that the RIN correction of the individual genes has removed all the effect of the RIN on 382 
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the eigenvalues of our modules. Several of the modules are well correlated with the breed and age, 383 

with correlation > 0.5, while FCR is mainly correlated with two modules, red and turquoise. The red 384 

and turquoise module include 391 and 3744 genes, respectively. Based on these results we performed 385 

GO-term analysis on the red and turquoise module. The red module is more correlated to breed and 386 

age than FCR, but we know that breed and FCR are correlated, and in our data, age is correlated with 387 

FCR (0.5). It should be noted that the age and FCR correlation is caused by the higher FCR pigs in 388 

our data exhibiting lower growth rates, thus needing more time to reach the tissue sampling as the 389 

slaughter takes place at a target weight of approximately 100 kg. The turquoise module shows 390 

highest correlations in FCR. In figure 7 we see the Revigo summary of the GOrilla GO term analysis 391 

performed based on the genes in the red (a) and turquoise (b) modules. In both the red and turquoise 392 

modules, a large number of GO terms where significantly overrepresented after multiple testing 393 

correction (see supplementary data 4 and 5 for the full list for red and turquoise respectively), 394 

indicating that the modules do represent specific biological pathways. In the red module, the most 395 

significant group of terms where related to mitochondria, which were grouped into three overall 396 

groups – translation elongation, electron transport chain and hydrogen ion transmembrane transport. 397 

This mirrors our finding from the DE analysis and the gene interaction analysis. As the module has a 398 

negative correlation with FCR, it indicates a relation between higher mitochondrial activity and lower 399 

FCR, thus higher efficiency.  In the turquoise module, there was one large grouping of terms – DNA 400 

repair. This category included many GO terms, related to RNA, DNA, animo acid and nucleic acid 401 

metabolism and processing. These processes could be seen as generic growth and maintenance 402 

processes, and as the module is positively correlated with FCR, we can speculate the higher activity 403 

in DNA repair and related processes are increasing energy spend on maintenance, thus lowering 404 

efficiency. Due to the size of the module and the processes involved, it seems that the turquoise 405 

module is generically associated with overall cell maintenance and growth processes, giving it a 406 

somewhat unspecific functionality.  In supplementary data 6 we find the top 10 most connected genes 407 

in the red and turquoise module. Interestingly, in the red module 7 out of 10 genes belong to the 408 

NADH ubiquinone oxidoreductase group (NDUF), with the remaining 3 also being implicated in 409 

mitochondrial function. Thus, the mitochondrial genes are both overrepresented in the red module 410 

and the most connected within the module.  In the turquoise module, the results are unclear, as the 411 

most connected genes do not belong to any specific process, but instead cover a range of general 412 

processes that are generally important for cell function. This agrees with the general observation 413 

based on the size of the module and the overrepresented GO terms.  414 
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Human Exercise Data 415 

To test they hypothesis that improvements in efficiency could be linked to a state mimicking 416 

exercise, we compared our divergent counts genes for FCR and the genes differentially expressed 417 

between breeds with 3 different human exercise datasets [33-35]. The results can be found in table 3. 418 

We are comparing if there is a higher proportion of genes that are significant for exercise-mediated 419 

changes in our two subsets, breed and FCR related genes, in relation to the non-differentially 420 

expressed genes. We see that in all cases there is a higher proportion of significant genes in the breed 421 

and FCR set versus the background set, as the odds ratio between the subsets and the background is 422 

always below 1. In general, the breed results are more significant than the FCR genes, but they show 423 

similar ratios. This is likely because there are roughly 4 times more breed genes, yielding higher 424 

statistical power. Given the overall results, it does seem like both FCR and breed related genes are 425 

slightly more significant than background for exercise related changes.  We also did the pathway 426 

enrichment analysis for the genes that where significant in both one of our three human data sets and 427 

in the breed, and FCR set respectively. The overall results are found in figure 7a (breed) and 428 

7b(FCR). In the breed, we find that main categories are cellular metal ion homeostasis and 429 

anatomical structure development, based on 702 genes. For FCR, only 42 genes overlap with the 430 

human significant genes, meaning the results of the enrichment are not as significant, but the main 431 

overall group is regulation of transcription from RNA polymerase II promoter. 432 

Discussion 433 

There have been 4 previous studies analyzing the muscle transcriptome in an FE context (Jing, Hou 434 

et al. 2015, Vincent, Louveau et al. 2015, Gondret, Vincent et al. 2017, Horodyska, Wimmers et al. 435 

2018). The study by Gondret et al [18] was based on selecting divergent FE lines of Large White pigs 436 

for 8 generations, used 24 samples and was based on microarray. They reported a high number of 437 

differentially expressed genes in muscle between the low and high RFI groups (2417), but it is not 438 

clear from their paper how many probes were included in the statistical analysis and how this may 439 

affect multiple testing correction. They also reported that a gene was considered differentially 440 

expressed if one probe met the cutoff regardless of multiple probes did not. They reported that 441 

mitochondrial electron chain transport, glucose metabolic process and generation of precursor 442 

metabolites and energy as significant pathways for RFI. 443 
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In the study from Horodyska et al [17], they used 16 pigs, but included 8 pigs of each gender. They 444 

used an uncorrected p-value of 0.01 as their threshold,, with no consideration weather this is 445 

appropriate given their overall data distribution. They report 272 genes with p-value < 0.01, which is 446 

similar to ours of 243, however we have included less genes in our analysis (14497 vs 10563). 447 

Overall, we cannot assess their results as very significant.  448 

 In Vincent et al [20], they had 16 female Large Whites from divergent RFI lines, their study was 449 

microarray based, but they reported their results based on uncorrected p-values in both expression 450 

and proteomics.  They do however report finding mitochondrial related probes being significant.  451 

Finally, in Jing et al [19], they had a total sample size of only 6 Yorkshire pigs, based on the 452 

selection of the most extreme RFI pigs in a set of 236. They reported 645 DE genes, with 99 with 453 

FDR lower than 0.05. However, selecting such few samples at the extreme end of FE does raise the 454 

question of replication, as the large differences in RFI/FCR they achieved could easily be caused by 455 

factors that are not generally applicable. They found that the most significant pathways in their data 456 

were mitochondrial activity, glycolysis and myogenesis pathways. Despite the issues presented with 457 

the studies, it is notable that mitochondria are reported to be related to FE multiple times. 458 

In our study, we have the highest number of samples reported (41) and we include two breeds, which 459 

do not have directly divergent selection for FCR,  but with one of the breeds  more positively 460 

selected for FCR. Having this setup does present advantages and disadvantages. The advantage in 461 

relation to the other studies it that the results may generalize better across breeds. The disadvantage is 462 

that we may be fitting breed effects instead of phenotypic effects, but we do account for breed in all 463 

our analysis. The other main difference is that we have selected pigs with a range of FCR values, and 464 

fit FCR as a continuous value. In general fitting a continuous value is more informative, and the fact 465 

that we have a range of pigs that are not divergently selected, may make the results more applicable 466 

to a real life setting. In pig production there is no low FE selected line to contrast with, so the 467 

biological background of FE in a normal breeding population may be more relevant and interesting.  468 

Another general issue is how to deal with statistical issues in analysis of FE. From the various studies 469 

presented above it is clear that FE is a somewhat subtle phenotype in muscle tissue, and thus a lot of 470 

data is needed make conclusions. Here we try to tackle this issue by not being overly conservative, 471 

but still applying multiple testing correction by using and FDR of 0.1 level for individual results in 472 
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our DE analysis. Furthermore, we generally try to analyze our data by either taking the overall 473 

distribution of results and/or combing genes in groups, to avoid relying on individual weak results. 474 

Differential Expression analysis and Pathway Enrichment 475 

We have analyzed the transcriptomic differences and molecular pathways involved in differences in 476 

FCR in two different breeds.  Based on DE, we identified 14 genes with an FDR value below 0.1. 477 

The highlights here were the finding of mitochondrial genes, and TRIM64, which related to exercise 478 

induced muscle damage. 479 

Due to the limited results in the DE analysis, we chose to use a novel approach to perform a pathway 480 

enrichment analysis. In practice, we wanted to broaden the number of genes for the pathway analysis, 481 

but at the same time also select a robust and meaningful set of genes. To make the analysis more 482 

robust, we choose to base the pathway analysis on results from 3 DE expression methods. 483 

Furthermore, we elected to select genes based on the overall divergence from the null hypothesis of 484 

our p-value distribution, as this should represent a set of genes that is likely to be associated with our 485 

trait, even the genes are not significant based on individual FDR corrected p-values . To our 486 

knowledge, this is a novel way of selecting a group of genes, which we called the divergent count. 487 

Looking at the enriched pathways in our dataset selected based on the divergent counts, we find 488 

results that are common in the literature in several species beyond the pig studies already 489 

mentioned(Connor, Kahl et al. 2010, Bottje, Lassiter et al. 2017), namely differences in 490 

mitochondrial pathways related to FE, summarized as mitochondrial translation elongation in our 491 

Revigo summary.  While this is not a novel result, we did find it in a novel setting, with larger 492 

sample size, novel population selection and using a continuous value for FCR. This acts as further 493 

evidence to the link of mitochondrial activity and FE, but also as evidence that it may be relevant in 494 

real breeding populations, and not only in divergently selected test populations.  495 

Gene Expression Interaction 496 

 Our gene expression interaction analysis is a novel way of finding the most important genes, which 497 

has not been applied to FE in pigs before. Based on the qualitative analysis of the top 20 genes, the 498 

results seem promising. We found several transcription factors, including the most divergent gene 499 

(ELF1), which makes sense in regards to gene interaction. The remaining genes also seemed 500 

promising, as they included categories one can expect to be related to muscle growth and FCR, such 501 
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as lipid metabolism and muscle atrophy. Confirming previous results, we also identified two 502 

mitochondrial genes among the top 20.   503 

Gene Network Analysis 504 

Our gene network analysis revealed two modules with a correlation > 0.4 with FCR. Based on the 505 

GO term analysis enrichment of the red module, we find many enriched GO terms related to 506 

mitochondrial processes, confirming our finding in the other analysis, and from other studies. More 507 

specifically, the negative correlation between the red module eigenvalue and FCR also shows that 508 

higher mitochondrial activity is positively associated with higher efficiency. Based on the top ten hub 509 

genes in the red module we confirm this picture, as all ten genes are related to mitochondria, and 510 

seven of them are from the NDUF family, which was also found in the gene expression interaction 511 

analysis.  The turquoise module was the most correlated module(0.49), and furthermore, it was more 512 

correlated to FCR than to our other traits. Based on the GO term analysis, we found that the cluster 513 

was highly enriched for genes related to DNA repair, which included GO terms relate to RNA, DNA, 514 

animo acid and nucleic acid metabolism and processing. To the best of our knowledge, this is the 515 

first evidence of these processes being related to FE in general. The only previous link to DNA repair 516 

in livestock was a feed restriction study of cattle(Connor, Kahl et al. 2010). The top ten hub genes of 517 

this module did not show a clear picture, with the genes involved in a wide range of processes related 518 

to general cell maintenance. This indicates that the turquoise module represents general housekeeping 519 

functions, rather than very specific pathways. As the module eigenvalue was positively correlated 520 

with FCR, we can speculate that more active DNA repair and maintenance processes represent higher 521 

maintenance costs, thus reducing efficiency.  522 

 523 

Human Exercise  524 

We have established earlier that the gene expression and molecular background of FE is still 525 

somewhat elusive. To try and identify what overall mechanisms could be at play, we hypothesized 526 

that differences between our two breeds, which have different overall FE, and genes related to FCR, 527 

are more likely to be important for processes involved in exercise. The reason we had this hypothesis, 528 

is that the pigs are selected for lean growth, and it is possible that this growth stimulus is similar to 529 

the effects induced in muscle by exercise. We found a slight confirmation of this hypothesis, as we 530 

found similar favorable odds ratio for our hypothesis in all 3 datasets we tested for both FCR and our 531 
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breed genes. Our pathway enrichment analysis for FCR did not yield any very significant results, as it 532 

was only based on 42 genes. The main overall category identified, based on 4 go terms, was 533 

regulation of transcription from RNA polymerase II (pol II) promoters. Interestingly, Actin has been 534 

associated with the pre-initiation complex necessary for transcription by RNA polymerase 535 

II(Hofmann, Stojiljkovic et al. 2004), which could be relevant given the importance of actin in 536 

muscle tissue(Tang 2015). There are also links between a poll II subunit and myogenesis (CORBI, 537 

PADOVA et al. 2002). Although these results may be relevant, our data here is too weak for solid 538 

conclusions.  539 

In regards to the genes overlapping between exercise and breed differences, the results are more 540 

statistically robust, as they are based on an overall larger gene set of 702 genes. Here we find two 541 

overall groups – cellular metal ion homeostasis and anatomical structure development. For the first 542 

term, we know that the transport of ions is generically vital to muscle function (Wolitzky and 543 

Fambrough 1986, Mohr, Krustrup et al. 2007). The second overall term, anatomical structure 544 

development, is very generic in terms of function, and includes sub-categories that are related to 545 

muscle development, such as muscle structure development.  546 

Overall, the results from the Human data analysis represent a novel hypothesis, but requires more 547 

analysis and new experiments on pigs to strengthen the link between FE and exercise. One interesting 548 

aspect of this analysis is that in theory pigs could be used as a model for lean growth in sedentary 549 

conditions, which in the long run could yield interesting therapeutic possibilities applicable to 550 

humans. 551 

Conclusion 552 

We have analyzed the muscle transcriptome from Duroc and Landrace,   twp of the main purebred 553 

breeding pigs in Denmark. In contrast to previous studies, we did not use any lines divergently 554 

selected for FE, and we included a wider range of FE values, which were modelled as a continuous 555 

trait, using the highest number of pigs in a study of this type. We identified several individual genes 556 

based on DE analysis and gene-gene interaction analysis that are involved in FCR, with many of 557 

them having relevant functional backgrounds from previous studies. We applied a novel strategy to 558 

select genes for pathway enrichment, the divergent count. Based on enrichment analysis, gene-gene 559 

interaction, network analysis and DE we found several interesting candidate biomarkers genes and 560 

pathways. We reinforced the knowledge that mitochondrial activity is important FCR, but using a 561 
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non-divergently FE selected pig population. Based on the findings, we postulate that mitochondrial 562 

genes, and in particular genes from NDUF group or MRPS11 could be used as potential biomarkers 563 

for FCR in pigs. Furthermore, all our top genes from our interaction analysis also show promise as 564 

potential FCR biomarkers. Finally, we find that there is a putative link between genes involved in 565 

exercise related changes in human, and FE in pigs 566 
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 760 

 761 

 762 

Gene Name Breed FDR Regulation 

PNCK Landrace 0.0007 Down 

Patr-A Landrace 0.08 Down 

MTMR11 Duroc 0.07 Up 

C3 Duroc 0.02 Down 

LCP1 Duroc 0.02 Up 

TRIM63 Duroc 0.08 Down 

KLHL30 Duroc 0.07 Down 

NANOS1 Duroc 0.08 Up 

IGHM Duroc 0.07 Up 

ETV5 Duroc 0.02 Down 

MTFR1 Both 0.068 Down 

MGAT4A Both 0.098 Down 

SLC38A2 Both 0.098 Up 

MRPS11 Both 0.067 Up 

Table 1 – Overview of genes with a FDR value < 0.1 in all 3 differential expression analysis. There 763 

is only a limited amount of genes differentially expressed at 0.1 FDR level for FE. Notably, out of 4 764 

genes in the common breed analysis there are two genes with mitochondrial related Gene Ontologies 765 

- MRPS11, MTRM1. MTFR1 has been implicated in eating quality (measures of meat quality post 766 

cooking) in cattle(Jiang, Michal et al. 2009) and as a meat PH QTL in pig(Chung, Lee et al. 2015). 767 

Also interesting to note that TRIM63 has been suggested as a biomarker for difference in response to 768 

exercise-induced muscle damage(Baumert, G-REX Consortium et al. 2018), KLHL30 has been 769 

associated with intramuscular fat and muscle metabolism in Nelore Cattle(Dos Santos Silva, 770 

Fonseca et al. 2019). MGAT4A has been linked to diabetes and glucose transport (Ohtsubo, 771 

Takamatsu et al. 2005).   772 

Trait EdgeR Limma Deseq2 
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FCR 4 0 0 

Breed 3633 3679 3428 

RIN 5572 5763 5779 

Age 503 189 328 

 773 

Table 2 – Over view over the number of genes with FDR < 0.1 in the common breed analysis for all 3 774 

methods and each covariate. In general, we have modest amount of DE genes for FE, while our other 775 

covariates have a  amny significant genes associated with them.  776 

Data P-value Breed Odds ratio 

Breed 

P-value FCR Odds ratio 

FCR 

Dataset 1 0.0017 0.79 0,0046 0.71 

Dataset 2 0.0012 0.85 0.22 0.9 

Dataset 3 0.12 0.84 0.47 0.88 

 777 

Table 3 – Results of Fisher exact test comparing the number of  genes significant for difference in 778 

rested and exercised muscle in divergent count genes for genes found in the divergent count for FCR 779 
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and breed and the background for each of the 3 human data sets( dataset 1 (Devarshi, Jones et al. 780 

2018),dataset 2 (Murton, Billeter et al. 2014) and dataset 3 (Popov, Makhnovskii et al. 2019)). 781 

 782 

Figures 783 

784 
Figure 1 Visualization of the two first principle components in the expression data, with DD being 785 

Duroc and LL being Landrace.There is not a clear separation between breeds based on the overall 786 

expression, giving credence to a joint breed analysis of the data.  787 
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Figure 2 Visualization of the distribution of the p-values testing the relation between FCR and gene 789 

expression for all three analysis methods. It is clear in all cases that we observe an anti-conservative 790 

distribution, that is, there is an overweight of low p-values.  791 

 792 
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Figure 3 Schematic representation of the divergent counts. Here we see to theoretical p-value 793 

distributions, one which is uniform (in red) and one which is anti-conservative (blue). The purple 794 

area is where they overlap, and the blue area is the area used to estimate the divergent counts.  795 

  796 

Figure 4 Venn diagram of the overlap in the divergent counts between the three methods. We see 797 

here that the Limma is overall less conservative than the two other methods, but in general, the 798 
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methods are in high agreement with each other. The final set of genes selected for the enrichment 799 

analysis was the 853 triple overlapping set.   800 

 801 

Figure 5 Summarized representation of significant GO- for the genes set generated from the 802 

divergent count (853 total genes) overlap based from the DE analysis of FCR. The size of the boxes 803 
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is scaled according to the -log10 of the p-value.  The most significant individual terms are all in the 804 

translation, indicating a link between mitochondrial activity and FE.  805 

 806 
 807 

Figure 6 (a) Dendrogram over the module clustering. Looking at the visual clustering not all the 808 

modules look equally well defined, but it should be noted that the actual relations in given module 809 

cannot be simplified to two dimensions, as the all the relations between the genes exist in N 810 

dimentional space, where N is the number of genes. (b) Correlation between module eigenvalue and 811 

our traits, including RIN. We see here that the correlation to RIN is essentially 0 in all cases, 812 

indicating our linear correction method has worked well. Based on the top two modules (c) 813 

Summarized representation of significant GO- for genes in the red module of the WGCNA network 814 

analysis. The three largets groups are all associated with mitochondria, mirroring the results found in 815 

the differential expression analysis and the gene interaction analysis. (b) Summarized representation 816 

of significant GO- for genes in the turquoise module of the WGCNA network analysis. The main 817 

grouping here is DNA repair, which is not found in our other analysis. This may represent that 818 

increased energy expenditure on maintenance processes is reducing FE.   819 
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 821 

Figure 7 (a) Summarized representation of significant GO- for genes significantly associated with 822 

exercise in one of the three human dataset and between the breeds, based on a total of 702 genes. The 823 

size of the boxes is scaled according to the -log10 of the p-value. Here we find two overall main 824 

categories, cellular metal ion homeostasis and anatomical structure development. (b) Summarized 825 

representation of significant GO- for genes significantly associated with exercise in one of the three 826 

human dataset and in our divergent set for FCR. The size of the boxes is scaled according to the -827 

log10 of the p-value. Here the main process is regulation of transcription from RNA polymerase. 828 

Overall, the categories are not very significant here as it is only based on 42 genes.  829 
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