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FIG. 8. Contributions of different sources of noise in the HVC synfire chain model to the interval duration covariance matrix
(model modified from Long et al. [32]). (a) Interval duration covariance matrix for the full model. (b) Interval duration
covariance matrix with chain noise only. (c) Difference between covariance matrix with chain noise and fatigue and that with
chain noise only. (d) Difference between covariance matrix with readout and chain noise and that with chain noise only.

syllable �í3

3
local component

co
va

ria
nc

e 
(m

s2 )

sy
lla

bl
e

global component jitter component

�í2

2

�í1

1

�í1

1
(a) (b) (c)

0

(d)

co
va

ria
nc

e 
(m

s2 )

co
va

ria
nc

e 
(m

s2 )

co
va

ria
nc

e 
(m

s2 )

0 0 0= + +

FIG. 9. Factor decomposition of the interval duration covariance matrix of the HVC synfire chain model (model modified from
Long et al. [32]). (a) Full model covariance matrix. (b-d) The covariance matrices of the latent factors resulting from applying
the analysis method of [35] to the full model shown in (a).
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FIG. 10. Scaling of the local, global, and jitter components of
syllable timing variability with interval duration in zebra finch
song (data from Glaze and Troyer [35]). Glaze and Troyer
[35] recorded songs of zebra finches, which are composed of
a stereotyped sequence of syllables and gaps, a different se-
quence for each bird. After identifying syllables and gaps,
and their durations in each song, they fitted the generative
model described in Section II C to this dataset, separately for
each bird. Reported data in the figure is extracted from their
Figure 3. Each data point represents a syllable-bird pair. As
in Figure 6, we fit the relationships between interval duration
and the local and global components of variability with power
laws, yielding exponents of 0.53 and 1.14, respectively. No fit
is shown for the jitter component, as it is not significantly
correlated with interval duration.

be actively regulated through involving lateral magno-
cellular nucleus of the anterior neopallium (LMAN) [52].
Indeed Ali et al. [15] observed that LMAN lesions lead to
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FIG. 11. Scaling of the local, global, and jitter components of
interval duration variability in the HVC synfire chain model
(model modified from Long et al. [32]). As in Figure 6, we
fit the relationships between interval duration and the local
and global components of variability with power laws, yielding
exponents of 0.42 and 1.03, respectively. No fit is shown for
the jitter component, as it is not significantly correlated with
interval duration.

a reduction in the local component of song timing vari-
ability, which was speculated to be mediated by indirect
LMAN input to HVC [53]. Another possible source of
variability is sensory inference errors [5]. HVC receives
feedback auditory input through the nucleus interfacialis
of the nidopallium [54], and altered auditory feedback can
lead to temporal changes in the song [55]. In the HVC
synfire chain model [32], noise was introduced as exci-
tatory and inhibitory independent Poisson spike trains,
with no specific reference to where such trains may come
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from and how could they be regulated. Third, the song
production pathway goes from HVC to RA, and then
from RA to the tracheosyringeal part of the hypoglossal
nerve (nXIIts), which then controls muscular contrac-
tions of the syrinx. Neural variability in all these areas
as well as variability in muscular contractions contribute
to temporal variability of the song. In our model, all of
this pathway’s contributions to temporal variability are
incorporated into the noise injected to a readout neuron,
which in turn contributes mostly to temporal jitter. It
is very possible that other components of variability are
affected by the downstream activity. Finally, a notion
of tempo variation that we did not consider arises from
structural changes to the chain, such as homeostatic and
synaptic plasticity [15, 46, 47], or experimental pertur-
bations [14]. In birdsong, these mechanisms can lead
to tempo changes on the order of tens of milliseconds
[14, 15, 46, 47], and, when naturally occurring, require
thousands of song repetitions to take effect [15].
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Appendix A: Asymptotics for the chain of
integrate-and-fire neurons

1. Stationary membrane potential distribution in
the low-rate limit

Here, we review the approximate firing rate and sta-
tionary membrane potential distribution in the low-rate
limit Vth − I0 � σ [36]. Inspecting the equation

ν =
1

τ
√
π

[∫ Vth−I0
σ

Vr−I0
σ

du eu
2

(1 + erf(u))

]−1
, (A1)

we can see that the integral is dominated by the upper
limit due to the exponential. Making the change of vari-
ables u′ ≡ u/h, h ≡ (Vth−I0)/σ, v ≡ (V0−I0)/(Vth−I0),

we have

ν =
σ

τ
√
π (Vth − I0)

[∫ 1

v

du eh
2u2

(1 + erf(hu))

]−1
≈ σ

2τ
√
π (Vth − I0)

[∫ 1

v

du eh
2u2

]−1

≈ σ

2τ
√
π (Vth − I0)

 eh2u2

2uh2

∣∣∣∣∣
1

v

−1

≈ Vth − I0
στ
√
π

exp

(
− (Vth − I0)2

σ2

)
. (A2)

where we integrated by parts in the third line. By a sim-
ilar argument, we can approximate the stationary distri-
bution of the membrane potential as∫ Vth−I0

σ

V−I0
σ

duΘ

(
u− V0 − I0

σ

)
eu

2

≈ 1

2ντ
√
π
, (A3)

in this limit.

2. Moments of the first-spike-interval in the
low-rate stationary limit

To derive the moments of the first-spike-interval in
the low-rate stationary approximation, we start with the
standard results (given as (6) and (7) in the main text)
for the mean and variance conditioned on V0 [36, 37]:

〈Tfs〉V0 =
√
πτ

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dy ey

2

[1 + erf(y)] (A4)

and

〈δT 2
fs〉V0 = 2πτ2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dx ex

2

×
∫ 0

−∞
dy e(x+y)

2

[1 + erf(x+ y)]
2
. (A5)

Considering the mean first-spike-interval, we use the in-
tegral representation of the error function as

1 + erf(x) =
2√
π

∫ 0

−∞
du e−(u+x)

2

(A6)

to write

〈Tfs〉V0
τ

= 2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dy ey

2

∫ 0

−∞
du e−(u+y)

2

=

∫ 0

−∞

du

u
e−u

2

×
[
e2u(I0+Is−V0)/σ − e2u(I0+Is−Vth)/σ

]
,

(A7)
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where we note the cancellation in the bracketed integrand
that ensures that it does not diverge as u→ 0−. We can
then easily compute the expectation over the approxi-
mate distribution (5) of V0 to obtain

〈Tfs〉
τ

=

∫ 0

−∞

du

u
e−u

2
[
eu

2+2Isu/σ − e2u(I0+Is−Vth)/σ
]
,

(A8)

which, though it does not have a simple closed-form solu-
tion, is the integral of a bounded entire function that de-
cays exponentially fast at infinity (provided that Is > 0),
and is therefore well-behaved.

To obtain a similar integral expression for the variance
of the first-spike-interval, we recall the law of total vari-
ance

〈δT 2
fs〉 = 〈〈δT 2

fs〉V0 〉+ 〈δ〈Tfs〉2V0 〉, (A9)

where the outer angle brackets denote averaging over the
distribution of V0, and follow the same procedure that
we used to derive 〈Tfs〉 to obtain

〈〈δT 2
fs〉V0 〉
τ2

= 4

∫ 0

−∞
du

∫ 0

−∞
dv

∫ 0

−∞
dw

e−(u+v+w)2+2uv

u+ v + w

×
[
e(u+v+w)2+2(u+v+w)Is/σ − e2(u+v+w)(I0+Is−Vth)/σ

]
,

(A10)

and

〈δ〈Tfs〉2V0 〉
τ2

=

∫ 0

−∞

du

u

∫ 0

−∞

dv

v
e−u

2−v2

×
[
e(u+v)

2+2Is(u+v)/σ − eu
2+v2+2Is(u+v)/σ

]
.

(A11)

With these integral expressions in hand, we can now
derive asymptotic expansions for the moments. For
brevity, we define the dimensionless scalars α ≡ (I0 +
Is − Vth)/σ and β ≡ (Vth − I0)/σ; we will work in the
limit of low baseline firing rates β � 1 and large synaptic
inputs α � 1. Rescaling u by 2α in (A8), we can write
the mean first-spike-interval as

〈Tfs〉
τ

=

∫ 0

−∞

du

u
eu
[
e(β/α)u − e−u

2/4α2
]

= log

(
α+ β

α

)
−
∫ 0

−∞

du

u
eu
[
e−u

2/4α2

− 1
]
,

(A12)

where we have split the integral into two pieces by adding
and subtracting one from the integrand and evaluated the
first of the remaining integrals. Expanding the remaining
integrand other than the overall exponential weight eu

as a power series and integrating term-by-term using the
relationship of the integrand to the gamma function [56],

we obtain the divergent asymptotic series

〈Tfs〉
τ
∼ log

(
α+ β

α

)
+
∞∑
k=1

(−1)k(2k − 1)!

4kk!α2k

∼ log

(
α+ β

α

)
− 1

4α2
+O

(
α−4

)
, (A13)

which yields the lowest-order approximation given in the
main text.

We now consider 〈δT 2
fs〉. Converting the integral over

the negative octant in (A10) to an integral over the
positive octant, making the change of variables x ≡ u,
y ≡ v + w, z ≡ w, and parameterizing the domain of
integration such that we integrate first over z ∈ [0, y], we
have

〈〈δT 2
fs〉V0 〉
τ2

= 2

∫ ∞
0

dx

∫ ∞
0

dy
e−2α(x+y)

x(x+ y)

[
e2xy − 1

]
×
[
e−(x+y)

2

− e−2β(x+y)
]
.

(A14)

Then, adding the expression for 〈δ〈Tfs〉2V0 〉 given in (A11)

to the above expression for 〈〈δT 2
fs〉V0 〉 as prescribed by

the law of total variance (A9), we have

〈δT 2
fs〉
τ2

=

∫ ∞
0

dx

∫ ∞
0

dy e−2α(x+y)
[
e2xy − 1

]
×

[
2e−(x+y)

2

x(x+ y)
+

1

xy

(
x− y
x+ y

)
e−2β(x+y)

]
.

(A15)

As it is anti-symmetric about the line y = x, the sec-
ond term in the bracketed integrand will vanish under
integration over the positive quadrant, leaving

〈δT 2
fs〉
τ2

= 2

∫ ∞
0

dx

∫ ∞
0

dy
e−(x+y)

2−2α(x+y)

x(x+ y)

[
e2xy − 1

]
.

(A16)

Rescaling x and y by 2α and making the change of vari-
ables u ≡ x+ y, v ≡ x, we have

〈δT 2
fs〉
τ2

= 2

∫ ∞
0

du

u

∫ u

0

dv

v
e−u

2/4α2−u
[
ev(u−v)/2α

2

− 1
]
.

(A17)

Expanding the bracketed portion of the integrand as a
power series and observing that∫ u

0

dv vk(u− v)k+1 =
k!(k + 1)!

(2k + 2)!
u2k+2, (A18)

we have, integrating over u term-by-term,

〈δT 2
fs〉
τ2

=

∞∑
k=0

k!

2k(2k + 2)!α2k+2

∫ ∞
0

du e−u
2/4α2−uu2k+1.

(A19)
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To allow us to apply standard asymptotic results to the
remaining integral, we note that it is related to Tri-
comi’s confluent hypergeometric function U(a, b, z) as
α2k+2(2k + 1)!U(k + 1, 1/2, α2) [56], hence, shifting in-
dices for convenience, we can write

〈δT 2
fs〉
τ2

∼
∞∑
k=1

(k − 1)!

2kk
U

(
k,

1

2
, α2

)
. (A20)

Using the standard result that

U(a, b, z) ∼ z−a
[
1− a(a− b+ 1)

z

+
a(a+ 1)(a− b+ 2)(a− b+ 1)

2z2

+O(z−3)
]
, (A21)

for |z| � 1 [56], we have

〈δT 2
fs〉
τ2

∼ 1

2α2
− 1

8α4
+O(α−6), (A22)

which yields the lowest-order approximation given in the
main text.

To obtain the asymptotic approximations for the tim-
ing variability in the simple model for neural fatigue given
in the main text (10, 11, 12), we start from the asymp-
totic expansions without fatigue (8, 9), and apply the
laws of total expectation and total variance given the
assumed distribution of the parameter m. We then ex-
pand the resulting expressions about the baseline spiking
threshold Vth to lowest order in δVth/(Is + I0 − Vth), as-
suming that mmax δVth � Is + I0 − Vth, yielding the
asymptotic approximations (10) and (11).

3. Moments of the first-spike-interval in a
delta-function approximation

In the previous appendix and in the main text, we con-
sidered the approximation of the distribution of initial
membrane potentials by the stationary Gaussian limit
(5). In this appendix, we consider a delta-function ap-
proximation P (V0) ≈ δ(V0 − 〈V0〉). This approximation
maps directly to the standard treatment of leaky IF neu-
rons with the appropriate replacement of Vr by I0. Here,
we review the derivation of the corresponding asymptotic
results [37, 38]. In the limit Vth − I0 � σ of low firing
rates, we have 〈V0〉 = I0, hence we fix V0 = I0 in this ap-
proximation. Considering the mean first-spike-interval,
we again start from the standard expression (6) with V0
set to I0, and rescale σy 7→ y, yielding

〈Tfs〉
τ

=

√
π

σ

∫ Vth−I0−Is

−Is
dy ey

2/σ2
(

1 + erf
( y
σ

))
.

(A23)

In the limit Is + I0 − Vth � σ of large synaptic inputs,
the quantity y in the above integrand is always negative,

and we have y/σ � −1. Using the asymptotic expansion
of the error function for x� −1 [56],

erf(x) ∼ −1 +
e−x

2

√
π|x|

(
1− 1

2x2
+ . . .

)
, (A24)

we obtain

〈Tfs〉
τ
∼ log

(
Is

Is + I0 − Vth

)
− σ2

4

(
1

(Is + I0 − Vth)2
− 1

I2s

)
(A25)

to lowest order. Similarly, for the variance of the first-
spike-interval, we start with the standard expression (7)
with V0 = I0. Again rescaling the variables of integration
by σ and using the asymptotic form of the error function,
we obtain the lowest-order approximation

〈δT 2
fs〉
τ2

∼ σ2

2

(
1

(Vth − Is − I0)2
− 1

I2s

)
. (A26)

Comparing these expressions to the corresponding re-
sults (8, 9) in the approximation of the initial membrane
potential distribution by the stationary Gaussian dis-
tribution (5), we observe that they are identical up to
the presence of the −I−2s terms in the lowest-order ap-
proximations. The presence of these terms in the delta-
function approximation means that the variability de-
creases more rapidly with increasing synaptic strength
and increases less rapidly with increasing noise variance
σ2 than in the Gaussian approximation.

Appendix B: Details of the HVC synfire chain model

In this appendix, we provide a detailed description of
the HVC synfire chain model from Long et al. [32]. This
model consists of a chain of 70 sequentially-connected
pools of 30 HVCRA neurons, along with a popula-
tion of 300 HVCI inhibitory interneurons. A given
HVCRA neuron connects to an HVCRA neuron in the
next pool with probability P and an excitatory synap-
tic conductance drawn from the uniform distribution on
[0, gEEmax/(30P )] mS cm-2, where gEEmax is a dimension-
less parameter. An HVCRA neuron connects to an HVCI

neuron with probability 0.05 and excitatory synaptic con-
ductance drawn uniformly from [0, 0.5] mS cm-2. Finally,
an HVCI neuron connects to an HVCRA neuron with
probability 0.1 and an inhibitory synaptic conductance
drawn uniformly from [0, 0.2] mS cm-2. Long et al. [32]
chose these parameter values such that successful spike
propagation was possible for many values of gEEmax.

1. HVCRA dynamics

In the Long et al. [32] model, HVCRA neurons are mod-
eled as two-compartment bursting neurons. The somatic
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compartment contains leak, Na+, and delay-rectified K+
conductances, while the dendritic compartment contains
leak, high-threshold Ca++, and calcium-activated K+
conductances. This model can generate dendritic cal-
cium spikes, which evoke stereotyped bursts of sodium
spikes in the soma. The membrane potentials Vs and
Vd of the somatic and dendritic compartments obey the
dynamics

CmAsV̇s = As (Is,L + Is,Na + Is,Kdr + Is,exc + Is,inh)

+ Is,ext +
Vd − Vs
Rc

CmAdV̇d = Ad (Id,L + Id,Ca + Id,CaK + Id,exc + Id,inh)

+ Id,ext +
Vs − Vd
Rc

; (B1)

we enumerate the definitions and values of all parameters
in Table I. The dynamics of the injected currents Is,ext
and Id,ext are freely chosen, while the remaining currents
are given as

Is,L = −GL(Vs − EL)

Is,Na = −GNam
3
∞h(Vs − ENa)

Is,Kdr = −GKdrn
4(Vs − EK)

Is,exc = −gs,exc(t)Vs
Is,inh = −gs,inh(t)(Vs − EI)

Id,L = −GL(Vd − EL)

Id,Ca = −GCar
2(Vd − ECa)

Id,CaK = −GCaK
c

1 + 6[Ca]−1
(Vd − EK)

Id,exc = −gd,exc(t)Vd
Id,inh = −gd,inh(t)(Vd − EI), (B2)

where gs,exc, gs,inh, gd,exc, and gd,inh are the total synap-
tic conductances of the soma and dendrite. The gating
variable m(t) = m∞(Vs) is an instantaneous function of
Vs, while h, n, r, c all evolve according to the dynamics

τxẋ = x∞ − x (B3)

for x ∈ {h, n, r, c}, where the activation functions are
given as

m∞(Vs) = 1/ (1 + exp[−(Vs + 30)/9.5]) (B4)

h∞(Vs) = 1/ (1 + exp[(Vs + 45)/7]) (B5)

n∞(Vs) = 1/ (1 + exp[−(Vs + 35)/10]) (B6)

r∞(Vd) = 1/ (1 + exp[−(Vd + 5)/10]) (B7)

c∞(Vd) = 1/ (1 + exp[−(Vd − 10)/7]) , (B8)

and the time constants are given as

τh = 0.1 + 0.75/ (1 + exp[(Vs + 40.5)/6])

τn = 0.1 + 0.5/ (1 + exp[(Vs + 27)/15])

τr = 1

τc = 10; (B9)

Name Description Value
As area of somatic compartment 5000µm2

Ad area of dendritic compartment 10000µm2

Cm membrane capacitance 1µF/cm2

Rc compartment coupling resistance 55 MΩ
GL leak conductance 0.1 mS/cm2

GNa Na+ conductance 60 mS/cm2

GKdr delay-rectified K+ conductance 8 mS/cm2

GCa high-threshold Ca++ conductance 55 mS/cm2

GCaK Ca-dependent K+ conductance 150 mS/cm2

EL leak reversal potential −90 mV
ENa Na+ reversal potential 55 mV
EK K+ reversal potential −90 mV
ECa Ca++ reversal potential 120 mV
EI inhibitory reversal potential −80 mV

TABLE I. HVCRA model parameters

the units of all constants are implied. Finally, the calcium
concentration [Ca] evolves as

˙[Ca] = 0.1Id,Ca − 0.02[Ca]. (B10)

Synaptic conductances follow “kick-and-decay” kinetics:
g 7→ g + G when a spike arrives at a synapse with con-
ductance G; τ ġ = −g between spikes, for g ∈ {gexc, ginh}.
The synaptic time constants τexc and τinh are both fixed
to 5 ms.

2. HVCI dynamics

In the Long et al. [32] model, HVCI neurons are
modeled as single-compartment neurons containing leak,
Na+, delay-rectified K+, and high-threshold K+ conduc-
tances. The membrane potential V obeys the dynamics

CmV̇ = IL + INa + IKdr + IKHT + Iexc + Iinh; (B11)

the values of all parameters are given in Table II. The
currents are given as

IL = −GL(V − EL)

INa = −GNam
3h(V − ENa)

IKdr = −GKdrn
4(V − EK)

IKHT = −GKHTw(V − EK)

Iexc = −gexc(t)V
Iinh = −ginh(t)(V − EI) (B12)

for total excitatory and inhibitory synaptic conductances
gexc and ginh. The gating variables m, h, and n evolve
according to the dynamics

ẋ = αx(1− x)− βxx, (B13)
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Name Description Value
Cm membrane capacitance 1µF/cm2

GL leak conductance 0.1 mS/cm2

GNa Na+ conductance 100 mS/cm2

GKdr delay-rectified K+ conductance 20 mS/cm2

GKHT high-threshold K+ conductance 500 mS/cm2

EL leak reversal potential −65 mV
ENa Na+ reversal potential 55 mV
EK K+ reversal potential −80 mV
EI inhibitory reversal potential −75 mV

TABLE II. HVCI model parameters

for x ∈ {m,h, n}, where

αm = (V + 22)/(1− exp[−(V + 22)/10])

αh = 0.7 exp[−(V + 34)/20]

αn = 0.15(V + 15)/(1− exp[−(V + 15)/10])

βm = 40 exp[−(V + 47)/18]

βh = 10/(1 + exp[−(V + 4)/10])

βn = 0.2 exp[−(V + 25)/80], (B14)

with implied units throughout. The gating variable obeys

ẇ = w∞ − w, (B15)

where

w∞ = 1/(1 + exp[−V/5]). (B16)

The excitatory and inhibitory conductances obey the
same dynamics as for HVCRA neurons, except for the
fact that the excitatory time constant τexc is set to 2 ms.

3. Noise spike trains

The Long et al. [32] model introduces noise into the
neurons via independent Poisson spike trains. Each
HVCRA neuron receives excitatory and inhibitory spike
trains at both compartments, each generated from a ho-
mogeneous Poisson process with a rate of 100 Hz. The
conductances of each spike are drawn independently in
time from a uniform distribution on [0, 0.035] mS/cm2 for
the somatic compartment and [0, 0.045] mS/cm2 for the
dendritic compartment. Each HVCI neuron also receives
excitatory and inhibitory noise spike trains, generated
from 250 Hz Poisson processes with conductances drawn
uniformly from [0, 0.45] mS/cm2. With this noise model,
the RMS fluctuation in the membrane voltage of each
compartment of each HVCRA neuron is about 3 mV, and
the HVCI neurons spike spontaneously at about 10 Hz.
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