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Abstract 

Identification of as of yet unannotated or undefined novel open reading frames (nORFs) and              

exploration of their functions in multiple organisms has revealed that vast regions of the              

genome have remained unexplored or ‘hidden’. Present within both protein-coding and           

noncoding regions, these nORFs signify the presence of a much more diverse proteome than              

previously expected. Given the need to study nORFs further, proper identification strategies            

must be in place, especially because they cannot be identified using conventional gene             

signatures. Although Ribo-Seq and proteogenomics are frequently used to identify and           

investigate nORFs, in this study, we propose a workflow for identifying nORF containing             

transcripts using our precompiled database of nORFs with translational evidence, using           

sample transcript information. Further, we discuss the potential uses of this identification, the             

caveats involved in such a transcript identification and finally present a few representative             

results from our analysis of naive mouse B and T cells, human post-mortem brain and cichlid                

fish transcriptome. Our proposed workflow can identify noncoding transcripts that can           

potentially translate intronic, intergenic and several other classes of nORFs.  

 

 ​One-line summary: ​A systematic workflow to identify nORF containing transcripts using          

sample transcript information. 

 

 ​Keywords: ​Novel open reading frames, nORFs, noncoding, proteogenomic, transcript        

assembly, GffCompare 

 

 

 

2 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.21.001883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001883


Introduction 

Broad segregation of the human genome into protein-coding and noncoding is dependent on             

evidence of translation from Open Reading Frames (ORFs) within these regions. Current            

annotated canonical ORFs consist of exons and introns bound by UTRs on either side. During               

the processing of pre-mRNAs into mRNAs, the introns are spliced out, leaving only the              

exons to be translated by cellular ribosomes. Noncoding regions on the other hand were              

initially termed “junk DNA”, but recent evidence has shown their ability to both transcribe              

and translate, ​1–4​. Additionally, several other novel transcripts and their functionality within            

the genome has been established ​5​. Moreover, contrary to the one gene-one protein             

hypothesis, multiple ORFs within known genes that can encode protein-products have been            

identified ​6,7​. Therefore, multiple translations from protein-coding and noncoding regions          

highlights that the human proteome is much more diverse than what is currently known and               

we call this separate and undefined class of open reading frames as novel open reading               

frames (nORFs).  

 

Canonical ORFs code for the main protein from a protein-coding transcript whereas nORFs             

are as of yet unannotated and code for a different and in comparison a smaller protein. As                 

shown in ​Figure 1A ​, nORFs can be found within the coding sequence (CDS) of known              

protein-coding genes, albeit in an alternative frame, within the UTRs, overlapping the UTR             

and CDS or antisense to known genes. nORFs can also be found within ​de novo genes,                

pseudogenes and other noncoding regions ​8​. ​Moreover, as shown in ​Figure 1B​, nORF            

translation is observed across the human genome. Interestingly, chromosome Y has the            

lowest number of nORFs per unit 10,000 base pairs albeit on average the longest nORFs               

whereas chrMT is the most dense with short nORFs. The discovery of nORFs with evidence               
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of translation renders evidence for a pool of unexplored proteins with potentially important             

functions some of which are discussed below.  

 

The presence of nORF encoded protein-like products, henceforth called as nORF products,            

and their utility has been explored in several species from bacteria to humans. To highlight a                

few- a 49-aa nORF product called AcrZ aids in ​E. coli ​survival against antibiotics by               

stimulating a drug expelling pump ​9​. Viruses diversify their proteome, given their small             

genomic sizes, using alternative ORFs ​10​. nORF products regulate plant morphogenesis and            

were also shown to regulate epidermal differentiation in ​Drosophila through the modification            

of a transcription factor called Shavenbaby ​11,12​. A mouse nORF called ‘Pants’, in a region               

orthologous to the 22q11.2 locus in humans, was identified with potential roles in             

hippocampal behaviour and a 68-aa protein called ‘NoBody’ in humans was found to manage              

the destruction of faulty mRNA in the cell by preventing the formation of P-bodies ​9,13​.                

Importantly, previous study from our lab demonstrated that nORF products from several            

noncoding regions in mouse neurons are not only translated but can also be biochemically              

regulated ​4,8​. More recently, we investigated nORF products in mouse B and T cells and               

showed that they can form structures, harbour deleterious mutations, and potentially be            

inhibited by drugs ​8​. These are just a few examples of why nORFs are significant genomic                

regions for further study. 

 

The major hindrance in the identification and investigation of nORF products is their small              

size and lower abundance compared to canonical proteins ​8,14​. Moreover, existing gene            

prediction and computational methods for ORF predictions employ a minimum amino acid            

(aa) length threshold of 100aa, which filters nORFs from being detected ​15​. In addition,              
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conventional gene signatures, for example, Kozak sequence and start codons, do not hold for              

nORFs, for which multiple start codons have been identified ​16​. Besides that, RNA-Seq             

experiments primarily employ poly-A-based selection of mRNAs, because of which almost           

50% of the transcriptome which may not have poly-A, including noncoding RNAs such as              

miRNAs, lincRNAs and other nORF transcripts, are left undetected ​17​. Additionally,           

distinguishing between ORFs from the same region using RNA-Seq reads and detection of             

small protein products using current proteomic-based approaches is challenging ​18​. As a            

result most of the nORF products have been missed.  

 

Recently, there have been a few computational and experimental attempts to overcome the             

above difficulties in identifying and investigating this unknown world of small proteins. One             

such computational tool is sORF finder, which aims to identify a class of very small nORFs                

(<= 100aa) ​11​. Another example is mRNA assembler for proteogenomics (MAPS), that aims            

to improve transcriptome assembly for downstream proteogenomic analysis by using read           

sequences to build a consensus sequence database thereby supplanting annotated genome           

sequences for transcript assembly ​19​. Recent developments in experimental strategies to           

identify nORFs include Ribo-Seq, wherein transcripts that are bound to ribosome are            

sequenced under the assumption that these transcripts are translated ​18​, but the real evidence              

for translation from nORFs can only be obtained from mass spectra-based proteomics            

approaches. However, the current workflow in proteomics is limited because mass-spectra           

(MS) is only searched against a database of known proteins (usually from Uniprot or              

SwissProt). To identify nORF products, our lab and few others have pioneered a             

methodology modifying the current proteomics approach to a proteogenomic workflow. In           

this workflow ( ​Figure 2​), instead of searching the MS against a generic species-specific             
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protein database, a custom database is made using the transcriptome or genome from a              

specific tissue and the MS from the same sample is searched against this custom database in                

six frames ​4,19,20​.  

 

Such improvements in technology have enabled attempts to curate evidence of nORF            

translation. For example, using evidence from computational prediction tools, ribosome          

profiling and literature mining, online resources such as OpenProt, sORFs.org, SmProt and            

ARA-PEP have been developed ​18,21–23​. But these attempts have remained sporadic and hence             

there has not been a single consistent definition for these unannotated nORFs. Therefore, we              

collated all the evidence published by multiple laboratories, re-classified the data and            

re-define them as nORFs ​14​. This curated data has been released in public domain available               

through ​https://norfs.org/ ​14​. This resource is expected to grow with constant updates from our              

research and other growing sources of nORF evidence. Through this ​we hope that nORFs can               

be systematically investigated as we did with nORFs.org entries where we noted a significant              

enrichment of deleterious mutations in these regions ​14​.  

 

Besides all the above cited reasons, the current experimental strategies for nORF            

identification with Ribo-Seq or proteogenomics is prohibitive because of costs and for            

proteogenomic analysis it is imperative to obtain both RNA-Seq and MS from the same              

sample, which can be challenging. Therefore, in this study we present an alternative             

workflow using just RNA-Seq transcript data to identify transcripts translating nORFs           

curated in our continuously expanding nORF database. We discuss the caveats of using             

existing read-assembly, transcript-assembly and transcript-quantification pipelines for this        

purpose and propose a systematic workflow for nORF identification. Using our framework            
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we can identify transcripts translating intronic and intergenic nORFs. Finally, we present            

results from the implementation of this workflow in mouse and human samples as             

proof-of-concept studies. 

 

Results 

Construction of custom databases for proteogenomic analysis 

Here we describe experimental designs for three of our recent studies for identifying nORF              

products in mouse B and T cells, in human post-mortem brain samples (manuscript in              

preparation), and in cichlid fishes. We discuss in detail the pitfalls and the issues we               

overcame in the process.  

 

For naive B and T cells isolated from the spleen of C57BL/6J mice, we assembled the                

RNA-seq reads into transcripts using HISAT2-StringTie (refer to materials and methods for            

details). Subsequently, we used bedtools getfasta ​24 to extract transcript nucleotide sequence            

from the annotated reference genome, to create the custom proteogenomic database. Here, we             

encountered very long transcripts stitched together by the transcript assembler StringTie’s           

merge function ​25​. Such long transcripts were broken into lengths of less than 100,000 bps               

keeping with the search limit of 100,000 bps for Mascot (MS search engine). Although these               

transcripts may be technical artifacts, they were retained in our database to allow for any               

nORF identification present within them. MS of proteins isolated from these samples were             

first searched against the mouse UniProt database. To verify the presence of already known              

nORFs, the unmapped spectra, approximately 60%, were then mapped to a nORF amino acid              

database generated using the amino acid sequence of these nORFs obtained from sorfs.org             

and OpenProt ​18,21​,. Finally, the remaining unmatched spectra were matched to the custom             
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proteogenomic database created using the sample-specific assembled transcriptome as shown          

in ​Figure 2​. We used Mascot ​26 for searching the spectra against the Uniprot proteins, the               

nORF amino acid database and the custom transcriptomic database in six frames, which is              

done  “on the fly”.  

 

Similarly, for the post-mortem brain samples, a combination of HISAT2-StringTie and           

bedtools getfasta were used to create the custom database and the protein MS from each               

sample was first matched against the human UniProt protein database and then any resulting              

unmatched spectra was mapped against the custom transcriptomics database for each sample.            

And for the cichlid study, HISAT2-StringTie assembled transcripts were clustered (k-means           

clustering) using Ballgown to reduce the number of highly similar assembled transcripts.            

Gffread utility (http://ccb.jhu.edu/software/stringtie/gff.shtml#gffread) was used to generate       

the transcriptomic fasta file which was searched against sample MS using Mascot, and             

proteins with at least 2 peptide matches were called at a false-discovery rate (FDR) less than                

0.01.  

 

Caveats of the proteogenomic approach in identifying nORF protein products 

The most prevalent method of identifying proteins is a “bottom-up” mass-spectrometry based            

approach. In this methodology, proteins are cleaved using proteases, separated using liquid            

chromatography columns, ionized and detected using a mass spectrometer. The resulting MS,            

is then computationally ‘matched’ to all theoretical MS of known proteins identified in that              

organism obtained from a pre-compiled database of known proteins like UniProt ​27​.            

Therefore, this approach allows only for the identification of already annotated proteins in             

that organism. In contrast, a proteogenomic approach, where the MS is searched against a              
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custom database generated from a 3-frame or 6-frame translated version of either genomic or              

transcript sequences obtained from the same sample, is the only credential way to identify              

nORF encoded peptides ​4,20,28​. Additionally, using proteogenomics to identify peptide spectra           

and validate unannotated splice junctions and translations from regions currently annotated as            

noncoding, could aid in the refinement of existing genome annotations ​28,29​.  

 

In preparing RNA-Seq reads for transcript assembly and custom proteogenomic database           

creation, the use of poly-A enriched transcripts, a dataset depleted of poly-A(-) and therefore              

several novel and noncoding transcripts as well as bimorphic transcripts ​30​, would limit nORF              

peptide detection. But, when using total-RNA datasets, one needs to keep in mind the              

presence of highly abundant rRNA in the sample, which could hinder the detection of low               

abundance RNAs. Therefore, for nORF peptide discovery using a custom database, the use of              

total RNA-Seq transcripts with rRNA depletion or using whole-genome sequencing (WGS)           

data is preferable. The custom proteogenomic database creation steps differ based on the type              

of data used. If a transcript dataset is used, their nucleotide sequences are 6-frame translated               

for custom proteogenomic database creation. In contrast, for WGS data, the genome is             

fragmented based on a specific fragment length, and each fragment is then 6-frame translated.              

Another potential issue with using genome or transcriptome based custom databases is the             

increased number of false-positives as detailed in Blakeley et al., 2012 ​31​. The size of the                

custom database is an important consideration as with increasing size, although the            

identification of peptides increases, the false positive rate, i.e. chances of incorrect peptide             

matches also increase ​31​. In order to evade the increase in false-positive rates, MS data is first                 

mapped to known proteins in UniProt database, and then the unmatched spectra are mapped              

to the custom proteogenomic database as done by us previously in Prabakaran et al ​4​.               
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Moreover, since search engines use a decoy-target based approach to calculate false            

discovery rates (FDRs) of peptide-spectrum matches (PSMs), the enlarged search space           

because of six-frame translation with potentially noncoding frame sequences, undervalues          

true PSMs which are subsequently not called ​31​. Thus, filtering of potential noncoding frames              

prior to FDR calculations is recommended. Since our focus is on nORFs, such a filtering               

strategy may not be appropriate because conventional coding signatures do not apply for             

nORFs and therefore there are no applicable criteria for frame selection . 

 

Although a proteogenomic approach offers an appropriate validation strategy for nORF           

identification, availability of only RNA-Seq data makes this approach difficult. Additionally,           

exploring the potential of nORFs to exert functions at the transcript rather than peptide level               

like lncRNAs ​3​, warrants a need for evaluation of nORFs at the transcript level. Therefore, we                

describe strategies for the same in the following sections. 

 

The perils of nORF identification using transcript data  

To overcome the limitation in obtaining both total RNA-Seq based transcript and MS-based             

proteomic data from the same sample for proteogenomic analysis mainly because of the cost              

involved, we propose a simple workaround using existing validated information about           

nORFs. Information for 194,407 nORFs curated from online sources is available on            

nORFs.org (this database will undergo an update in the near future). Our method uses this               

curated knowledge and proposes a framework to infer nORF transcription in any human             

transcript dataset, as described below.  
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To identify nORFs with transcript data alone, we have to consider the following points. First,               

the genomic coordinates of the nORF should be encompassed by a transcript such that the               

codons that encode the nORF peptides are within the transcript. Second, the exons of the               

nORFs, which denote the nucleotide sequence that gets translated, must be encompassed            

within the exons of the transcript. This is because when the transcript is processed, the introns                

are spliced out and only the exons remain in the mature transcript. However, such detections               

are compounded by several transcripts originating from the same genomic region with            

overlapping exons and therefore mapping nORFs across them blurs the transcript           

identification process ( ​Supplementary Figure 1 ​). Additionally, such a lack of unique nORF            

containing transcript makes expression analysis like differential expression analysis between          

conditions particularly cumbersome.  

 

A possible strategy to quantify nORF expression at the transcript level could involve             

mapping aligned reads from a BAM file to the nORF genomic coordinates and using the               

resultant counts for expression analysis. However, because of the small size of nORFs,             

sometimes even smaller than the read length, read count generation becomes an issue.             

Another major challenge in such an undertaking is the trouble in delineating reads that              

genuinely correspond to nORF expression versus reads that correspond to the more            

abundantly translated ORF within transcripts from the same genomic region. Transcript           

assemblers have encountered a similar issue in trying to quantify transcript isoforms in an              

environment of more abundant transcripts. For example, StringTie ​25 uses a network flow             

algorithm first to construct the most abundant transcript, remove the reads associated with it              

and then continue constructing as many transcripts that can be explained by the remaining              

reads. This strategy works for transcript isoforms but may not be best for nORFs, which are                
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not transcripts themselves and can be overlapped by several transcripts. We, therefore,            

resorted to using established methods of transcript expression value estimations generated by            

transcript assemblers to evaluate nORFs at the transcript level. 

 

The choice of read aligners and transcript assemblers is another major factor that affects the               

number of transcripts identified and thereby nORF detection. Additionally, running these           

processes in de novo mode or with a reference genome also alters the transcript pool               

identified ​(Supplementary Figure 2). ​ HISAT2 ​25​, TopHat ​32 and STAR ​33 read aligners were            

considered in our analysis. HISAT2 is preferred over TopHat as the former was designed to               

be a successor of TopHat and it is much faster and less memory intensive than TopHat ​25,34​.                 

HISAT2 and STAR are both specialized at identifying novel splice sites which could aid in               

better downstream assembly of novel and unannotated transcripts within the samples and            

therefore lead to a more diverse transcriptome identification  ​25,33​.  

 

We evaluated several transcript aligners with reference and in de novo mode in our analysis               

for the cichlids study. Specifically, we evaluated StringTie ​25 run with and without a reference               

genome, RSEM ​35​, Cufflinks run with and without a reference genome ​36​, Trinity ​37 and               

MAPs ​19​. MAPs is a transcript aligner developed specifically for downstream proteogenomic            

analysis and uses read sequences to build a consensus sequence database and therefore does              

not use an annotated reference genome for transcript assembly ​19​. The result of this is               

transcripts assembled do not have an identifier, for example, an Ensembl transcript id, nor do               

they have count level estimates but only FPKM and TPM values for the transcripts.              

Moreover, these sample-specific transcripts were different across different samples, and          

without any ids, it was hard to compare across samples for downstream differential             
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expression analysis. For the post-mortem brain study, we tried running StringTie -merge on             

MAPs output but this grossly overestimated the transcriptome from ​an average of 23,000             

transcripts per sample to an average of 150,000 transcripts after StringTie -merge. As             

StringTie-merge creates a union database and the subsequent StringTie run quantifies the            

merged transcripts for each sample, the increase in number shows how the transcripts called              

by MAPs across samples are very different and this strategy, therefore, may not be beneficial               

for differential expression analysis. Thus, we did not use MAPs for our analysis. In our               

evaluation of StringTie, Cufflinks and Trinity, we found that Trinity generated a very high              

number of transcripts with lower sensitivity and precision than StringTie and           

Cufflinks ​(Supplementary Figure 2 and 3). ​ Moreover, RSEM and StringTie are well-cited          

tools and have shown to be better than other assemblers for transcript assembly, especially              

lncRNAs, which is an important category in our investigation ​38–40​. StringTie, in comparison             

to Cufflinks, calls a higher number of correctly called transcripts and is tailored to detecting               

novel isoforms which is vital for nORF identification ​40​. Therefore, we have resorted to using               

HISAT2-StringTie or STAR-RSEM for read alignment and transcript assembly prior to           

nORF identification. 

 

To identify nORFs within these assembled transcripts, we initially used bedtools intersect ​24             

to find overlap between nORFs and all known transcripts from Ensembl ​41 based on their               

genomic coordinates. However, this method proved incorrect since we were calling           

transcripts which encompassed nORFs while allowing for nORF overlap with the transcript            

intron, meaning, the nORF sequence would not be processed into the mature transcript. We,              

therefore, use GffCompare ​25,42​, since it identifies nORF-transcript matches based on intron            

chain overlap and thereby ensures that the nORF exons are encompassed within the identified              
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transcripts. We introduced additional processing steps on the GffCompare result to identify            

these transcripts as detailed in the next section. 

 

Workflow for identification of nORFs using transcript data 

To identify nORFs within the assembled transcriptome, we use GffCompare ​42​, a tool             

designed for annotating, merging, comparing and estimating the accuracy of assembled           

transcripts. We specified our nORF dataset as the reference using the -r parameter, which was               

searched against the query sample transcripts. If an exact intron chain match is found between               

the nORF and the sample transcript, a class code of “=” is assigned to the match; otherwise a                  

class code “c” is assigned for partial matches. The output is obtained through the​ ​REFMAP              

file wherein for each entry in the reference transcript, query transcripts matches are provided.              

A point of consideration is that GffCompare is stringent about removing any duplicates             

within the reference transcript file. Therefore, some of the nORFs which are identified as              

duplicates will not be considered for mapping. In brief for single-exon transcripts, if the              

length of transcript 1 is at least 80% of transcript 2 and transcript 1 is encompassed within                 

transcript 2, transcript 1 is considered duplicated ​42​. For multi-exon transcripts, if transcript 1              

has complete intron chain match with transcript 2 and transcript 1 is fully contained within               

transcript 2, transcript 1 is considered duplicated ​42​. If nORF duplicates are identified and              

removed as described above, it still does not affect our analysis since the longer nORF would                

still be retained in the reference database for transcript identification. 

 

GffCompare results in the REFMAP file were processed, as shown in ​Figure 3.​ First, only             

those matches with class code “=”, i.e. overlaps between nORFs and sample transcripts with              

exact intron chain matches are retained. Next, the terminal exon boundaries are filtered such              
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that the nORF coordinates are equal to or less than the sample transcript’s exon coordinates.               

This filter is used to ensure that the nORF coordinate, which starts with the translation start of                 

the nORF, is encompassed within the sample transcript. Finally, sample transcripts annotated            

as protein-coding are removed from further analysis. The last filter is in place because              

protein-coding transcripts already have a known ORF within them and therefore the            

transcript’s expression value may correspond more to the canonical ORF than the nORFs. In              

contrast, noncoding transcripts, by definition, do not have ORFs that are translated within             

them. nORFs with experimental validation of translation albeit from other samples, are the             

only identified ORFs within these noncoding transcripts, and therefore their transcript           

abundances can be assigned to the nORFs within them.  

 

Based on nORF location within the genome and particularly the transcriptome, ​Figure           

4 ​highlights the different cases one might encounter, and which of these can be identified              

using the workflow and for expression analysis. Using our approach, we identify several             

nORFs within the noncoding genome. Additionally, using the prescribed workflow, we           

encounter cases where one transcript corresponds to multiple nORFs. This could highlight            

that multiple ORFs are being translated from the same transcript ​6 or be a result of incorrect                 

nORF identification in which case we cannot delineate which one is correct. Similarly, cases              

where one nORF matches to more than one transcript were also identified owing to the               

presence of multiple transcripts arising from the same region with similar intronic chain             

pattern and exon number. Again, using the current dataset, we cannot delineate and identify              

the “correct” nORF transcript. Usually ranked annotation schemes are used to select one             

transcript over the other ​18 but we chose to process all identified noncoding transcripts for               
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expression analysis. The workflow defined above allows for identification of nORFs and the             

corresponding transcript expression values for downstream analysis. 

 

Proof-of-concept studies using our methodology 

To demonstrate the use of the proposed workflow, in this section, we present examples from               

mouse immune and human brain samples. Mouse B and T cells were assembled using              

HISAT2-StringTie pipeline (see materials and methods for further details). Using the           

workflow described, we were able to identify nORFs and their transcripts and additionally             

were able to verify translation of a few nORFs using our proteogenomic workflow ( ​Figure              

5A). Moreover, examples of transcripts containing nORFs were identified from human           

post-mortem brain samples from schizophrenia, control and bipolar disorder patient samples.           

Read alignment and transcript assembly was done using HISAT2-StringTie and          

STAR-RSEM as described in the materials and methods section. Around 200,472 transcripts            

were identified using HISAT2-StringTie and 137922 transcripts using STAR-RSEM. Using          

the workflow described in ​Figure 3​, we identified 3862 and 3617​ ​nORFs within sample           

transcripts generated using HISAT2-StringTie and STAR-RSEM, respectively. A few         

example cases of identified nORFs generated using IGV ​43 are shown in ​Figure            

5B.​ Furthermore, the differences in nORF identification based on the alignment-assembly          

tool used is presented in ​Figure 6. 

 

Discussion 

The importance and functions of nORFs is still being determined. Usual approaches for             

nORF identification involve Ribo-Seq data analysis for identifying novel translation events           

from RNAs or a proteogenomic approach for validating the presence of nORFs within the              
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sample of interest. Although proteogenomics allows for the quantification and study of nORF             

products, the absence of MS data for most studies, especially those that involve national and               

international consortiums, such as the TCGA and PsychENCODE, hinders the systematic           

investigation of this unknown, ever growing repository of protein products with potential            

functional implications.  

 

In this study we propose a framework for identification of nORF transcripts using available              

transcript data based on RNA-Seq (and also using Ribo-Seq) for these large-scale datasets.             

The expression values of nORFs predicted by the framework could then be used for              

downstream analysis, for example, differential expression analysis between two conditions or           

correlation of transcript expression with other genic regions of interest. The parameters            

imposed in the workflow are a bit stringent as we concentrate on nORFs in intronic and                

intergenic regions, and it is possible that we do not detect several nORFs, for example,               

nORFs that are embedded within CDS. Our goal is also to minimize ambiguity arising from               

multiple ORFs and transcripts in the same genomic region and to identify transcripts             

containing nORFs within them with some certainty.  

 

We show the utility of this workflow by employing it to mouse B and T cells and human                  

neuropsychiatric datasets and demonstrate how nORFs are present within several transcripts           

conventionally annotated as noncoding. The nORF examples shown in ​Figure 5A ​, that were             

identified by the workflow also show evidence of translation ​8​. Additionally, we show how             

different read alignment and transcript assembly tools could lead to the identification of             

different nORFs because of underlying differences in the assembled transcriptome.  
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The proposed approach can be used for screening transcriptome of several large-scale studies,             

without corresponding MS data, for potential novel open reading frames, generating a            

shortlist of proteins to biochemically validate as described in Prabakaran et al. ​4​. We believe               

our framework will help in revealing more nORF products from the ‘hidden proteome’ that              

may shed light on biochemical processes that may not yet have been discovered and possibly               

disrupted in diseases. This will in turn further call into question the current description of               

noncoding transcripts and the need to redefine existing genome annotations. 
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Materials and Methods 

Mouse B and T cell samples 

Spleen samples from six male and six female C57BL/6J mice were FACS sorted to isolate               

resting B and naive CD4+ T cells. Resulting total RNA-seq data was processed here. Details               

of the sample processing can be obtained through Erady et al. ​8 

 

Neuropsychiatric samples 

23 schizophrenia (SCZ), 16 bipolar disorder (BD) and 23 control (CNT) samples isolated             

from ​Brodmann area 46 (BA46) ​were obtained from the Array collection of SMRI ​44​. Briefly,               

1ug of total RNA was poly-A selected using oligo-dT Dynabeads, libraries were prepared             

using Illumina’s TruSeq v1 (Illumina, Hayward, CA) and sequencing was performed using            

Illumina HiSeq 2000 giving ~3 Mb of 90bp paired-end reads for each library. Sample reads               

were assessed for quality using FastQC ​45​ prior to read alignment. 

 

Cichlid samples 

Total RNA-Seq reads depleted with rRNA, from testes and liver tissues of two cichlid fish               

species ​O. niloticus and ​P. nyererei (n = 3-4) were obtained. Details for sample preparation,               
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RNA-Sequencing and downstream processing steps can be found in Puntambekar et al. ​46​.             

Parameters for read aligners and transcript assemblers have been described in brief in the              

following sections.  

 

Seven Bridges Cancer Genomics Cloud  

Read aligners and transcript assembly tools were run on the CGC server            

( ​www.cancergenomicscloud.org ​) ​47​.  

 

Read aligners and their parameters 

HISAT2 

Neuropsychiatric RNA-Seq reads ​were aligned using HISAT2 v2.1.0 ​25​, with default           

parameters except ‘ ​--add-chrname’, ‘—dta’ and ‘--summary-file’ were set to TRUE.          

Additionally, either Phred +33 or Phred +64 encoding was set to TRUE based on the sample                

being analysed. Reads were aligned using the index for the GRCh38 genome available at              

https://ccb.jhu.edu/software/hisat2/manual.shtml ​. 

Cichlid RNA-Seq reads were aligned using ​HISAT2 v2.1.0 with default parameters. HISAT2            

build was used to create the indexed reference using reference genome for the respective              

fishes downloaded from NCBI (details in Puntamberkar et al. ​46​) ​.  

 

TopHat 

Cichlid RNA-Seq reads were aligned using ​TopHat v2.1.0 ​32 ​with default parameters using             

reference genome for the respective fishes downloaded from NCBI. 

 

STAR 
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For neuropsychiatric samples, STAR Genome generate was used to create the required            

genome files for STAR ​33 using annotation GTF file and GRCh38 primary assembly FA file               

from gencode v30 ​48​. STAR v2.6.0c was run on the raw sample read files and the genome                 

files as input with default parameters except –quantMode was set to TranscriptomeSAM. 

 

Transcript assemblers and their parameters 

StringTie 

For the neuropsychiatric samples, transcript assembly using StringTie v1.3.3 ​25 was done in             

three steps for HISAT2 aligned reads. First, StringTie was run with default parameters and              

‘-A’ set to TRUE to assemble sample-specific transcripts from the aligned reads (BAM files),              

using gencode V30 primary comprehensive gene annotation ​48 as reference. Second, all the             

GTF files generated in the previous step were merged using StringTie –merge to create a               

union transcript dataset. Third, StringTie was rerun on the aligned reads with StringTie             

merged file as the reference and parameters ‘-B’, ‘-e’ and ‘-A’ set to TRUE, allowing us to                 

calculate sample-specific transcript abundances for the union transcript dataset ​25​. 

Similarly, for the cichlid samples, StringTie v1.3.3 was run in two different modes: with and               

without a reference genome, downloaded from NCBI for the respective fishes. 

 

Cufflinks 

For the cichlid samples, Cufflinks v2.2.1 ​36 was run with default parameters in two different               

modes: with reference annotation-based transcriptome assembly and without a reference          

annotation. 

 

Trinity 
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For the cichlid samples, the ​de novo assembler Trinity v2.0.6 ​37 was run with default               

parameters. Additionally, the resulting transcriptome was mapped to their respective genome           

using GMAP v2017-11-15 ​49 to extract genomic coordinates of the transcripts for comparison             

to reference annotation. 

 

MAPs 

For the neuropsychiatric samples, MAPs ​19 was run on the BAM files with default parameters               

and without a reference genome. To generate a union dataset for comparison across samples              

during differential expression analysis, we fed the results of MAPs to StringTie –merge to              

create a union transcript dataset. And then, sample-specific transcript abundances were           

recalculated using StringTie, run with parameters ‘-B’, ‘-e’ and ‘-A’ set to TRUE. 

 

RSEM 

For the neuropsychiatric samples, RSEM v1.3.1 ​35 was used for transcript quantification of             

STAR aligned reads. First, RSEM prepare reference was run on ​annotation GTF file and              

GRCh38 primary assembly FA file from gencode v30 ​48​, to generate the required index files.               

Next, RSEM calculate expression was run with aligner parameter set to STAR, append             

names, output genome BAM and sort BAM by coordinates set to TRUE. 

 

RNA-Seq read simulation for cichlids 

To decide upon a transcript assembler and assess the precision and sensitivity of ​de novo and                

reference-based transcriptome assembly, RNA-Seq reads from ​O. niloticus and ​P. nyererei           

were simulated using the R package polyester v1.14.1 ​50​. Three replicates of ~25 million 75bp               

paired-end reads were simulated for each species without sequencing errors and with uniform             
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transcript expression levels. Simulated reads were aligned and assembled into transcripts as            

described in the sections above. 

 

Precision and sensitivity analysis of simulated cichlid transcriptomes 

The precision and sensitivity of the simulated transcriptomes obtained from multiple           

transcript assemblers, were determined with respect to the reference annotation. In brief, 10 x              

10,000 transcripts were randomly sampled with replacement from each simulated          

transcriptome and compared to the reference transcriptome using GffCompare v0.10.1 ​42​. The            

precision and sensitivity estimates obtained from GffCompare were then used for further            

analysis. Additionally, since we use a subset of the data here which can lead to loss of                 

sensitivity, raw sensitivity values were multiplied by transcriptome size/1000 to account for            

this loss.  

 

Figure Legends 

 

Figure 1: Novel ORFs (nORFs) in the human genome (GRCh38). ​(A) The different             

locations of nORFs (light grey boxes) within the genome is shown against known gene              

structures (blue-green boxes). nORFs can be present within the UTRs, the CDS but in an               

alternative frame, overlapping the UTRs and the CDS or antisense to known protein-coding             

genes. nORFs can also be found within de novo genes and pseudogenes as well as other                

noncoding regions. ​(B) Genomic distribution of nORFs in the human genome shows nORF             

expression is widespread. X-axis represents chromosome sorted according to decreasing size,           

y-axis shows average amino acid length of nORFs for a particular chromosome-strand pair,             

bubble sizes show no. of nORFs present within the chromosome-strand pair, normalised by             
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chromosome size and scaled by a factor of 10,000 to give number of nORFs per 10,000 bp.                 

chrY has the least density of nORFs whereas chrMT has the highest. Also, chrY on average,                

has the longest nORFs whereas chrMT has the smallest.  

 

Figure 2: Proteogenomic workflow for nORF identification. ​Sample peptides identified          

using Mass spectrometry are first matched to UniProt database to remove known protein             

matches and then to a custom proteogenomic database to identify nORF peptides. RNA-seq             

data from the same samples used for protein collection is used for assembling transcripts              

which are then six-frame translated to produce the proteogenomic database. 

 

Figure 3: Workflow for nORF identification at the transcript level using. ​Using            

GffCompare, nORFs mapping to sample transcripts, based on intron chain matches are            

identified and assigned a classification code. The results are then filtered to retain only those               

matches with code “=” representing complete match between the nORF and the transcript.             

Next, an exon boundary filter is imposed to ensure that the nORF exons are confined within                

the transcript exons. Finally, only sample transcripts with a non protein-coding biotype are             

retained for further analysis. 

 

Figure 4: Types of transcripts that can be identified using the proposed workflow. ​The              

different types and sub-types of transcripts that can be identified using the workflow shown              

in Figure 3 as well as whether they are suitable for downstream expression analysis is               

displayed above.  

 

Figure 5: Identification of nORFs at the transcript level visualised using IGV. (A) ​In              
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mouse B and T cells: A nORF (enclosed within the green box) identified within a transcript                

(enclosed within the blue box) annotated as processed_transcript (top-left) and another within            

a transcript annotated retained_intron (top-right) are shown. Translation of the nORF (blue            

lines underlining sequence) within the retained_intron as verified by proteogenomic approach           

(bottom). ​(B) ​In neuropsychiatric samples: nORF (enclosed within the green box) identified            

within a transcript (enclosed within the blue box) annotated as miRNA (top) and another              

within a transcript annotated retained_intron (bottom) are shown. 

 

Figure 6: ​Differences in nORF identification based on read aligner-transcript assembler           

used for analysis. Of the 200472 and 137922 transcripts assembled by StringTie and RSEM              

respectively, 3617 and 3526 transcripts were identified with 3862 and 3617 nORFs            

respectively using the proposed workflow. Approximately, 86% of the total nORFs identified            

from SMRI samples were called by both the tools whereas StringTie identified an additional              

405 nORFs uniquely and RSEM, 160 nORFs uniquely. 

 

Supplementary Figure 1: Challenges in nORF-transcript identification. An example of          

protein phosphatase 4 regulatory subunit 3A (PPP4R3A) gene along with its transcripts (in             

blue) along with the different nORFs mapping to this region (in black) visualised using IGV. 

 

Supplementary Figure 2: Comparison of different transcript assembly tools. Transcripts          

were generated using StringTie with reference genome (StringTie WR), StringTie without           

reference (StringTie NR) and Trinity. Depending on the tool used different transcript sets are              

identified with Trinity identifying a much larger proportion than StringTie run in de novo              

mode. But since the sensitivity and precision of Trinity generated transcripts is much lower              
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than that of StringTie (Supplementary figure 2), we decided to not work with it. 

 

Supplementary Figure 3: Sensitivity and precision of transcriptome assembly of          

simulated reads. Simulated reads with uniform expression levels and no sequencing errors            

were assembled using five transcriptome assembly methods. 10x10,000 transcripts were          

randomly sampled with replacement from each simulated transcriptome and the sensitivity           

and precision of these subsets assessed using GffCompare. (a) O. niloticus-derived reads. (b)             

P. nyererei-derived reads. Trinity had the lowest sensitivity and precision scores. 
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