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Abstract: 

We study the structural ensembles of human chromosomes across different cell types.  

Using computer simulations, we generate cell-specific 3D chromosomal structures and 

compare them to recently published chromatin structures obtained through microscopy. 
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We demonstrate using a combination of machine learning and polymer physics simulations 

that epigenetic information can be used to predict the structural ensembles of multiple 

human cell lines. The chromosomal structures obtained in silico are quantitatively 

consistent with those obtained through microscopy as well as DNA-DNA proximity 

ligation assays. Theory predicts that chromosome structures are fluid and can only be 

described by an ensemble, which is consistent with the observation that chromosomes 

exhibit no unique fold. Nevertheless, our analysis of both structures from simulation and 

microscopy reveals that short segments of chromatin make transitions between a closed 

conformation and an open dumbbell conformation. This conformational transition appears 

to be consistent with a two-state process with an effective free energy cost of about four 

times the effective information theoretic temperature.  Finally, we study the conformational 

changes associated with the switching of genomic compartments observed in human cell 

lines. Genetically identical but epigenetically distinct cell types appear to rearrange their 

respective structural ensembles to expose segments of transcriptionally active chromatin, 

belonging to the A genomic compartment, towards the surface of the chromosome, while 

inactive segments, belonging to the B compartment, move to the interior.  The formation 

of genomic compartments resembles hydrophobic collapse in protein folding, with the 

aggregation of denser and predominantly inactive chromatin driving the positioning of 

active chromatin toward the surface of individual chromosomal territories. 
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Introduction: 

The 3D spatial organization of the chromosomes in the nucleus of eukaryotic cells appears 

to be cell type specific[1-7]. What determines this cell type specific organization and how 

that organization relates to patterns of gene expression remain crucial questions in 

structural genomics.   

 

DNA-DNA ligation experiments have revealed spatial compartmentalization, generally 

termed A/B compartmentalization[8], and CTCF-mediated loop domains. It was observed 

that the A compartment chromatin contains a larger amount of the expressed genes while 

the B compartment chromatin is less transcriptionally active. Similar A/B 

compartmentalization has been observed across human cell lines[1-3] as well as in other 

species [2, 4, 9-12], suggesting that compartmentalization is a conserved feature of genome 

organization across evolution. While single-cell structures can be interrogated using 

proximity ligation assays[13, 14], high resolution has so far only been achieved through 

ligation methods when the experiments are performed over a large population of cells, thus 

averaging over the respective individual 3D structures.  

 

Recent microscopy approaches have begun to reveal the 3D structures of segments of 

chromatin longer than a megabase at a spatial resolution on the nanometer scale[15-18]. 

These approaches not only allow for the quantification of pairwise and higher order 

interactions between loci, but also allow some quantification of the structural variability in 

a population of cells. One consistent observation from the imaging approaches, as well as 

from single cell Hi-C [13, 14, 19], has been the high degree of structural variability seen 
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within an apparently homogeneous population of synchronized cells of a single cell type. 

Despite this variability, well-defined cell type-specific DNA-DNA ligation maps for the 

ensemble emerge after population averaging the single cell results.   

 

Polymer models [20-29] that describe the process of chromosome organization have been 

proposed. In particular, the Minimal Chromatin Model (MiChroM) has been shown to 

accurately predict the population averaged DNA-DNA ligation maps[27, 30-32].  

Chromosomes are described as polymers subject to interactions which depend on the 

chromatin biochemical composition and on the genomic distance separating any two 

loci[27]. Genomic distance-dependent interactions recapitulate the effect of motors acting 

along the DNA polymer and result in lengthwise compaction of chromatin. Interactions 

depending on chromatin biochemical composition recapitulate transient binding among 

chromosomal loci and result in the emergence of compartmentalization through a process 

of phase separation, in which chromatin of the same biochemical type preferentially co-

localizes. The propensity toward phase separation for chromosomes of human 

lymphoblastoid cells can be reliably predicted using epigenetic marking data[30], 

suggesting that the information contained within the 1D epigenetic marking patterns 

decorating the chromatin polymer is sufficient to predict the ensemble of 3D chromosome 

structures. A neural network called MEGABASE[30] was trained to quantify the statistical 

relationship between the experimental sub-compartment annotations and the histone 

methylation and acetylation markings tracks, as assayed using chromatin 

immunoprecipitation data. Once trained, MEGABASE can be used to predict the 

compartmentalization patterns of a chromosome using a set of epigenetic ChIP-Seq tracks 
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as the sole input. Combining MEGABASE and MiChroM, we are able to simulate the 

structural dynamics of chromosomes.  

 

We first use the MEGABASE+MiChroM computational pipeline[30] to predict the 3D 

ensemble of chromosomal structures for several well-studied cell types: HMEC, HUVEC, 

IMR90, K562, HeLa-S3, and H1-hESC. To test these simulated 3D ensembles, we then 

generate ensemble averaged simulated ligation maps that are compared directly to 

population averaged DNA-DNA ligation maps[1, 2].  For the cell lines IMR90 and K562, 

we also use energy landscape tools to analyze the  structures obtained through diffraction-

limited microscopy by Bintu et al[15] for short ~2 Mb segments of chromatin and compare 

the experimental structural ensembles directly with the corresponding regions of the 

simulated chromosome 21 for IMR90 and K562. This comparison shows that not only the 

population averages but also the structural heterogeneity that is observed in human 

chromosomes in the interphase are consistent with our energy landscape model. 

Chromosomes do not adopt a single structure in the interphase, but rather, exhibit a high 

structural variability characteristic of a phase-separated liquid. We provide a detailed 

characterization of this structural heterogeneity for the experimentally imaged and 

simulated segments of chromatin using an order parameter commonly used to quantify 

structural similarity in protein folding theory. For a gene-rich chromatin segment, we 

uncover two dominant clusters of structures in both the experimental and simulated 

structural ensembles: closed structures and open dumbbell-like structures. The transition 

from a closed structure to an open dumbbell appears to be governed by a two-state process 

with an apparent free energy cost of about four times the effective information theoretic 
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temperature. For a gene inactive segment, structural analysis reveals highly disordered 

structures that lack domain boundaries. Additionally, we further examine the structural 

differences between whole chromosomes belonging to different cell types. The simulations 

show that inactive segments of chromatin move to the interior of the chromosome, while 

gene active chromatin moves to the chromosome surface. This effect appears to be driven 

by the favorable effective interactions between loci belonging to the B compartment, which 

forms a stable interior core; a phenomenon reminiscent of the hydrophobic collapse much 

studied in protein folding. 

 

 

 

 

Results & Discussion 

A polymer model of chromatin based on epigenetic features captures chromosome 

organization across different cell types.  

We previously developed a computational pipeline that can predict the 3D ensemble of 

chromosome structures by using chromatin immunoprecipitation tracks for histone 

modifications as input [30]. This approach was successfully used to predict the 3D 

chromosome structures for human lymphoblastoid cells (GM12878) using the 

experimental ChIP-Seq tracks for 11 histone modifications[30], i.e., H2AFZ, H3K27ac, 

H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3k79me2, H3K9ac, 

H3K9me3, and H4K20me1. Predicted chromosome structures for human lymphoblastoid 

cells (GM12878) were found to be consistent with both DNA-DNA ligation and 
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fluorescence in situ hybridization (FISH) experiments[1].  Here we generate predictions 

beyond GM12878 to other well studied cell lines for which we have found sufficient 

epigenetic marking data.  

 

Using the MEGABASE neural network, which was previously trained using data from 

GM12878, and sourcing from the Encyclopedia of DNA Elements (ENCODE) database 

the ChIP-Seq tracks for the same 11 histone modifications previously used, sub-

compartment annotations for all the autosomes of cell lines were generated that had never 

been used in the training phase of the neural network. These sequences of sub-compartment 

annotations, or chromatin types, then serve as input for molecular dynamics simulations 

using the Minimal Chromatin Model (MiChroM)[27]. Using this combined approach, the 

chromosomal structural ensembles for 6 additional cell lines were generated: human fetal 

lung cells (IMR-90), human umbilical vein endothelial cells (HUVEC), immortalized 

myelogenous leukemia cells (K562), human mammary epithelial cells (HMEC), human 

embryonic stem cells (H1-hESC), and HeLa-S3 cells.  

 

For each cell type, averaging the simulated ensemble generates in silico DNA-DNA 

ligation maps, which are in excellent agreement with those determined experimentally. 

Figure 1 shows the comparison between simulated and experimental maps for IMR90 

(Figure 1A), HUVEC (Figure 1B) and K562 (Figure 1C), demonstrating quantitative 

agreement. Corresponding comparisons of the compartmentalization patterns are also 

provided in Figure S1 for additional cell types HMEC, H1-hESC, and HeLa-S3, as well as 

for GM12878 in Ref:[30].  In particular, the Pearson’s R between the simulated and 
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experimental maps of matching cell type as a function of genomic distance shows that the 

long-range patterns of compartmentalization are captured over tens of mega-bases. To 

establish a term of comparison we calculated the Pearson’s R between the experimental 

DNA-DNA ligation maps of mismatching cell types. While the experimental observations 

on different cell lines do correlate with each other, computational modeling delineates the 

difference between cell type and appears to best match the experimental map when the cell 

types of simulation and experiment are matched up. This last result demonstrates that the 

present theoretical model discriminates well between different cell lines.  

 

While we have focused so far on the spatial organization of entire chromosomes on the 

micrometer length scale, for a better comparison with the structures of chromosome 21 of 

IMR90 and K562 obtained from microscopy[15], we have also incorporated in the polymer 

physics simulation the loops mediated by the activity of the protein CTCF. 

 

Figure 1D shows that the inclusion of CTCF-loops, which are easily be incorporated into 

the model, improves the quality of the results for the short range features of chromosome 

organization within 10Mb in genomic distance; at larger length scales the model appears 

to be completely insensitive of CTCF-mediated loops. 

 

Figure 1E shows the Pearson’s R between the AB annotation vectors derived directly from 

the DNA-DNA ligation maps and those obtained from MiChroM simulations for different 

cell types. The diagonal of Figure 1E corresponds to the Pearson’s R between AB 

annotations derived from experiment and simulation of matching cell types. The simulated 
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and experimental annotations for the same cell types agree well with each other.  Figure 

S1E shows the Pearson’s R between AB annotations derived from experiment alone for the 

different cell types. Notably, the high degree of correlation between the myelogenous 

leukemia cell line K562 and human lymphoblastoids (GM12878) maps observed in Figure 

1E is apparent from DNA-DNA ligation maps alone (Figure S1E). The agreement between 

the simulated and experimental A/B annotations is the highest quality (Pearson’s r ~ 0.9) 

for the DNA-DNA ligation maps of GM12878, which is not surprising since the GM12878 

has an order of magnitude more reads than any other map and consequently has the highest 

resolution.   

 

Taken together, these results demonstrate that long range compartmentalization observed 

in the DNA-DNA ligation maps is well captured by the simulated structural ensembles for 

these well-studied cell lines using only information about the epigenetic marking patterns 

as input. 
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Figure 1. Prediction of chromosome structures for differentiated cell lines and 

for immortalized leukemia cells. The 3D ensemble of chromosome structures was 

predicted for the cell types (A) IMR90, (B) HUVEC, and (C) K562 using the ChIP-

Seq histone modification tracks for the respective cell lines found on ENCODE—

shown are the structural predictions for chromosome 2. As validation, the 

chromosome structures were compared with the DNA-DNA ligation experiments 

of Rao et al[1], where the simulated map is shown on the bottom left triangle and 

the experimental map is shown on the top right triangle. The datasets are visualized 

using Juicebox[33]. The MEGABASE chromatin type annotation is shown as a 

color vector under the contact probability map, followed by the A/B compartment 
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annotation[1] for the simulated map (red) and the experimental map (black), 

respectively. The Pearson’s R between the simulated and experimental contact 

maps for fixed genomic distances are plotted for the cell types IMR90, HUVEC, 

and K562, respectively, in thick lines. The Pearson’s R between the experimental 

maps of mismatching cell types are also shown with thin lines—See Legend. The 

shaded region highlights that at relatively short genomic distances (<10 Mb), 

excluding CTCF-mediated loops from the simulation results in disagreement 

between the simulated and experimental maps.  When loops are included in the 

simulations, the agreement between the simulation and experiment is recovered at 

the short genomic distances. (D) Pearson’s R as a function of genomic distance is 

plotted between the experimental map for chromosome 21 (IMR90) and MiChroM 

simulation with loops (thick red line) and without loops (thin red line).  (E) A matrix 

of Pearson’s R between the AB annotation of the experimental ligation map and the 

simulated contact maps for different cell types, respectively. The high Pearson’s R 

signifies the consistency between the simulated maps and the experimental DNA-

DNA ligation maps.  

 

 

Chromatin structural ensembles from DNA tracing reveal coexistence of open and 

closed structures. 

Recent developments in DNA-tracing have allowed the direct experimental determination 

of three-dimensional structures using diffraction-limited and super-resolution 

microscopy[15-18]. DNA tracing is a technique that labels consecutive stretches of DNA 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.21.001917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001917


with optical probes, which can be used to spatially resolve the positions of those probes 

using microscopy.  It has become increasingly clear that unlike the situation for folded 

globular proteins, which typically can be reasonably well approximated for many purposes 

by a single native structure corresponding to the average conformation, chromatin appears 

to be highly dynamical and cannot be characterized by any single conformation. The 

heterogeneity of the chromosomal structural ensembles was first suggested by the analysis 

of the free energy landscape of chromosomes[26, 27] and has been indirectly observed 

through single cell Hi-C experiments[13, 14, 19]. The heterogeneity has now been 

confirmed by direct imaging of individual chromosomal structures[15-17]. As a 

consequence of this conformational plasticity, statistical ensembles [26, 27, 30, 31, 34-39] 

must be used in order to describe chromosomal structures in vivo.  

 

In order to improve our understanding of the genomic structural ensembles, we characterize 

the structural heterogeneity of chromatin that was imaged using microscopy.  We focus on 

the traced structures of Bintu et al[15], who obtained hundreds of images structures for 

short ~2Mb segments of chromatin belonging to chromosome 21. These regions are 29.37-

31.32Mb (referred to here as Segment 1) of IMR90 and K562 cell types and 20.0-21.9Mb 

(referred to as Segment 2) of IMR90. Only structures where the positions of over 90% of 

the loci were resolved are used in the present analysis. There are then 692 usable structures 

for IMR90 Segment 1, 752 usable structures of IMR90 Segment 2, and 244 usable 

structures of K562 Segment 1.  
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As previously reported[15-17], the traced structures can be used to generate a population 

averaged contact maps, which turn out to be consistent with DNA-DNA ligation maps. 

Shown in Figure S2A-C are the averaged contact maps for the chromatin Segments 1 

(IMR90 & K562) and Segment 2 (IMR90), respectively. Nevertheless, information is lost 

when converting from a 3D structural ensemble to a 2D contact map.  

 

Focusing on the structural details that cannot be found in a contact map, we make a close 

examination of the types of structures observed in the tracing dataset using an order 

parameter commonly used in studying protein folding landscapes, Q, which quantifies the 

structural similarity between two structures a and b: 

 

     (Eq. 1) 

where   and  are the distances between chromatin loci i and j in structures a and 

b:, respectively, N is the number of pairs of loci included in the summation, and 

  is the resolution length scale for which deviations in the distances between 

structures a and b are treated as being similar. The Q between any two structures ranges 

from 0 (dissimilar) to 1 (identical) over the entire set of pairwise distances between loci. 

The order parameter Q is not solely based on contacts; a pair of chromatin loci can 

contribute to Q even if they are not spatially proximate if they are separated in both 

structures by a similar distance as set by d. In this way Q measures structure more 

stringently than a simple contact map does. 
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Using   to define the distance between any two structures, hierarchical clustering of 

the traced structures for Segment 1 was applied to identify clusters having distinct 

structural features. These cluster sub-ensembles can be considered distinct conformational 

states.  To see whether the segment 1 structures for IMR90 and K562 exhibit a high degree 

of structural similarity, we combined their datasets before clustering. 

 

When applied to the 936 combined experimental structures for Segment 1, the clustering 

algorithm yields three distinct clusters. These correspond to a closed dumbbell (Cluster 1), 

an open dumbbell (Cluster 2), and a highly dense chromatin state (Cluster 3) shown in 

Figure 2. The closed dumbbell, where the head and tail globular domains are in contact 

with one another, is the dominant state observed for Segment 1 in both IMR90 and K562, 

accounting for 97.4% of the imaged structures (  ). Cluster 1 can further be 

sub-divided into subgroups 1a, 1b, 1c, and 1d (Figure 2), which account for 75.5% of the 

structures in Cluster 1. The subgroups appear to capture various stages of the process of 

opening. The structures in subgroup 1a are fully collapsed, while structures in 1b, 1c, and 

1d capture the progressive opening of the closed dumbbell. The distribution of the Radius 

of Gyration for structures belonging to sub-clusters 1a-1d is shown in Figure S3.  The open 

dumbbell structures where the head and tail domains have dissociated from one another, 

account for approximately 1.8% of the imaged data (   ). Additionally, 7 dense, 

highly compact structures were identified from clustering.  Representative structures from 

the three clustered structural groups are shown in Figure 2 and the corresponding 

1−Q

Nclosed = 912

Nopen = 17
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population averaged contact maps are shown in Figure 2B and 2C for the closed and open 

structures, respectively.  

 

The high density chromatin, cluster 3, which was found when imaging both Segment 1 and 

Segment 2[15], is characterized by an extraordinarily high density of DNA

, as estimated for naked dsDNA. For comparison, the density of 

heterochromatin that is estimated using microscopy data is  [40]; for this 

reason, we believe that these chromatin conformations are likely artifacts of the 

experimental protocol. We therefore have excluded Cluster 3 from further analysis. 

 

Assuming that the opening of the chromatin Segment 1 is in an effective thermodynamic 

equilibrium would imply a relative stability of , 

where  is an apparent free energy difference between the closed and open 

states and T is an information theoretic temperature characterizing the ensemble[41]. 

Interestingly, the relative number of open and closed structures found in the simulations 

(discussed in the proceeding section) is in remarkable agreement with this experimental 

finding.   

 

We then used the radius of gyration, , as an additional order parameter for the 

structural ensembles of segment 1 belonging to IMR90 and K562 (Figure 2D). A 

corresponding potential of mean force can be extracted from the distribution of as 

, which also shows the free energy difference of   

~ 2×103mg / ml

~ 200mg / ml

log Nclosed / Nopen( ) = Eopen − Eclosed ~ 4kBT

Eopen − Eclosed

Rg

Rg

PMF = −kBT logP(Rg ) ~ 4kBT
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between the closed (Cluster 1) and open (Cluster 2) structural sub-ensembles. The 

distributions of are also shown for Clusters 1 and 2 in Figure 2D. The open 

conformations (Cluster 2) possibly belong to a free energy minima in the PMF located 

between between , although additional statistics would be necessary to 

firmly establish the presence of this additional conformational mode. Interestingly, the 

vast majority of genes appear to be positioned along the linker region connecting the two 

globular domains (Figure 2E).  

 

Unlike Segment 1, Segment 2 of IMR90 completely lacks loop domains and, consequently, 

the averaged contact maps for Segment 2 exhibit no additional features beyond the decay 

in contact probability as a function of genomic distance (Figure S2). Structural analysis 

reveals that, without the presence of loop domains, Segment 2 is highly disordered; while 

clustering reveals open and closed structures, the lack of loop domains and domain 

boundaries results in the loss of dumbbell-like structures (Figure S4). It should be noted 

that unlike Segment 1, Segment 2 has an absence of genes (Figure S7). 

 

 

Rg

Rg ~ 0.6− 0.8µm
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Figure 2. Hierarchical Clustering and the detailed structural analysis of traced 

Segment 1. (A) The dendrogram representation of the hierarchical clustering of Segment 

1 (chr21 29.37-31.32Mb for IMR90 and K562 of [15]), where  is used as the distance 

between two structures. The clustering reveals three main clusters: closed dumbbell, open 
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dumbbell, and highly dense structures. Further analysis of Cluster 1 reveals the presence 

of sub-clusters labeled 1a-1d that represent the gradual opening of the closed dumbbell. 

Representative traced structures are shown for each of the clusters and sub-clusters. The 

population averaged contact maps for the closed and open structure clusters are shown 

respectively in (B) and (C), where 165nm is used to define a contact between two 30kb 

loci. (D) The distribution of the Radius of Gyration (top), the corresponding potential of 

mean force (center), and the distributions of Radius of Gyration for Cluster 1 and Cluster 

2 (bottom) are shown for the traced structures of Segment 1 of IMR90 and K562. The 

distribution exhibits a heavy tail to the right of the average value, indicating the existence 

of open, elongated structures. (E) The UCSC Genes track is plotted along the genomic 

positions of Segment 1 using the Genome Browser [42]. 

  

The chromosomal structures obtained from physical modeling are consistent with 

those observed with microscopy.  

We compare the chromosome structures sampled in the simulations to the diffraction-

limited microscopy structures of Bintu et al[15], finding that the conformational states 

observed using microscopy are also found in the simulated structural ensemble without any 

calibration or fine tuning of parameters. While MEGABASE+MiChroM, provides us with 

structures of entire chromosomes, we focus specifically on the same ~2Mb chromatin 

segment within chromosome 21 for our direct comparison. 

 

It is important to note that the simulated model, and the structural variability that it 

captures, was derived from the energy landscape learned from population-averaged DNA-
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DNA ligation data using the principle of maximum entropy[27]. MiChroM has been shown 

to be consistent with experimental ligation maps (Figure 1 and Refs:[27, 30, 32]), as well 

as the distribution of distances between Fluorescence in Situ Hybridization (FISH) 

probes[30] and several observations regarding chromatin dynamics[31].  

 

Using the  as the distance between all simulated structures for Segment 1, we now 

performed hierarchical clustering of the simulated structures. The dendrogram of this 

clustering is shown in Figure 3A, which uncovers two main clusters in the structural 

ensemble: a closed dumbbell (Cluster 1) and an open dumbbell (Cluster 2). The closed and 

open structures are consistent with those observed in the Bintu et al[15] datasets. The 

representative structures of the closed and open conformations are shown in Figure 3, 

alongside the averaged contact maps for each of the clusters (Figure 3B-C), which are 

consistent with those determined experimentally (Shown in Figure 2B-C). The simulated 

Cluster 1 can again further be sub-divided into subgroups; 1a, 1b, 1g, and 1d represent the 

4 most populated sub-groups (Figure 3), which comprise 66% of the simulated structures 

of Cluster 1. The subgroups appear to capture various stages of the process of opening. The 

structures in subgroup 1a are fully collapsed, while structures in 1b, 1g, and 1d capture the 

progressive opening of the closed dumbbell. The Radius of Gyration of sub-clusters 1a-1d 

are shown in Figure S5. 

 

No highly dense structures exist in the simulations. Such structures would collapse the 

entire chromatin segment to the volume of a single monomer, an occurrence that is 

1−Q
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prohibited by the energy function used to model the system. This is in harmony with our 

view that Cluster 3 seen in the experiments are artifacts of some sort. 

 

For Segment 1, we performed our analysis on a set of 6400 structures, a representative 

subset of the simulated trajectories. Both closed (  ) and open structures 

) were identified by the clustering algorithm. Since MiChroM assumes an 

effective equilibrium thermodynamics representation of chromosome structures and 

dynamics, we can quickly calculate the relative stability between closed and open 

structures in the simulated ensemble as , where 

 is the effective free energy difference between the closed and open states. 

This free energy difference is remarkably consistent with the value estimated using only 

the experimentally traced structures in the preceeding section.  

 

Finally, we calculated the distribution of the radius of gyration, , for the experimetal 

traced structures of Bintu et al [15] and for the simulated MiChroM structures for Segment 

1 belonging to IMR90 and K562 (shown in Figure 3D and Figure 3E respectively). Using 

a length scale calibrated previously[30] from a single FISH experiment of 0.165µm yields 

excellent quantitative agreement between the experimentally observed structures and those 

predicted de novo from simulation.  It is particularly remarkable that any discrepancies 

between the experimental and simulated datasets can in fact be captured within 5% error 

of our original length estimate (Figure S6). Similarly, Figure 3F shows the direct 

comparison between the distribution of for Segment 1 as well as the corresponding 

Nclosed = 6275

Nopen = 125

log Nclosed / Nopen( ) = Eopen − Eclosed ~ 4kBT

Eopen − Eclosed

Rg

Rg
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potential of mean force. We see then that MiChroM appears to reproduce the apparent free 

energy difference between open and closed structures found using the experimentally 

traced structures.  

 

 

Figure 3. Hierarchical Clustering and the detailed structural analysis of simulated 

chromatin segment. (A) The dendrogram representation of the hierarchical clustering of 
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simulated Segment 1 (chr21 29.37-31.32Mb for IMR90 and K562) where  is used as 

the distance between two structures. The clustering reveals two main clusters: closed 

dumbbell (6275 out of 6400 structures) and open dumbbell (125 out of 6400 structures). 

The closed dumbbell can be subdivided into sub-clusters labeled 1a-1d that represent the 

opening transition of the closed dumbbell. Representative structures are shown for each of 

the clusters and sub-clusters. The population averaged contact maps for the clusters are 

shown respectively in (B) and (C), where 165nm is used to define a contact between two 

50kb loci of the MiChroM model. The distribution of the Radius of Gyration is shown for 

Segment 1 IMR90 (D) and K562 (E) traced structures in comparison with the experimental 

structures. (F) Distribution of the Radius of Gyration and the corresponding potential of 

mean force is shown for both experiment and simulation for all of the structures of Segment 

1. 

 

Comparative analysis of the chromosomal structural ensembles of different cell lines: 

connecting the epigenetic markings of loci with their radial positioning within 

territories 

The frequency of chromatin type annotations predicted by MEGABASE over different cell 

types is shown in Figure 4A as a stacked bar chart that represents the distribution of 

chromatin type annotations predicted for each locus of chromosome 2 over all of the cell 

types.  It is evident that certain loci have similar epigenetic markings patterns in all the cell 

types that we examined, either by being generally transcriptionally active loci, thus likely 

belonging to the A compartment, or by being transcriptionally inactive B compartment 

1−Q
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loci. On the other hand, several segments of chromatin switch compartments between 

different cell types. 

 

Using the structural ensemble from the simulations based on the predicted compartments 

we then quantified the conformational differences between different cell types. On the 

chromosomal scale, structural differences emerge primarily from changes in the phase 

separation of epigenetically marked segments of chromatin. An example is illustrated in 

Figure 4B, which focuses on the region 39.9-40.6Mb of chromosome 2 for HMEC, 

HUVEC, and IMR90. The MEGABASE classification (Figure 4B) identifies the segment 

in HMEC and IMR90 as belonging to the A compartment, whereas the segment for 

HUVEC should belong to the B compartment. Representative 3D structures for this 

segment for each of the respective cell types are shown in Figure 4C.  

 

A plot of the radial density of A compartment loci and B compartment loci is shown in 

Figure 4D. These radial densities are consistent with previously reported simulations[27]. 

Taking a look at the radial distance of the center of mass of the segment of chromatin in 

each of the cell types, one finds that the A compartment loci tend to localize towards the 

surface of the chromosome, while the B compartment loci of the HUVEC cell type tend to 

localize in the interior (Figure 4E). A similar positioning of transcriptionally active 

chromatin toward the periphery of chromosomal territories was also observed by Nagano 

et al[13] in mouse cells using Hi-C experiments.   
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We additionally use simulations to predict and examine the spatial positioning of the 

segments of chromatin examined by Bintu et al in the context of the entire chromosome 

21.  The experimental traced structures could not be used to ascertain the spatial positioning 

of those chromatin segments within chromosome 21 since only short segments were 

imaged rather than the entire chromosome.  Figure 4F shows a stacked bar chart that 

represents the distribution of chromatin types predicted by MEGABASE for each genomic 

position of chromosome 21. Figure 4G shows the MEGABASE predictions for the traced 

segments, showing that IMR90 Segment 1 (29.37-31.32Mb) is composed of A-type 

chromatin while IMR90 Segment 2 (20.0-21.9Mb) primarily is composed of B 

compartment chromatin types. K562 Segment 1 (29.37-31.32Mb) appears to contain both 

A and B chromatin types. Figure 4H shows the radial distance distribution of the center of 

mass of these segments of chromatin, showing that IMR90 Segment 2 tends to be in the 

interior, IMR90 Segment 1 tends to lie near the chromosome surface, and K562 Segment 

1 occupies an intermediate region. 

 

The finding that there exists a radial ordering associated with the spatial 

compartmentalization is consistent with the fact that according to the MiChroM 

potential[27], contact interactions between B loci exhibit the most favorable energetic 

stabilization of all chromatin interactions. On the other hand, A to B or A to A type 

interactions are significantly weaker than the B to B interaction, but are comparably strong 

to each other (See Table S1). In other words, according to the MiChroM energetic 

parameters (which were originally learned from Hi-C maps), B loci drive the phase 

separation of the chromosomes. Much like a hydrophobic-polar model from protein 
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folding, the B compartmentalization forms the stable core of the simulated chromosome 

and the weaker interactions between A compartment loci with A or B loci tends towards 

the surface, to minimize the free energy of the molecular assembly.  Our theoretical model 

thus corroborates recent experiments[43, 44] that suggests heterochromatin phase 

separation is a major driving force behind genome organization, further highlighting the 

important role of phase separation in biological organization [27, 45-48]. 

 

Figure 4. Conservation of compartmentalization across cell types and the 

radial dependence of marked chromatin. (A) A stacked bar chart is used to 

represent the distribution of chromatin type annotations predicted by MEGABASE 
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as a function of the genomic position along chromosome 2 (hg19). The colors 

correspond the chromatin types given in the Figure Legend. For a given genomic 

position, the relative height of a particular color indicates the fraction of that 

particular chromatin type predicted at that locus. (B) The MEGABASE prediction 

of the chromatin type is shown for the chromatin segment 39.9-40.6 Mb of 

chromosome 2 for HMEC, HUVEC, and IMR90. A black arrow in (A) highlights 

the location of this segment.  (C) The chromatin segment 39.9-40.6 Mb of 

chromosome 2 is shown in a representative structure for each of the cell types, 

where the color of the segment denotes its MEGABASE annotation. For HMEC 

and IMR90, the segment of chromatin tends towards the chromosome surface, 

whereas the segment tends towards the interior for HUVEC. (D) The radial density 

as a function of the normalized radial distance is plotted for A compartment loci, B 

compartment loci, and all loci. (E) The probability density functions of the radial 

distance are shown for the center of mass of the segment 39.9-40.6 Mb of 

chromosome 2 for HMEC, HUVEC, and IMR90, respectively. (F) A stacked bar 

chart is used to represent the distribution of chromatin type annotations predicted 

by MEGABASE as a function of the genomic position along chromosome 21 

(hg19). The arrows indicate the locations of the traced segments of Bintu et al[15]: 

Segment 1 (29.37-31.32Mb) and Segment 2 (20.0-21.9Mb). (G) The MEGABASE 

annotation of the traced chromatin segments are given for IMR90 and K562. (H) 

The distribution of radial distances of the center of mass of each traced segment is 

shown.   
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Discussion 

DNA-tracing combined with diffraction-limited or super-resolution microscopy is 

beginning to shed light on the high degree of variability that is characteristic of 

chromosomal structures in the interphase[15-18]. These studies add to the growing body 

of evidence that a unique chromosomal fold simply does not exist in the interphase. 

Chromosome structures in the nucleus appear to be highly dynamical, owing to the many 

non-equilibrium processes in the cell, such as the activity of motor proteins. 

 

The advances in genome imaging and the molecular simulation of chromosomes allows 

the development of order parameters able to quantify the structural similarities between 

different chromosome structures, and the degree of heterogeneity in the ensemble of 

structures. Our results demonstrate that the order parameter Q, commonly used in protein 

folding studies and structural biophysics, is a good order parameter for characterizing the 

structural ensemble of a segment of chromatin. Despite the high degree of conformational 

plasticity, it appears that for segments of chromatin as short as the ones imaged by Bintu 

et al [15] (~2Mb in length), there do exist distinct clusters of chromatin structures that can 

be distinguished using the Q order parameter. The dominant structures found for chromatin 

Segment 1 (chr21 29.37-31.32Mb) examined using data from microscopy as well as from 

simulation can be described as being a closed dumbbell and an open dumbbell, where the 

ends of the dumbbell are the globular domains at the head and tail of the chromatin 

segment. 
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It is known that CTCF proteins bound along the genome acts as gene insulators, probably 

through their suppressing activity toward loop extrusion[49-51]. Interestingly, a survey of 

the positioning of genes along Segment 1 reveals that the vast majority of genes appear 

clustered in the linker region of the chromatin segment (Figure 2E; Figure S7A), 

sandwiched between the head and tail loop domains. On the other hand, there is an absence 

of genes located on Segment 2 (chr21 20.0-21.9Mb) (Figure S7B), which contains no loop 

domains. Classification of the experimentally imaged structures of Segment 2 lack the 

domain boundaries that segregate the head and the tail of the chromatin segment into 

globular domains, although still exhibiting open and closed conformations. These findings 

suggest a possible role in transcriptional regulation for the opening and closing of 

organized dumbbell structures. How open and closed structures would achieve such 

regulation of the transcriptional activity remains to be investigated.  It is however clear that 

understanding the structure-function relationship in the genome is a crucial question that 

can only be answered using an accurate statistical characterization of the conformational 

ensembles.  

 

Finally, our work refines the classical view of the spatial compartmentalization of 

chromatin. We find a striking dependence between radial positioning of chromatin and 

epigenetic marking patterns. Our theoretical model, MiChroM, predicts that 

transcriptionally active loci, typically belonging to the A compartment, move towards the 

surface of the chromosomal territory, while B compartment loci, typically inactive, move 

to the interior[27]. Since interactions among B-B loci result in the greatest energetic 

stabilization, aggregation of these loci seems to be driving force behind both the phase 
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separation of epigenetically similar chromatin into compartments and the expulsion of the 

active chromatin toward the periphery of chromosomal territories. In other words, 

according to the present energy landscape model, when the epigenetic marking patterns of 

a locus are rewritten from A to B, the locus moves towards the interior of the chromosome, 

perhaps affecting the transcriptional activity of the associated genes.  

 

Notes 

Unless explicitly stated otherwise, all genomic positions are reported using the positions 

of the hg19 assembly. All of the simulated chromosome structures discussed in this 

manuscript were deposited in the Nucleome Data Bank (NDB)[32] found at 

https://ndb.rice.edu.  
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Figure S1. Prediction of chromosome structures for HMEC, H1-hESC, and HeLa-S3. 

The 3D ensemble of chromosome structures was predicted for the cell types (A) HMEC, 

(B) H1-hESC, and (C) HeLa-S3 using the ChIP-Seq histone modification tracks for the 

respective cell lines found on ENCODE—shown are the structural predictions for 

chromosome 2. As validation, the chromosome structures were compared with the DNA-

DNA ligation experiments of Rao et al[1], where the simulated map is shown on the bottom 

left triangle and the experimental map is shown on the top right triangle. The datasets are 

visualized using Juicebox[2]. The MEGABASE chromatin type annotation is shown as a 

color vector under the contact probability map, followed by the A/B compartment 

annotation[1] for the simulated map (red) and the experimental map (black), respectively. 
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The Pearson’s R between the simulated and experimental contact maps for fixed genomic 

distances are plotted for the cell types HMEC, H1-hESC, and HeLa-S3, respectively, in 

thick lines. The Pearson’s R between the experimental maps of mismatching cell types are 

also shown with thin lines—See Legend.  (D) The experimental Hi-C map of HMEC (chr 

2) [1] from (A) is shown while highlighting (in black) the relative magnitude of the contact 

probability along the strip corresponding to a fixed genomic distance of 24 Mb between 

pairs of loci. The large peak in the contact probability located proximal to the centromere 

and is present in all of the experimental Hi-C maps for IMR90, HUVEC, K562, HMEC, 

H1-hESC, HeLa-S3, and GM12878 and is responsible for the sharp peak in the Pearson’s 

R vs. genomic distance located at approximately 24 Mb in Figure 1A-C and Figure S1 A-

C. The origin of this anomalous peak in the experimental map is unclear and it is not 

captured by the simulation.  (E) A matrix of Pearson’s R between the AB annotation of the 

experimental ligation maps for different cell types. The diagonal elements of this matrix 

show the Pearson’s R of a particular AB annotation from Hi-C with itself and is equal to 1 

by definition.  
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Figure S2. Contact maps for the experimentally traced segments of chromatin. The contact 

maps for the chromatin structures obtained from super-resolution imaging[3] for (A) IMR90 

Segment 1 (chr 21 29.37-31.32 Mb), (B) IMR90 Segment 2 (chr 21 20.0-21.9 Mb), and (C) K562 

Segment 1 (chr 21 29.37-31.32 Mb) are shown. For a given chromatin structure, two loci i and j 

are spatially proximal when the cartesian distance between them, , is less than or equal to a 

cutoff distance d—we define a contact using  . This allows us to define a label  for 

a pair of loci that equals 1 when loci i and j are in contact and 0 when they are not: 

.  The variance of the contact frequency over the mean contact 

frequency (Fano Factor)  is plotted for each of the respective chromatin segments in 

(D), (E), and (F), where the angular brackets denote averaging over the structural ensemble. A 

Fano factor of  indicates zero variability,  indicates that the process is under-

dispersed and characterized by a binomial distribution, and  is characteristic of a Poisson 

process. Segment 1 for IMR90 and K562 both have globular domains at the head and tail of the 

chromatin segment. On the other hand, Segment 2 has no loop domains and the only observable 

feature in its contact map is the decay of the contact probability as a function of genomic distance. 

 

 

 

  

rij

d = 0.165µm cij

cij =
1 if rij ≤ 0.165µm

0 if rij > 0.165µm

⎧
⎨
⎪

⎩⎪

F = 1− cij( )

F = 0 0 < F <1

F = 1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.21.001917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001917


  

Figure S3. Distribution of Radius of Gyration for sub-clusters of closed dumbbell 

structures obtained experimentally using tracing. Sub-clusters of Cluster 1 in Figure 2 

are denoted as 1a, 1b, 1c, and 1d. The sub-clusters of Cluster 1 characterize the gradual 

opening of the closed dumbbell structures.  
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Figure S4. Hierarchical Clustering and the detailed structural analysis of traced 

Segment 2. (A) The dendrogram representation of the hierarchical clustering of Segment 

2 (chr 21 20.0-21.9 Mb for IMR90 of [3]), where  is used as the distance between two 

structures. The dendrogram highlights 10 clusters—representative structures are shown for 

each of the featured clusters. Cluster 1 bears a close relation to the closed dumbbell 

structures observed for Segment 1 (Figure 2). Cluster 8 captures the highly dense chromatin 

A Hierarchical Clustering of Traced Structures of IMR90 Segment 2 (chr21 20.0-21.9 Mb)
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structures that are attributed to experimental artifact; analogous to Cluster 3 in Figure 2.  

The additional clusters capture the gradual opening of Segment 2. However, a striking 

difference from the structures of Segment 1 occurs due to the lack of loop domains in 

Segment 2; as a result, the globular domains at the head and tail of the segment observed 

for Segment 1 do not exist.  The lack of loop domains and domain boundaries leads to 

disordered structures that deviate from the open dumbbell structures observed for Segment 

1.  (B) The distribution of the Radius of Gyration (top) and the corresponding potential of 

mean force (bottom) are shown for the traced structures of Segment 1 and Segment 2 of 

IMR90. Both distributions exhibit a heavy tail to the right of the average value, indicating 

the existence of open, elongated structures. 
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Figure S5. Distribution of Radius of Gyration for sub-clusters of closed dumbbell 

structures obtained from simulation. Sub-clusters of Cluster 1 in Figure 3 are denoted 

as 1a, 1b, 1g, and 1d. The sub-clusters of Cluster 1 characterize the gradual opening of the 

closed dumbbell structures observed in simulation.  
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Figure S6. Deviations in the unit of length estimate can account for the differences in the 
experimental and simulated distributions of Radius of Gyration. (A) The distributions of 
Radius of Gyration for the experimentally traced IMR90 Segment 1 (A) and K562 Segment 1 
(B) ([3]) are plotted alongside the distribution of Radius of Gyration from simulation when the 
unit length of our model (0.165µm) is 5% smaller or 5% larger. 
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Figure S7. The positioning of genes along traced Segment 1 and Segment 2. The UCSC 

Genome Browser[4] is used to plot the UCSC Gene Track for (A) traced Segment 1 and (B) 

traced Segment 2. The positioning of the genes along Segment 1 appears primarily in the linker 

region sandwiched between the globular domains that are at the head and tail of the chromatin 

segment. Segment 2, which has no loop domains, also coincidentally has an apparent absence of 

genes.  
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Methods 

 

MEGABASE 

Maximum Entropy Genomic Annotations from Biomarkers Associated to Structural Ensembles 

(MEGABASE) was previously introduced in Ref: [5]. MEGABASE was trained to quantify the 

correlations between chromosome structural annotations (i.e., compartment annotations A1, A2, 

B1, B2, B3) with chromatin immunoprecipitation (ChIP-Seq) signals. This allowed for the 

inference of the chromatin types (compartment labels) for each 50 kb locus of chromatin, given 

information about the histone modifications present at that locus. 

 

Discretization of ChIP-Seq Data Tracks 

Chromatin Immunoprecipitatin (ChIP-seq) data was downloaded from ENCODE [6] for the cell 

lines explored in this manuscript: IMR90, HUVEC, K562, HMEC, H1-hESC, and HeLa-S3. We 

focused on 11 histone modification tracks: H2AFZ, H3K27ac, H3K27me3, H3K4me1, 

H3K4me2, H3K4me3, H3k79me2, H3K9ac, H3K9me3, and H4K20me1. These 11 tracks were 

previously shown to contain sufficient information to predict the chromosome structural 

ensembles for GM12878[5].  

 

For each chromosome, the ChIP-Seq signal is re-casted into the data tracks at 50 kb resolution, 

i.e., loci of 50 kb in size. This is performed by summing the ChIP-Seq signal contained within 

each 50 kb locus respective of each experiment. 

  

The integrated ChIP-seq signal for each 50 kb locus is assigned a discrete state ranging from 1 

(low signal) to 20 (high signal). This is performed by creating a histogram for each experiment of 
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the integrated signal for all of the 50 kb loci in the chromosomes of each cell type. All loci 

belonging to the top 5% of the distribution with the highest signal are assigned the highest signal 

state, i.e. 20. The remaining 19 signal states are defined by partitioning the remainder of the 

distribution linearly with respect to the signal strength; loci are assigned to those states according 

to their integrated signal. 

 

Prediction of chromatin structural types from ChIP-Seq data using MEGABASE 

 

The inferred probabilistic model ([5]) can be marginalized to predict the chromatin type for a 

given locus  when given the experimental ChIP-Seq measurements at loci l-2, l-1, l, l+1, and 

l+2: 

   (1) 

where L=11 is the number of epigenetic histone modifications used in this study. This allows for 

the prediction of the chromatin type (CST) for a given chromatin locus, given the ChIP-Seq 

signals for the 11 histone modifications at that locus. For additional details on the MEGABASE 

model, refer to Ref: [5]. 

 

 

Minimal Chromatin Model (MiChroM) 

The Minimal Chromatin Model (MiChroM) is a coarse-grained representation of individual 

chromosomes that was first introduced in Ref:[7]. The full energy function of MiChroM originally 

published in Ref:[7] is given by: 

   (2) 

where 

 

      

        

l

CST (l) = argmaxP(CST |  Exp1,...,L (l − 2,  l −1,  l,  l +1,  l + 2))

UMiChroM
!r( ) =UHP

!r( )+Utype−type
!r( )+Uloops

!r( )+Uideal
!r( )

Utype−type(
!r ) = α kl f rij( )

i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑
k≥l

k ,l  ∈ Types

∑

Uloops (
!r ) = χ ⋅ f rij( )

 i, j( )∈ Loops Sites{ }
∑
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and 

               .       

 

The first term  is a homo-polymer potential that describes the connectivity (bonds and angles) 

between monomers—the monomers here represent a 50 kb span of DNA. The second term  

describes the sequence-dependent interactions between pairs of monomers; this term captures the 

phase separation of chromatin loci into spatial compartments. The parameters  describe the 

energetic stabilization when two loci of chromatin type k and l are spatially proximal. The third 

term describes the interaction between loop anchors that stabilize a CTCF-mediated loop. 

The final term describes the local ordering in chromatin; a pair of loci are stabilized by an 

energy  that depends on the genomic distance between the loci pair,  .  

 

The parameters  and  were adjusted for the contact maps of GM12878 B-

lymphoblastoid cells in dataset GSE63525 [1]. The parameters  , , and  were iteratively 

trained [7] to be consistent with the DNA-DNA ligation map of chromosome 10 of human 

lymphoblastoid cells (GM12878)[1].  

 

MiChroM considers 5 chromatin types A1, A2, B1, B2, B3 plus a non-specific type NA, which is 

used to label the centromere.  

  

Uideal (
!r ) = γ d( ) f ri, i+d( )

i
∑

d=3

500

∑

f rij( ) = 12 1+ tanh µ rc − rij( )⎡⎣ ⎤⎦( )

UHP

Utype−type

α kl

Uloops

Uideal

γ (d) d = i − j

µ = 3.22 rc = 1.78

α χ γ
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The  parameters, which govern the type-to-type interactions, are given in Table S1:  
 A1 A2 B1 B2 B3 NA 

A1 -0.268028 -0.274604 -0.262513 -0.258880 -0.266760 -0.225646 

A2 -0.274604 -0.299261 -0.286952 -0.281154 -0.301320 -0.245080 

B1 -0.262513 -0.286952 -0.342020 -0.321726 -0.336630 -0.209919 

B2 -0.258880 -0.281154 -0.321726 -0.330443 -0.329350 -0.282536 

B3 -0.266760 -0.301320 -0.336630 -0.329350 -0.341230 -0.349490 

NA -0.225646 -0.245080 -0.209919 -0.282536 -0.349490 -0.255994 

Table S1. MiChroM parameters for type-to-type interactions.  

 

The parameter  governing the loop interactions is equal to -1.612990. 

 

The ideal chromosome potential is given by:  

 

 

 

with parameters , , . 

 

The reduced MiChroM energy function used in this manuscript omits CTCF-mediated loops unless 

stated otherwise: 

 

  (3) 

For comparison with the DNA-tracing structures of Bintu et al[3], simulations of chromosome 21 

for cell types IMR90 and K562 with CTCF-mediated loops were generated using the full energy 

function of MiChroM.   

 

α

χ
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γ 2
d
+ γ 3
d 2

γ 1 = −0.030 γ 2 = −0.351 γ 3 = −3.727

 

UMiChroM
!r( ) =UHP

!r( ) + α kl f rij( )
i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑ + γ d( ) f ri, i+d( )
i
∑

d=3

500

∑
k≥l

k ,l  ∈ Types

∑

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.21.001917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001917


 

1. Rao, S.S.P., et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals 
Principles of Chromatin Looping. Cell, 2014. 159(7): p. 1665-1680. 

2. Durand, N.C., et al., Juicebox Provides a Visualization System for Hi-C Contact Maps 
with Unlimited Zoom. Cell Systems, 2016. 3(1): p. 99-101. 

3. Bintu, B., et al., Super-resolution chromatin tracing reveals domains and cooperative 
interactions in single cells. Science, 2018. 362(6413): p. eaau1783. 

4. Kent, W.J., et al., The Human Genome Browser at UCSC. Genome Research, 2002. 
12(6): p. 996-1006. 

5. Di Pierro, M., et al., De novo prediction of human chromosome structures: Epigenetic 
marking patterns encode genome architecture. Proceedings of the National Academy of 
Sciences of the United States of America, 2017. 114(46): p. 12126-12131. 

6. Dunham, I., et al., An integrated encyclopedia of DNA elements in the human genome. 
Nature, 2012. 489(7414): p. 57-74. 

7. Di Pierro, M., et al., Transferable model for chromosome architecture. Proceedings of the 
National Academy of Sciences of the United States of America, 2016. 113(43): p. 12168-
12173. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.21.001917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001917

	Manuscript_Submission_Elife_FINAL
	Supporting_Elife_FINAL

