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Abstract—F5N is the first ever Android application for
nanopore sequence analysis on a mobile phone, comprised
of popular tools for read alignment (Minimap2), sequence
data manipulation (Samtools) and methylation calling
(F5C/Nanopolish). On NA12878 nanopore data, F5N can
perform a complete methylation calling pipeline on a mobile
phone in ∼15 minutes for a batch of 4000 nanopore reads (∼34
megabases). F5N is not only a toolkit but also a framework for
integrating existing C/C++ based command line tools to run on
Android. F5N will enable performing nanopore sequence analysis
on-site when used with an ultra-portable nanopore sequencer
(eg: MinION or the anticipated smidgION), consequently
reducing the cost for special computers and high-speed Internet.

Availability and implementation : F5N Android application is
available on Google Play store at https://play.google.com/store/
apps/details?id=com.mobilegenomics.f5n and the source code is
available on Github at https://github.com/SanojPunchihewa/f5n.

Contact : hirunas@eng.pdn.ac.lk

INTRODUCTION
Ultra-portable single-molecule real-time sequencers such as

MinION introduced by Oxford Nanopore Technologies (ONT)
measure the ionic current when a DNA strand passes through a
biological nanopore [1]. The sequencer periodically outputs a
group of reads in the form of raw current signals (packed into
a .fast5 file) which are subsequently base-called (to a .fastq
file) on a laptop or an ultra-portable ONT’s MinIT. Therefore,
sequencing and base-calling processes have become portable
but sequence analyses such as sequence alignment and genome
polishing are still not. Currently, the sequence analysis is either
performed using a cloud service (that involves uploading data
over high-bandwidth network) or using dedicated high-end
server computers, both of which are not synonymous with
ultra-portable sequencing. We present the first ever mobile
nanopore DNA sequence analysis toolkit F5N, which compacts
popular DNA analysis tools to an Android mobile phone
application to make sequence analysis fully portable (Fig. 1A).

The ultra-portable MinION sequencer has proven to be
beneficial for in-the-field sequencing in a variety of environ-
ments, such as Ebola surveillance in West Africa [2], microbial
communities inspection in the Arctic [3] and DNA sequencing
on the International Space Station [4]. The scarcity of portable
and offline analysis solutions restricts the true potential of these
sequencers. For instance, during Ebola surveillance, scientists
encountered unexpected Internet connectivity issues where 3G
signals dropped to 2G, massively increasing the data upload
time. Mobile applications like F5N would be beneficial in such
instances. In addition, mobile applications like F5N have the
potential to increase the value of the ONT’s SmidgION, the
upcoming smartphone pluggable sequencer.

F5N can execute an analysis process (known hitherto as
the pipeline) on a nanopore dataset copied or downloaded
by the user on to the phone storage. Out of the available
tools Minimap2, Samtools and F5C, the user can select to

run an individual tool, a combination of tools or the whole
methylation detection pipeline (Fig. 1B). The intuitive graphi-
cal user interface in the application allows the user to configure
the most common parameters for tools (Fig. 1C). A terminal
environment is also provided in the application for an advanced
user to provide command-line arguments. When the user starts
the execution, the output is written to the phone storage as
specified by the user and the log output is displayed on the
application in real-time (Fig. 1D).

To get familiar with F5N, an example demonstration is
provided inside the application which automatically downloads
and executes a complete methylation calling pipeline on a
small test dataset. F5N not only supports smaller genomes
(eg: bacteria and virus) but also large genomes such as the
human genome through an index partitioning approach as
demonstrated in [5]. Refer Supplementary Sections II,III or
the Help in the Android application on how to use F5N.

METHODOLOGY

F5N Android Application (GUI and the framework) was
developed using Java programming language. Popular long-
read aligner Minimap2 [6], the sequence data manipulator
Samtools [7] and the methylation caller F5C [8] (optimised
version of the popular tool Nanopolish [9]) were re-configured
and cross-compiled to produce shared libraries (.so files) to run
on Android over the ARM processor architecture. The interface
between the Android Java application and the native code
(compiled shared libraries) was written using the Java Native
Interface (JNI). This interface invokes the native functions in
the compiled libraries and captures the log output using Unix
Pipes. The captured output is displayed on F5N GUI. Android
Software Development Kit (SDK) and the Android Native
Development Kit (NDK) were used as development tools.

One can re-configure different other bioinformatics tools
written in C/C++ by following the detailed methodology in
Supplementary Section VI and integrate them to F5N by
following the guide in Supplementary Section VII. Thus, f5c is
not just a toolkit, but also a framework for integrating existing
or future C/C++ based command line bioinformatics tools. The
challenges imposed by the restrictions in Android Operating
system along with the methods to overcome them are discussed
in Supplementary Section VIII.

BENCHMARK RESULTS

We benchmarked F5N using two publicly available
NA12878 nanopore MinION datasets (flowcell IDs FAB42804
and FAF05869) [10]. A complete methylation calling pipeline
was executed: read alignment to the full human reference
genome (GRCh38) using Minimap2 (8 index partitions), sort-
ing and indexing of the alignments using Samtools followed
by methylation calling using F5C (Supplementary Section I).
Benchmarking was performed on four different phones (device
specification in Supplementary Table S1). For full experiment
details refer Supplementary Section III.
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Fig. 1. (A) Real-time analysis work setup. MinION connected basecaller and
basecalled data transferred to a mobile device. (B,C,D) Screenshots of F5N.
(E) Performance evaluation on four smartphones for two datasets (91 Mbases
and 34 Mbases)

FAB42804 MinION dataset being comparatively smaller
(only 16688 reads, 91.15 Mbases), F5N took 21.18 minutes
in average to complete the whole methylation calling pipeline
on it (Fig. 1E and Supplementary Table S2). A percentage of
77.8% of the execution time was consumed by Minimap2 read
alignment and 18.0% percentage of the time was consumed by
F5C methylation calling. The highest and the second highest
peak RAM were recorded for F5C methylation calling (3.4
GB) and Minimap2 reads alignment (2.2 GB) respectively. By
adjusting the memory governing parameters of each tool, peak
RAM can be reduced to support a variety of low end devices
(Supplementary Section IV).

FAF05869 MinION dataset (451,359 reads, 3.89 Gbases)
was used to create batches of 4000 reads (∼34.49 Mbases per
batch on average) to mimic the batch processing behaviour of
the base-caller. Batches of reads were assigned on to all four
mobile phones and were processed in parallel. A total time of
14.09 minutes was recorded in average for a single batch to
complete the pipeline (Fig. 1E and Supplementary Table S4). A
percentage of 89.8% of the execution time was for Minimap2
read alignment. The highest average peak RAM of 3.0 GB
was recorded for Minimap2 read alignment (Supplementary
Table S5). Given a sequencing run on the MinION takes 48

hours, a single mobile phone would have been adequate to
perform analysis on-the-fly for this particular dataset (with a
power source to keep the phone charged) — one batch could
be processed in 14.09 minutes while the sequencer would
produce a batch only after every 25.52 minutes in average
(see Supplementary Section V). Our future work will focus on
harnessing the computing power of multiple mobile phones in
parallel to keep-up with sequencing runs that produce larger
data volumes.

CONCLUSION
F5N demonstrates the true potential of portable genomics

by executing a complete nanopore methylation calling pipeline
locally on an Android mobile phone. A batch of 4000 nanopore
reads (∼34 megabases) could be processed in ∼15 minutes
where read alignment to the human genome, sorting and
methylation calling consumed ∼12, <1 and ∼2 minutes,
respectively. F5N can also be used by the community as
a framework for integrating other tools and pipelines for
nanopore data analysis. As future work, we will extend F5N to
seamlessly connect multiple mobile phones to the base-calling
device (laptop or ONT MinIT) through Wi-Fi, to process data
even faster and on-the-fly during a sequencing run.
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I. CALL METHYLATION PIPELINE
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Fig. S1. Methylation Calling (and Event Alignment) Pipelines comprise of three analysis tools - Minimap2, Samtools and F5C. Partition reference step is only
required for larger genomes that do not fit in RAM.

F5N supports two complete DNA analysis pipelines - methylation calling and event alignment. Both pipelines are very similar
except for the last steps. In this paper, we explain only the methylation calling pipeline. The pipeline has six steps (Fig. S1). The
pipeline’s inputs are a reference genome, ONT raw signal data (.fast5 files) and the corresponding base called reads (reads.fastq(a)
file). The first step of the pipeline is to align base called reads to the reference genome. The widely used reads alignment tool is
Minimap2 [6] [11]. However, Minimap2’s memory usage grows with the size of the reference genome. Since a mobile phone has
limited memory, Minimap2 crashes for larger references. A novel algorithm was introduced to overcome the memory constraint
using partitioned index [5]. We integrate this technique into our pipeline along with Minimap2. Please note that the reference
partitioning should be done on a computer and the partitioned reference can be stored on a mobile phone (Supplementary
Section III). Secondly, the aligned reads are sorted. Then these sorted results are indexed. Both sorting and indexing tasks use
Samtools [7]. The final phase of the pipeline is polishing. Nanopolish [12] is the widely used polishing tool for nanopore data.
We adopt a re-engineered version of Nanopolish called F5C [8], which is both memory and time efficient. F5C first indexes
base called reads and raw signal data. Subsequently, F5C can either perform methylation calling or event alignment. In Event
alignment pipeline, event alignment step is performed instead of methylation calling.
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II. F5N GUIDE

Start Show pipeline GUI
to select steps

Show configuration
for step

all steps
configured?

yes
Stop

no

Execute the selected
steps

Fig. S2. F5N stand-alone mode work flow

F5N has four major functionalities which are listed below.
1) Stand-alone mode for configuration and execution of a custom pipeline on the mobile device.
2) Mobile-cluster mode for real time analysis using a cluster of mobile devices, which is currently under development and

will not be discussed in this paper.
3) Download data-sets using URLs and extract compressed files.
4) An example demonstration of downloading and extracting a nanopore data-set of E. Coli Bacteria, followed by executing

a complete methylation calling pipeline on the data-set.
F5N includes a help section for new users to get started. It has a summary of the above four major functionalities (Fig. S3 B).
Once F5N mobile application is launched for the first time, the user is prompted to grant permission to read and write from the
internal storage of the mobile device. In most of the devices, once this permission is set, it is adequate to read from and write to
the external storage (SD card) as well. However, in certain devices the user is expected to set this permission explicitly, which
can be done by navigating to [help→set SD card permission] section (Fig. S3 C).

F5N’s start page has listed down the above four functionalities (Fig S3 A). A user navigating to stand-alone mode will land
on a page to select custom pipeline steps from where he can choose Minimap2, Samtools, F5C or a desired combination of
those tools (Fig. S3 F). Once the steps are selected, the user can choose either GUI mode or (Fig. S3 G and H) to configure
parameters for each tool. Fig. S2 shows the procedure to use stand-alone mode. It is recommended to use the GUI mode as
the final commands are always compiled into a set of strings and later shown in the terminal mode before proceeding to the
execution. In GUI mode file path arguments get auto completed once the user set the correct path to the data set directory.
F5N provides an elegant directory navigator for this purpose and both GUI mode and terminal mode have it. If the user chose
terminal mode at the beginning, he skips GUI mode and lands on the terminal mode. From the terminal mode the user can
proceed to the pipeline execution page (Fig. S3 I). Once the pipeline execution is started a timer will be displayed. After the
execution of the pipeline the user can write results to a log file (named f5n.log) which is located inside storage/mobile-genomics
directory. In the rare event of a crash of F5N, the user can run the previous pipeline using LOAD PREVIOUS CONFIGURATION
command. If the app crashes during an execution, the user can identify the error occurred by referring tmp.log which is located
inside storage/mobile-genomics folder. For more information regarding log files please refer the help section on home page in
the application.

Functionalities to download a data-set form a URL and extract a compressed data-set are available on a same page (Fig. S3
D). To download a data-set, the user has to set the specific data-set URL path and the location on the storage to where the
data-set should be downloaded. Decompressing a file is as easy as setting the file path of the compressed file and pressing the
EXTRACT button. The decompressed file will have the same location as the compressed file’s. Since a data-set usually consists of
many numbers of considerably small .fast5 files, it will take much time to transfer them to a device storage unless the files are
compressed. Hence, F5N is provided with a file extraction functionality to decompress the files as necessary. In mobile-cluster
mode compressed files will get transferred over WiFi.

The example demonstration is a setup with only three steps to help users get familiar with F5N. The steps involve the basic
procedure to execute a pipeline. They are 1, download a data set 2, extract the data set and 3, execute the pipeline (Fig. S3 E).
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Fig. S3. F5N screenshots (A) Homepage. (B) Help page. (C) Set F5N Settings. (D) Download and extract files. (E) Run an example pipeline. (F) Select
pipeline steps. (G) Configure pipeline steps using GUI. (H) Configure pipeline steps using terminal environment. (I) Pipeline execution
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III. DETAILED F5N EXAMPLES AND RESULTS

In this section, we present a detailed overview of the tests run using F5N. GRCh38 human genome reference was used as the
reference (3.1 GB). For reads alignment, the index constructed for the whole reference by Minimap2 is too large to fit in RAM
(∼8 GB). It was partitioned into 8 partitions using the script [13]. The resulting partitioned index is ∼8.2 GB in size. Since now
only a single partition is loaded to RAM at once, the memory of a mobile device is sufficient for Minimap2 alignment. User
has to store both the reference genome and its partitioned version either on the internal storage or on the external storage (SD
card). Please refer Supplementary Section VIII on how to choose the SD card format. Two datasets, flowcell id-FAB42804 and
flowcell id-FAF05869 were downloaded from the publicly available NA12878 nanopore sequenced data repository [10].

The first dataset (FAB42804) had 16688 reads (91.15 Mbases) and the second dataset had 451,359 reads (3.89 Gbases). The
first dataset was used as is to execute a complete methylation calling pipeline. To mimic the batch processing behaviour of the
basecaller, the second dataset (FAF05869) was divided into batches of 4000 reads (∼34.49 Mbases per batch on average). For
this, the original raw signal files (single-fast5 files) of FAF05869 were downloaded and converted to multi-fast5 using ONT’s
single to multi fast5 tool (version 1.4.8) with default options. Then, these multi-fast5 files were re-basecalled using ONT’s
basecaller guppy (version 3.3.0) under the dna r9.4.1 450bps hac model.

The devices listed in the table S1 were used in the experiments. All the devices were octa-core arm64-v8a instruction set
devices. Methylation calling pipeline illustrated in the Supplementary Section I was executed on the first dataset and on batches
from the second dataset (2 batches per device). The datasets along with the reference and partitioned index were copied to mobile
devices through a USB connection. Each test was repeated 3 times on a device and the tables S2-S5 show the average values.
The results are discussed in the paper.

Below, are the commands ran on a device to execute the complete methylation pipeline. These commands were generated
through F5N’s GUI mode, except for the first command.

1) Partitioning the reference genome (on a computer)
divide and index.sh [reference .fa file] [num parts [8]] [output .idx file] [min-
imap2 exe] [minimap2 profile [map-ont]]

2) Aligning reads to the partitioned human genome using Minimap2
minimap2 -x map-ont --split-prefix [temporary file path] [partitioned reference]
[reads.fastq|fasta] -o [output .sam file] -a -t [no. of threads [4]] -K [Number of bases
loaded into memory to process in a mini-batch [5M]]

3) Sort aligned reads using Samtools
samtool sort [minimap2 output] -o [output .bam file]

4) Index sorted reads using Samtools
samtool index [samtools sort output]

5) Index fast5 files
f5c index --directory [fast5 folder] [reads.fastq|fasta]

6) DNA methylation calling using F5C
f5c call-methylation -r [reads.fastq|fasta] -b [path to samtools index output] -g [ref.fa]
-o [output meth.tsv] -B [max number of bases loaded at once [2.0M]] -K [max number of reads
loaded at once [256]]

7) Aligning nanopore events to reference k-mers using F5C (optional, not a step in methylation calling)
f5c eventalign -r [reads.fastq|fasta] -b [path to samtools index output] -g [ref.fa] -o
[output meth.tsv] -B [max number of bases loaded at once [2.0M]] -K [max number of reads
loaded at once [256]] --summary [output events.summary.txt]

TABLE S1. LIST OF MOBILES USED IN THE EXPERIMENTS

Device Manufacturer Model RAM(GB) Internal Storage(GB)
A Huawei Nova 5T 8 128
B Nokia 6.1 Plus 4 64
C Samsung A70 8 120
D Xiaomi Mi 9T 6 120

TABLE S2. F5N PERFORMANCE FOR THE COMPLETE NA12878-FAB42804 DATASET (91 MBASES)

Device Minimap2 (min) Samtool sort (min) Samtool index (min) F5C index (min) F5C call methylation (min) Total time (min)
A 18.52 0.20 0.02 0.37 2.37 21.48
B 14.48 0.38 0.02 0.70 4.82 20.40
C 16.67 0.36 0.03 0.65 4.45 22.68
D 16.27 0.28 0.02 0.53 3.58 20.18

TABLE S3. PEAK RAM OF INDIVIDUAL STEPS WHEN PROCESSING NA12878-FAB42804 DATASET

Device Minimap2 (GB) Samtool sort (GB) Samtool index (GB) F5C index (GB) F5C call methylation (GB)
A 2.20 0.32 0.19 0.15 3.95
B 2.22 0.26 0.09 0.10 2.78
C 2.27 0.30 0.14 0.15 3.58
D 2.22 0.34 0.18 0.19 3.28

IV. ADJUSTING MEMORY GOVERNING PARAMETERS OF THE TOOLS

The following steps can reduce peak RAM usage, to run F5N on a broad spectrum of mobile devices. For more details visit
Minimap2 man page[14], Samtools man page[15] and F5C man page[16].
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TABLE S4. F5N PERFORMANCE FOR A BATCH OF 4K READS (34 MBASES) FROM NA12878-FAF05869 DATASET

Device Minimap2 (min) Samtool sort (min) Samtool index (min) F5C index (min) F5C call methylation (min) Total time (min)
A 11.83 0.07 0.02 0.13 1.13 13.18
B 13.20 0.13 0.02 0.25 2.98 16.58
C 11.02 0.13 0.02 0.25 2.83 14.25
D 10.23 0.10 0.02 0.17 1.82 12.34

TABLE S5. PEAK RAM OF INDIVIDUAL STEPS WHEN PROCESSING A BATCH OF 4K READS FROM NA12878-FAF05869 DATASET

Device Minimap2 (GB) Samtool sort (GB) Samtool index (GB) F5C index (GB) F5C call methylation (GB)
A 2.48 0.16 0.09 0.10 0.99
B 3.16 0.22 0.14 0.16 1.18
C 3.16 0.22 0.14 0.16 1.18
D 3.41 0.23 0.16 0.17 1.19

1) Increase the number of partitions the genome reference is split into, to reduce peak RAM usage in Minimap2 alignment
2) In Minimap2 alignment reduce the parameter value, number of bases loaded into memory to process in a mini-batch [-K]
3) In Samtools sort reduce the parameter value, the maximum required memory per thread [-m]
4) In F5C call methylation reduce the parameter value, batch size (max number of reads loaded at once) [-K]
5) In F5C call methylation reduce the parameter value, max number of bases loaded at once [-B]
6) In F5C call methylation skip ultra long reads by setting the option [–skip-ultra FILE]
7) In F5C call methylation reduce the threshold value to skip ultra long reads [–ultra-thresh INT]

V. CACLULATING BASE-CALLING RATE

Given the total number of reads in a dataset N, the number of reads in a base-called batch B and the duration of sequencing
run T, we can calculate the average time taken by the basecaller to produce a batch (base calling rate) R using the following
equation,

R =
TB

N
(1)

In our case T = 48 hours, B = 4000 and N = 451,359 which results in R to be 25.52 min.
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VI. RECONSTRUCTING SEQUENCE ANALYSIS TOOLS FOR ARM/ANDROID

Original executable
tool [ex:f5c]

3rd party libraries
System libraries

[ex:libz]

Modify & compile
source files
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Can cross
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Cross Compile to build
static/dynamic libraries

Compile using Linux environment on Android (Termux) 
or using ARM based single board computer (Odroid XO4)

 [ex:hdf5]

Link with 3rd party
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Fig. S4. Cross-compiling work flow and JNI interface design involved in including a new sequence analyis tool to F5N.

A. Introduction and prerequisites
This section provides fundamental guidelines on how to compile an analysis tool written in C/C++ for Android. Except for a

few essential amendments (discussed below), our approach does not alter the original C/C++ code, which permits straightforward
integration of new C/C++ analysis tools into F5N.

Having some prior experience with Android SDK (Software Development Kit), Android Studio[17], NDK (Native Development
Kit) [18], Java Native Interface (JNI)[19], ADB (Android Debug Bridge)[20], CMake build manager[21] and Ninja build
system[22] certainly helps someone who is interested in rebuilding F5N or extending it with new tools.

B. Native compiling an analysis tool
In our case, the fact that all the necessary tools (Minimap2, Samtools and F5C) were written in C/C++ let us to follow the same

approach to compile them for Android. The approach can be summarized as shown in Fig. S4. Before starting the compilation we
tested the tools using Termux (a terminal emulator with Linux environment for Android)[23]. In Termux, the tools’ git repositories
were cloned and built as instructed on the respective installation guides. This method can be known as native compiling. If a tool
gets natively compiled in Termux, we can reasonably expect the tool to get cross-compiled for Android. There are two major
Instruction Set Architectures (ISA) for ARM mobile devices called armeabi-v7a and arm64-v8a. Termux was installed on multiple
devices with different architectures to make sure that the tools can be natively compiled in both the architectures. It is noteworthy
that in Termux, the executable versions (.exe format) of the tools were built in contrast to their dynamic library versions (.so
format). To build an Android application, the dynamic version of an original tool is required[24]. All the Android applications
are a subset of Java programs and the gateway to the native (C/C++) code is obtained by loading the dynamic version of the
native tool. To obtain a dynamic version of the tool (.so format), we can change the build configuration and natively compile
in Termux. However, this method is not encouraged as it can impose device based restrictions on .so files which can result in
intensive and costly debugging. The recommended method to obtain the dynamic version of a tool is to cross-compile using the
Android Tool-chain[25]. This eliminates the burden associated with native compiling and simplifies the process of updating the
tools to their latest versions. This in return automates continuous integration and delivery. In Suppliementary Sections VI-E and
VII we provide further details on how to cross-compile.

C. Determining third party libraries used by an analysis tool
It is necessary to determine the third party libraries used by the analysis tools (Minimap2, Samtools and F5C). A tool to

function correctly, associated third party libraries should also be linked statically or dynamically with the tool, i.e., third party
libraries should also be cross-compiled. Samtools depends on htslib [26] library. F5C depends on both htslib and HDF5 [27]
libraries. Hdf5 library is used to handle fast5 files and there exists no straightforward method to cross compile hdf5. Hence we
used native compiled instances of HDF5 library (the instances that were built using Termux). We maintained two instances of
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HDF5, one for each Architecture (armeabi-v7a and arm64-v8a). These third party libraries were statically linked to respective
shared libraries. If a third party library is being used by two dependent tools, make sure to link a dynamic version of the library.
For an example in our case, htslib was used by Samtools and F5C. Trying to statically link htslib separately to each tool, caused
the software to crash on some devices. This was resolved by linking htslib dynamically.

D. Designing JNI interface
JNI acts as the bridge between native (C/C++) methods and Java function calls. In JNI interface, each tool’s int main(int

argc, char* argv[]) function was called. The function name, int main(int argc, char* argv[]) was renamed as int init X(int argc,
char* argv[]) where X was Minimap2,Samtools or F5C. This function renaming is necessary as the tools are not stand-alone
executable applications but dynamic libraries. Moreover, a header file was introduced for each tool that contained the function
signature int init X(int argc, char* argv[]). JNI interface was extended to facilitate the following,

1) Handle exit signals returned by native code.
2) Handle SIGSEGV signals returned by native code.
3) Raise exceptions on behalf of the native functions.
4) Reset argv variable before calling another native function [int init X(int argc, char* argv[])].
5) A tunnel between the native code and the Java program to communicate standard error messages.
6) If original code does not define an output file path argument, redirect standard ouput to a file.

It is important to handle different types of signals and errors thrown by the native code to prevent JVM from crashing. For
example the original code most probably will exit with an error if something goes wrong. This kills the JVM if not handled.
We want to keep the JVM running throughout a F5N session. In order to do that, the exit call should be caught and handled in
JNI [28]. In a similar manner, SIGSEGV signals should be handled safely [29]. Once an exit call or SIGSEGV signal is handled
this should be informed to Java program so that the user can investigate the problem. To do this, exceptions are thrown from
JNI to Java [30].

The original C/C++ tools take input as command line arguments. When a pipeline with more than one step is executed, the
native code attempts to read the same argument vector multiple times. If the argument vector is not reset after the completion
of the first step, arguments do not get parsed in the second step as desired. This resetting part is not implemented in most of
the original libraries. In JNI this should be implemented to avoid failures associated with arguments parsing [31].

Define a new command line
argument for ouput file path

(output file path argument does
not exist in the original code)

Writes to stdout
(output file path argument does

not exist in the original code)

Java side JNI interface Native Side

Writes to stderr

Open a file pipe to listen to
stdout and save it as a file

Open a file pipe to
listen to stderr

Listen to the file pipe and
update GUI in F5N

Writes using NDK Logging
functions

Listen to Android Logcat
and update GUI in F5NMethod III

Method IV

Method I

Method II

Fig. S5. Method I - Using a file pipe to listen and save standard output. Method II - Define a new command line argument for output file path. Method III -
Using NDK Logging functions to print standard error to Logcat. Method IV - Using a file pipe to listen standard error.

Typically a tool writes the results to the standard ouput and meta-information to the standard error. On Android, we want
the results to be written to a file and meta-information to be displayed on a GUI in real-time. To write results to a file, most of
the tools provide a command line argument called file output path. Otherwise, in terminal environments like in Linux, we can
redirect the standard output to a file (using the output redirection operator ‘>’). On Android, this is not possible. To overcome
this issue two methods can be adopted. The first is to open up a file pipe in JNI to listen to the standard ouput, where the results
will get written to this file (Fig. S5 Method I). The second is to define the output file path as an argument in the original code
(Fig. S5 Method II). However, all the libraries in F5N had output file path as an argument. Now we present two methods to catch
the standard error, which should be displayed to the user in real-time. The first method is to replace all the fprintf(stderr,...)
functions with functions defined in NDK logging [32]. Then the standard error will get written to Android Logcat [33]. From
Android Logcat, it is again piped to be displayed (Fig. S5 Method III). In practice, this method does not guarantee to display the
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complete set of messages written to the standard error during an execution. The more robust method is to open a file descriptor
to listen to the standard error. Then this file should be read in Java side and the GUI should be updated (Fig. S5 Method IV).
This involves no amendments in the original libraries but a declaration of file descriptors in JNI code.

E. Cross-compiling an analysis tool
To facilitate the modifications discussed above, the original repositories of the tools were forked and changed. Different tools

use different build configurations. The build scripts for each tool were re-written using CMake. Suppose an original tool is
built with GNU Make using a Makefile. In that case, one has to extract the source files, header files, compiler flags, linked
libraries etc to create a CMakeLists.txt file. Refer how a CMakeLists.txt was written for htslib [34]. CMake along with Ninja
is the recommended native build setup for Android. Compiling with CMake allows ADB to go deep into the native code when
debugging. This was really helpful to figure out the static/dynamic version issue related to htslib library. It was straightforward
to link the necessary third party libraries(HDF5 and htslib) and system libraries (libz, liblog, libm etc) with original libraries
using CMake. To follow the full set of modifications please refer Minimap2 [35] Samtools [36] and F5C [37]. One can build
libraries without using CMake but by using already available Standalone Toolchains[38]. However, this eliminates the possibility
to debug using ADB.

F. Dynamic object construction in Java side
The part of F5N written in Java is dynamic and adaptive. For example the arguments set for each tool is stored in JSON format

and objects are created by converting JSON objects to Java objects. In this way, F5N and arguments are decoupled making it
easy to alter the format of the arguments if needed. The widgets linked with arguments are drawn programmatically instead of
manually drawing them on the layout. This makes it easy to extend F5N with new analysis tools (refer Supplementary Section
VII).

VII. INTEGRATING A NEW ANALYSIS TOOL TO F5N
The following steps summarize the work flow to add a new DNA analysis tool written in C/C++ to F5N. Please refer Fig. S6

for F5N directory structure. F5N repository is available at https://github.com/SanojPunchihewa/f5n

f5n
app/src/main

cpp
java/com/mobilegenomics/f5n

activity
core
dto
fragments
support

jniLibs
arm64-v8a
armeabi-v7a

res

Fig. S6. F5N project directory structure, only the important folders are shown. The directory cpp contains CMakeLists.txt and interface X.h header files. The
.so files are stored according their ISA inside jniLibs directory. The Java Class PipelineStep is inside directory core.

1) Identify third party libraries that the new tool depends on.
e.g. Samtools depends on htslib.

2) Create dynamic versions of third party libraries if they are used by other analysis tools in F5N.
3) Create static versions of third party libraries if they are not used by other analysis tools in F5N.
4) Cross compile the new tool and link it with static third party libraries to create a dynamic library.
5) Place all the dynamic libraries in jniLibs/[ANDROID ABI] directory.
6) Repeat the above steps for different ANDROID ABIs. (armeabi-v7a and arm64-v8a)
7) Change CMakeLists.txt file in cpp directory to include dynamic third party dependencies.

• add library(libnewdependency SHARED IMPORTED)
• set target properties(libnewdependency PROPERTIES IMPORTED LOCATION

CMAKE SOURCE DIR/../jniLibs/$ANDROID ABI/libnewdependency.so)
8) Change CMakeLists.txt to include the new analysis library.

• add library(libnew SHARED IMPORTED)
• set target properties(libnew PROPERTIES IMPORTED LOCATION

CMAKE SOURCE DIR/../jniLibs/$ANDROID ABI/libnew.so)
9) Change CMakeLists.txt file to link the new analysis library.

• target link libraries(native-lib libminimap libsamtool libf5c
libhts libnew libnewdependency1 libnewdependency2 ... $log-lib)

10) Copy interface X.h file with the function signature init X(int argc, char* argv[]) to cpp directory (X is the name of the
new library).

11) Create enum entries in PipelineStep Class located in core directory for the sub-tools (commands) in the new analysis tool.
• NEW TOOL NAME(COMMAND ID, "tool name sub-tool name(command)");
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ex: F5C INDEX(3, "f5c index");
12) For each sub-tool (command) create a JSON file containing the list of arguments and their default values[39].
13) Link JSON files to the configureArguments method in GUIConfiguration Class located inside java/com/mobilegenomics/f5n

directory, i.e. add new switch cases to match NEW SUB TOOLs and assign JSON files appropriately.
14) Import interface X.h header file to native-lib.cpp source file located inside cpp directory.

• include "#interface X.h"
15) Follow a similar approach to other tools to call init X(int argc, char* argv[]) function in native-lib.cpp source file.

Moreover, the following list comprises of common mistakes that could happen when extending or rebuilding F5N. Please refer
Supplementary Section VI for details.

1) Overlooking compiler flags when creating a CMake build configuration.
e.g. not including the compiler flag -D FILE OFFSET BITS=64 in Minimap2 CMake build will result in file read failures.

2) Statically linking third party libraries that are used by more than one tool.
e.g. Linking the static version of htslib library caused Samtools and F5C to fail.

3) Not Handling native exceptions in JNI interface
4) Not Handling native SIGSEGV signals and exit signals in JNI interface
5) Not Resetting command line argument vector before calling a new native function

VIII. ADVANCED DETAILS

F5N is not built as an Android background process. That is because when processing a dataset, F5N may consume memory
more than the recommended amount for a background process. Android kills such over memory consuming background processes.
Hence, F5N is built as a regular Android application. However, this introduced a caveat. That is when running a pipeline, the
device display should be kept on. That is because Android interrupts running applications once the display goes off. Hence,
F5N has to keep the display on and this increases power consumption. Our workaround is to reduce the display brightness to
its minimal value, once a pipeline execution starts. With this method, device B’s battery (3060 mAh) drains approximately by
214.2 mAh for a complete methylation calling pipeline on a batch data-set (∼34.49 Mbases on average).

Android tends to kill a process or destroy an activity if something goes wrong. In F5N usually it the case when the native
code tries to over consume memory. Since this kill signal comes from the Android Kernel, it cannot be handled. The simple
solution is to be aware of the device memory and set memory governing parameters accordingly (see Supplementary Section IV).
Saving the state of the application, i.e, saving previously executed command and loading it later, saves time for re-configuring
the pipeline (Fig. S3F). In the next attempt, the user is advised to tweak memory parameters as it is the solution most of the
time.

Already executing native code on Android cannot be stopped arbitrarily. The ramification of this is that the user cannot suspend
or stop an executing pipeline. On the other hand, JVM being a multi-threaded process and JNI calls not being POSIX async-
signal-safe, it is not possible to run the native code in a cloned process. As a consequence peak RAM usage will record the
highest RAM usage for the whole application session rather than for the latest pipeline execution. To circumvent both problems
the ”safest” solution is to restart F5N. An advanced method to suspend or stop an executing command is by adding interrupt
listeners to the original code. That is while the original code is being executed, it periodically checks its environment for an
interrupt signal, e.g, state of a flag value in a file. The flag value can be changed on-the-fly to stop or suspend the execution.
Please note that in F5N, when a pipeline is running the user can still go to the previous activity. In such attempts, a warning
message is displayed saying that the pipeline will stop. This does not guarantee the complete termination of the native process
but the termination of the running Java thread. Hence, the user is advised to restart the application to safely terminate a pipeline.

A mobile phone has two storage types - internal storage and external storage (SD card storage). FAT32 is a popular file system
format used in SD cards. However, FAT32 does not support files with more than the size of ∼4GB. Usually, the partitioned
genome reference file exceeds the size 4GB. Therefore, the user is advised to use file system formats like ext3, ext4, exFAT32 etc
as the SD card file system format. Out of these formats, exFAT32 is recommended. It is noteworthy that Google has introduced
(from Android 8.0) a virtual file system wrapper called SDCardFS to regulate SD card access by Android applications. However,
still, the SD card should have one of the compatible file system formats to work with larger files.

Downloading and extracting a dataset to the SD card can be done after setting SD card permission (refer Fig S3C). On
Android, writing to the SD card storage via native code (C/C++) can only be done using Storage Access Framework (SAF)[40].
To implement SAF, most of the original code has to be changed. One workaround is to use the Method I as illustrated in Fig. S5.
In JNI interface, we can use SAF to write the standard output to the SD card. However, there are sub-tools that directly write to
files, e.g., F5C index writes files automatically to the dataset directory. In such scenarios, the original tool should be reconfigured
to facilitate SAF. The current version of F5N does not support this feature. Therefore the user cannot perform writes to the SD
card but can read from it.
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