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Abstract 
 
Active neurons can be broadly classified by their intrinsic oscillation patterns into two classes 
characterized by periodic spiking or periodic bursting. Here we show that networks of identical bursting 
neurons with inhibitory pulsatory coupling exhibit itinerant dynamics. Using the relative phases of bursts 
between neurons, we numerically demonstrate that the network exhibits endogenous transitions 
among multiple modes of transient synchrony. This is true even for bursts consisting of two spikes. In 
contrast, our simulations reveal that identical singlet-spiking neurons do not exhibit such complexity in 
the network. These results suggest a role for bursting dynamics in realizing itinerant complexity in neural 
circuits. 
 

I. Introduction 
 
Neural systems exhibit transitions across multiple spatiotemporal scales. While individual neurons 
exhibit spiking events, which are sharp changes to the resting membrane potential, an ensemble of self-
organized neurons can exhibit transitions among multiple coexisting metastable states [1–3]. In a 
metastable state, the interacting elements enter into a transiently fixed relationship to each other, or 
“mode”, before subsequently diverging and visiting a different transient mode. Metastability has been 
suggested to underlie the necessary coordination within and between brain regions [2]. Moreover, 
experimental evidence shows that the coordinated transitions among neural ensembles correlate with 
changes in an organism’s behavior [4–8]. 

Chaotic itinerancy [9] is a special case of metastability and has been observed in many complex systems, 
including globally coupled maps [10,11] and electrically coupled point neurons [12–14]. Those coupled 
systems show endogenous transitions through a sequence of quasi attractors in the state space. Among 
possible scenarios underlying itinerancy in coupled systems [15] are attractors with riddled basins [16], 
where initial conditions that are arbitrarily close to an attractor can generate trajectories leading to a 
different attractor. However, the intrinsic property of interacting elements that is necessary for the 
emergence of network itinerancy has not yet been clarified.  

Neurons can be dynamically classified based on their intrinsic patterns of activation [17]. In the current 
work, we constructed three separate networks of identical elements based on two broad classes of 
neurons: bursting neurons, which have either chaotic or two-loop periodic trajectories in the phase 
space, and spiking neurons, which have a single-loop trajectory. Analysis of the ensuing network 
dynamics revealed several novel results. First, networks of bursting neurons showed transiently stable 
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phase differences in pairs of neurons at the level of bursts, which transitioned to other transiently stable 
arrangements endogenously. Previous reports have described ensembles of bursting oscillators that 
synchronize on the bursting timescale and desynchronize on the spiking timescale [18]. Our results show 
that synchronized bursting is only one of the multiple modes of stability observed in the network. We 
illustrate these complex dynamics using the burst-level phase differences between neurons as a variable 
of coordination. Second, we demonstrate that even networks consisting of bursting elements as simple 
as doublet-spikers can exhibit multiple stable phase differences and endogenous transitions. Third, 
singlet-spiking neurons only display, in contrast, perfectly phase-synchronized and desynchronized 
modes between pairs of neurons in the network. These results suggest that complex periodic oscillators 
such as bursters are crucial for the emergence of itinerant dynamics in neural networks. 

II. Burst-level phase difference as a coordination variable 
 
We use Izhikevich model (IM) neurons [19], whose dynamics are described by (eqn1-2): 

Here, 𝐼 is a constant current, and 𝐼𝑠𝑦𝑛 is the total synaptic current from all presynaptic neurons. The 

parameters were identified by an optimization framework [20] to match the spike patterns of an 

isolated (𝐼𝑠𝑦𝑛=0) IM neuron to experimentally-obtained voltage traces from a stuttering CA1 

neurogliaform cell (a GABAergic neuron type) from the rodent hippocampus [21] (𝑘 = 3.59, 𝑎 = 0.01, 𝑏 =

−10, 𝑑 = 120, 𝐶 = 195, 𝑉𝑟 = −63.5, 𝑉𝑡 = −46.6, 𝑉𝑝𝑒𝑎𝑘 = 11.4, 𝑉𝑚𝑖𝑛 = −50.6). The bifurcation diagram with 

respect to the constant input current 𝐼 was obtained by making a Poincaré cut at 𝑉 = 𝑉𝑝𝑒𝑎𝑘 − 20𝑚𝑉 in 

the direction of increasing 𝑈 after discarding 1s of initial transient behavior. This revealed period-

doubling cascades leading to chaos (Fig 1A). For chaotic bursting neurons, we set 𝐼=500pA. 

A network of 100 identical neurons, which were coupled using a delta function (eqn-3), was then 

constructed with 

  
where 𝑚 is the number of presynaptic neurons connecting to the postsynaptic neuron 𝑗 and 𝑊 is the 
inhibitory connection weight. 𝛿𝑖  is 1 (for a single time step) if neuron 𝑖 spikes and is 0 otherwise. All 
networks were constructed with a connection probability of 0.7 and a constant 𝑊 (𝑊 = 8 unless 
specified otherwise). Simulations were performed with CARLsim [22] for a duration of 120s using the 
fourth order Runge-Kutta integration method with 100 steps per millisecond. The first 5s of simulation 
was discarded, and the analysis was performed for a total duration (∆𝑇) of 115s.  
 

𝐶 ⋅
𝑑𝑣

𝑑𝑡
= 𝑘 ⋅ ሺ𝑉 − 𝑉𝑟ሻ ⋅ ሺ𝑉 − 𝑉𝑡ሻ − 𝑈 + 𝐼 − 𝐼𝑠𝑦𝑛 

𝑑𝑈

𝑑𝑡
= 𝑎 ⋅ ሼ𝑏 ⋅ ሺ𝑉 − 𝑉𝑟ሻ − 𝑈ሽ 

𝑖𝑓 𝑉 = 𝑉𝑝𝑒𝑎𝑘  𝑡ℎ𝑒𝑛 𝑉 = 𝑉𝑚𝑖𝑛,  𝑈 = 𝑈 + 𝑑 

(1) 

(2) 

𝐼𝑗
𝑠𝑦𝑛

= ෍ 𝛿𝑖

𝑚

𝑖=1

. 𝑊, 
(3) 
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In order to extract the relative phases of bursts, the following steps were carried out for each neuron. 
First, discrete spike events were lowpass-filtered to obtain a continuous periodic signal which captures 
bursting cycles (Fig 1C, also see Fig S1A-C top). Then, the instantaneous phase of this signal was 
extracted using the Hilbert transform. Finally, the instantaneous phase differences between pairs of 
neurons were calculated for each millisecond in a given duration. We find that pairs of neurons 
predominantly exhibit phase differences near 0, 2𝜋 3⁄ , or 4𝜋 3⁄  radians, and that they endogenously 
transition among these transiently locked states (Fig 1D).  
 
Next, we studied the stability of transiently phase-locked modes and the nature of transitions among 
them. Specifically, we asked the following questions pertaining to pairs of neurons: (i) What is the locked 
duration in each of the three modes? (ii) For what fraction of the total duration (∆𝑇) does a pair exhibit 
stable phase differences in each of the three modes? (iii) What are the transition probabilities among 
the three modes?  
 
The stability of a pair of neurons over a duration 𝛿𝑇 was quantified by averaging all the instantaneous 
phase differences ∆𝜃ሺ𝑡ሻ represented on a unit circle (eqn-4). 𝛿𝑇 = 500𝑚𝑠 unless specified otherwise. 
 

Here, ⟨𝑓⟩ denotes the time average of 𝑓. The magnitude of 𝑍𝛿𝑇
𝑛  was used as a measure of stability. The 

parameter 𝑛 indicates the number of stable clusters of phase differences between pairs of neurons. For 

example, if the bursts of two neurons are perfectly synchronized over 𝛿𝑇, then |𝑍𝛿𝑇
𝑛=1| = 1. If their 

phase differences segregate into two equally populated clusters at 0 and 𝜋 radians, then |𝑍𝛿𝑇
𝑛=2| = 1 and 

|𝑍𝛿𝑇
𝑛=1| = 0 [23]. 

 

A pair of neurons was deemed to be ‘stable’ or ‘phase-locked’ in a mode if |𝑍𝛿𝑇
𝑛=1| ≥ 0.95 during 𝛿𝑇. 

Such stable pairs were also assigned a mode 0, 2𝜋 3⁄ , or 4𝜋 3⁄  based on the angular range in which the 

phase of 𝑍𝛿𝑇
𝑛=1 lies (see Fig 1D for the bounds of the three ranges). In order to identify how long a pair 

remains phase-locked in a given mode, |𝑍𝛿𝑇
𝑛=1| was calculated sequentially for non-overlapping 𝛿𝑇s until 

either the pair was unstable (|𝑍𝛿𝑇
𝑛=1| < 0.95 for a duration 𝛿𝑇) or a new mode was detected. The sum of 

all stable intervals (𝛿𝑇s) calculated from this sequential search was taken as the locked duration of the 
given mode. This gives a sequence of modes and a locked duration (in increments of 𝛿𝑇) in each mode 
visited by a pair.  
 
The locked durations of any of the three modes for 100 randomly selected pairs were exponentially 
distributed (Fig 2A-C), consistent with a previous report [11]. Pairs exhibit an expected locked duration 
of roughly 2s in all three modes. It is worth mentioning here that the expected locked durations do not 
give information about the fraction of the overall time ∆𝑇 that such locked modes were observed, 
because of their transient nature. We refer to this fraction as the fraction of locked time, given by 
𝑁 ×  𝛿𝑇 ∆𝑇⁄ , where 𝑁 is the total number of phase-locked 𝛿𝑇 intervals observed for a pair. The average 
of the fractions of locked time was 0.22 for each mode (Fig 2A-C insets). 
 
In addition, the sequences of modes visited by 100 pairs were used to gain insights into the nature of 
the transitions. The counts of transitions among the modes, which were given by the number of pairwise 
occurrences of modes in the sequence, were used to construct a 3x3 mode transition probability matrix 
(Fig 2D). Interestingly, there were several occurrences where pairs of neurons, after becoming unstable, 

𝑍𝛿𝑇
𝑛 = ൻ𝑒𝑛∙𝑖∙∆𝜃ሺ𝑡ሻൿ

𝑡∈[𝑡1,𝑡1+𝛿𝑇] 
 

(4) 
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failed to exhibit successful transitions. In other words, after losing stability from a certain locked mode, 
they were attracted back to the same mode rather than escaping to a different one (see Fig S2 for an 
example). The probability of successfully transitioning to a different mode (i.e. escape probability) is 
0.72 from each of the three modes (Fig 2D). The apparently random nature of successful transitions 
from a given mode, which is noted by the approximately equal probabilities of transitions to the other 
two modes, is suggestive of a high entropic network exhibiting states that persist over several cycles of 
bursts.  
 

III. Itinerancy in the simplest form of bursting 
 
Bursting dynamics include a spectrum of oscillatory patterns ranging from a double loop trajectory in 
the phase space (e.g. doublet-spiking observed for 𝐼=580pA in Fig 1A) to an aperiodic trajectory 
(𝐼=500pA in Fig 1A). In this section, we consider networks separately consisting of doublet-spiking 
neurons (the simplest form of bursting with only two timescales) and singlet-spiking neurons. While the 
periodicity of oscillations in the chaotic-spiking IM neuron depends on the bifurcation parameter 𝐼 (Fig 
1A), here we considered IM neurons with the highest periodicity of only two for doublet-spiking and one 
for singlet-spiking (Fig 3A). 
 
It was previously reported that bursting dynamics do not exist for low values of the parameter 𝑘 in the 
IM neuron (see eqn-1) [24]. We obtained doublet- and singlet-spiking neuron models by only varying 
parameter 𝑘 from the chaotic-spiking model (𝑘=1.5; 𝐼=175pA and 𝑘=0.5; 𝐼=200pA for doublet- and 
singlet-spiking neurons respectively) (Fig 3). It should be noted that the bifurcation diagrams only 
illustrate the asymptotic behavior of the isolated neurons (Figs 1A&3A). Networks were constructed 
using these models and the steps explained in the previous section were carried out for the analysis (Fig 
S3, also see S1A-C middle & bottom). We found that the network of doublet-spikers (ND) showed phase-
differences that were clustered near 0, 2𝜋 3⁄ , and 4𝜋 3⁄  radians (Figs 3B-C top & S3A-B) like the network 
of chaotic-spikers (NC). However, the most stable network was realized at 𝑊 = 20 for ND. Interestingly, 
the network of singlet-spikers (NS) only phase-locked near 0 radians (Figs 3B-C bottom & S3C-D).  
 
The average locked duration in the ND is less than a second for each of the three modes (Fig 4A). The 
average fractions of locked times are 0.1, 0.07 and 0.07 (Fig 4A inset), and the escape probabilities are 
0.62, 0.66, and 0.67 for the modes 0, 2𝜋 3⁄ , and 4𝜋 3⁄  respectively. Thus, the network of neurons that 
are intrinsically as simple as doublet-spikers exhibits itinerant dynamics. Although the NS did not display 
multiple metastable phase differences, its neuron pairs still demonstrated simpler metastability, where 
desynchronized spiking occurred in between synchronized (mode 0) spiking (Fig S3 C-D). This is similar to 
the transitory dynamics reported in [12–14], where networks of point neurons coupled with gap 
junctions alternated between synchronized and desynchronized states. The NS showed an average 
locked duration of over 5s and an average fraction of locked time of 0.74 in mode 0 (Fig 4C left). While 
the transitions among the three metastable modes in NC and ND are generally abrupt (for instance, see 
Fig 1C), the transitions between successive synchronized states in NS showed scattered phase 
differences (Fig S3C). The occasionally slower dynamics of such transitions lead to a few stable 𝛿𝑇s in 
mode 2𝜋 3⁄ . However, the fraction of locked time in mode 2𝜋 3⁄  is negligible (Fig 4C right, also see Fig 
3C bottom).  
 
The itinerant dynamics that emerges from the collective interaction of complex-periodic spiking neurons 
is also sensitive to the network connectivity parameters such as 𝑊. Therefore, we studied how the tri-
stability (as illustrated in Fig 1D – right and Fig 3C – top) is affected by changing the strength of the 
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inhibitory connections. We plotted two measures, |𝑍∆𝑇
𝑛=1| and |𝑍∆𝑇

𝑛=3| (see eqn – 4) for connection 

weights in [0, 40]. For a weakly connected NC (𝑊 = 4ሻ, both measures are near zero (Fig 5A – left) 
because the phase differences between pairs of neurons are mostly asynchronous and they are 

uniformly distributed with predominantly transitioning 𝛿𝑇s (Fig 5B – top). At 𝑊 = 8, |𝑍∆𝑇
𝑛=3| reaches its 

maximum value of 0.62, while |𝑍∆𝑇
𝑛=1| remains near zero. These measures correspond to the tri-stability 

illustrated in Fig 5B – middle, where the stable 𝛿𝑇s are more prevalent than the transitioning ones. 

Similarly, the maximum of |𝑍∆𝑇
𝑛=3|, when the corresponding |𝑍∆𝑇

𝑛=1| is near zero, is only 0.22 for the ND 

(Fig 5A – middle), as their phase differences are more spread-out (Fig 5C – bottom) than the most stable 
NC. Furthermore, the ND required stronger inhibitory connections (𝑊 = 20) to reach this maximum (Fig 
5A – middle). Interestingly, for weaker connections (𝑊 = 4ሻ, ND’s metastability is qualitatively similar to 

that of the NS, where |𝑍∆𝑇
𝑛=1| scores higher than |𝑍∆𝑇

𝑛=3| (Fig 5A – middle & right), and the modes 2𝜋 3⁄  

and 4𝜋 3⁄  are nearly non-existent (Fig 5C – top & Fig 5D). 
  
Thus, there are optimal connection weights that maximize the stability of the states visited by the 
networks of bursters. In addition, the network of simpler bursters exhibits states that are less stable 
than those of the network of more complex bursters. 
 

IV. Summary and discussion 
 

Metastability is a useful framework to characterize the existence of synchronized and desynchronized 
states in a system [2,25]. However, the relationship between metastability and itinerancy has not been 
very clear. It has been suggested that the appearance of metastable states is a necessary but not 
sufficient condition for itinerancy [26]. Along this line, a few scenarios for the existence of itinerancy 
have been proposed [16]. The current study finds that while the networks of both the simple-periodic 
(singlet-spiking) neurons and complex-periodic (chaotic- and doublet-spiking) neurons show 
metastability, only the latter class showed multiple synchronized modes.  
 
The chaotic-spiking model used in this work was obtained by tuning the IM parameters to reproduce the 
stuttering behavior of a neurogliaform interneuron [21]. Neurogliaform interneurons in the cerebral 
cortex connect nonspecifically to almost all other neuron types within their somatic layer as well as 
across layers [27]. In addition to electrical and chemical synapses, they also influence target neurons by 
volume release of GABA and were suggested to play a crucial role in broadly regulating the synchronized 
activity of neural circuits [21,28,29], a role aptly described as “master regulators” [27]. 
 
The network of identical simple-periodic spiking neurons did not exhibit itinerant complexity. However, 

it should be noted that the broad class of such simple-periodic neurons include a range of spiking 

timescales such as the regular spiking observed in many pyramidal neurons and fast-spiking observed in 

many Parvalbumin positive interneurons near their respective rheobases. A system can exhibit bursting 

if it consists of mutually interacting fast and slow subsystems, where the slow dynamics modulate the 

fast-spiking [30]. Further work is required to determine if the additional mechanisms that are necessary 

to induce bursting in simple-periodic neurons are sufficient for the emergence of itinerant complexity. 

Code availability 

Network simulation and analysis scripts are available at https://github.com/sivaven/Metastability.git 
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Fig 1. Endogenously transitioning phase-locked modes in a network of 100 identical bursting neurons. A. 

Bifurcation diagram of the bursting neuron showing period-doubling cascades leading to chaos 
for increasing input current. Inset shows the activity pattern (voltage vs. time) of the isolated 
neuron. B. Raster plot showing the spike times of a network of neurons for a duration of 1 
second. C. The discrete spike times of two neurons are transformed into a continuous signal 
corresponding to burst cycles (top & middle, also see Fig S1). The phase-locked mode 
endogenously transitions from mode − 0 to mode − 4𝜋 3⁄  (bottom). D. Normalized distributions 
of phase differences between the neurons shown in C during the same 1 second window as in C 
(left-top), and for 115 seconds (left-bottom). The distribution of phase differences between 100 
randomly selected neuron pairs (right) show three clearly preferred locked modes 
(0,  2𝜋 3⁄ , 4𝜋 3⁄ ). 
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Fig 2. Stability and transitions in the network of chaotic bursting neurons. A-C. Probability densities of 

locked durations in modes − 0 (A), 2𝜋 3⁄  (B) and 4𝜋 3⁄  (C) are exponentially distributed with the 
expected locked durations (𝜇) of 2.11s, 2.01s and 2.02s with 95% confidence intervals [2.0, 2.24], 
[1.91, 2.13] and [1.91, 2.14] respectively for 100 randomly selected pairs. Insets show probability 
density distributions of the fractions of locked time for 100 pairs. D. Probabilities of transitions 
among the three modes. Each table entry denotes the probability of a pair transitioning from 
𝑚𝑜𝑑𝑒𝑖 to 𝑚𝑜𝑑𝑒𝑖+1 after losing its stability from 𝑚𝑜𝑑𝑒𝑖, where i denotes the sequence index.  
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Fig 3. Dynamical complexity is preserved in the network of doublet- (ND) spiking neurons. A. An isolated 

neuron with a 2-loop limit cycle attractor (spike doublets shown in inset) was obtained by 
reducing the value of parameter 𝑘 from the chaotic- model to 1.5 (top). Further reducing the 
value of 𝑘 to 0.5 result in a singlet-spiking model (bottom). B. Raster plot shows the spike times 
of ND (top) and NS (bottom) in the network for a duration of 1 second. C. The phase differences 
between 100 randomly selected neuron pairs in the ND (top) show three preferred locked modes 
(0,  2𝜋 3⁄ , 4𝜋 3⁄ ), although these distributions have a wider spread compared to NC (see Fig 1). 
There is only a single preferred locked mode for NS (bottom), although they show scattered 
distributions of non-zero phase differences (see Fig S3).  
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Fig 4. Stability and transitions in network of doublet- (ND) and singlet- (NS) spikers. A. Distributions of 

locked durations in modes −  0 2𝜋 3⁄  and 4𝜋 3⁄  are exponentially distributed in ND with the 
expected locked durations (𝜇) of 0.75s, 0.65s and 0.66s with 95% confidence intervals (CI) in 
[0.71, 0.79], [0.61, 0.68] and [0.63, 0.70], respectively, for 100 randomly selected pairs. B. 
Probabilities of transitions among the three modes in ND. C. The locked durations in mode −  0 
(left) roughly follow a gamma distribution in NS with 𝜇 = 5.52𝑠 (𝛼 = 0.54 with CI [0.51, 0.57] 
and 𝛽 = 10.29 with CI [9.41, 11.25] are the shape and scale parameters, respectively, of the 
gamma distribution, and 𝜇 = 𝛼 × 𝛽). There are 2 occurrences of locked mode − 2𝜋 3⁄  (right), 
which are due to the slower phase scattering dynamics. Insets show probability density 
distributions of the fraction of total time a pair was locked in the mode. D. Probabilities of 
transitions in NS show no stable transitions to the mode − 4𝜋 3⁄ . 
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Fig 5. Stability as a function of connection weight. A. Magnitude of the average of phase differences 
between 100 randomly selected pairs of neurons (see eqn – 4) for NC (left), ND (middle) and NS 
(right). ∆𝑇 = 115𝑠. Note that 𝑊 = 0  corresponds to isolated neurons that fire in perfect 
synchrony. Therefore, |𝑍∆𝑇

𝑛 | = 1 for any 𝑛. B. Distributions of phase differences for weakly 
connected NC (top-left) and distributions of the probabilities of the modes visited (top-right) 
Here, 𝑊 = 4. A total of 1000 𝛿𝑇s was analyzed to calculate the probabilities. 𝛿𝑇 = 100𝑚𝑠 and 
‘TR’ denotes transitioning 𝛿𝑇s. B – D: Distributions of phase differences and the probabilities of 
visited modes when 𝑊 = 4 (top), 𝑊 = 8 (middle) and 𝑊 = 20 (bottom) for the NC (B), ND (C) 
and NS (D).  
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