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Abstract  

Two murine models for colitis were used to study multi-level changes and derive molecular signatures 

of colitis onset and development. By combining metabolomics data on tissues and fecal extracts with 

proteomics data on tissues, we provide a comprehensive picture of the metabolic profile of acute and 

chronic states of the disease, and most importantly, of two early pre-symptomatic states. We show 

that, increased anaerobic glycolysis, accompanied by altered TCA cycle and oxidative 

phosphorylation, associates with inflammation-induced hypoxia taking place in colon tissues. We 

also demonstrate significant changes in the metabolomic profiles of fecal extracts in different colitis 

states, most likely associated with the dysbiosis characteristic of colitis, as well as  the dysregulated 

tissue metabolism. Most remarkably, strong and distinctive tissue and fecal metabolomic signatures 

can be detected before onset of symptoms. These results highlight the diagnostic potential of global 

metabolomics for inflammatory diseases. 
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Introduction 

Inflammatory bowel disease (IBD), which primarily includes ulcerative colitis (UC) and Crohn’s 

disease (CD), is a progressive, chronic and relapsing condition. This debilitating disease is steadily 

becoming a worldwide medical concern, with increasing prevalence and incidence in both 

industrialized and developing countries (Molodecky et al, 2012). For this reason, detection of 

molecular signatures, at the tissue level, that aid early diagnosis and prediction of flares is critical for 

disease management. 

IBD is a multifactorial disorder, and genes associated with predisposition to IBD encode critical 

players in the innate immune response, inflammation, autophagy, and epithelial barrier integrity 

(Shah, 2016). Moreover, epithelial oxygen tension is a common feature of intestinal inflammation in 

IBD (Shah, 2016). While physiological hypoxia is localized to epithelial cells adjacent to the anoxic 

lumen, in colitis hypoxic staining is observed throughout the mucosa, likely because of the 

inflammation-driven enhanced oxygen consumption of intestinal epithelial cells and the decreased 

oxygen availability to inflamed areas due to vasculitis. Under healthy conditions, epithelial hypoxia 

limits the amount of oxygen emanating from the mucosal surface, which helps maintain anaerobiosis 

in the intestinal lumen and ensures the colonic microbiota is dominated by obligate anaerobic bacteria, 

that convert fiber into fermentation products (Litvak et al, 2018). Microbiota-derived short-chain 

fatty-acids (SCFA; particularly acetate, propionate and butyrate) regulate oxygen consumption in 

intestinal epithelial cells (Kelly et al, 2015), influence the host immune response and can promote 

interleukin-10 (IL-10) production in T-helper type 1 (Th1) cells by taking part in a dynamic host-

microbiome network (Sun et al, 2018). Through this mechanism, the colonic epithelium shapes the 

microbiota to be beneficial, thereby maintaining gut homeostasis (Albenberg et al, 2014). Dysbiosis 

in the colon, such as in individuals suffering from IBD, is commonly associated with an expansion 

of facultative anaerobic bacteria (Lloyd-Price et al, 2019). 
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IL-10 is a key anti-inflammatory cytokine produced by activated immune cells, which inhibits 

the activity of inflammatory  (Ip et al, 2017). Morover, the gastrointestinal tract contains the largest 

pool of macrophages in the body, which are key players in maintaining intestinal homeostasis (Bain 

& Schridde, 2018). It has been reported (Ip et al, 2017) that under conditions of IL-10 deficiency, 

macrophagesare characterized by an exaggerated glycolysis and loss of mitochondrial fitness. 

Similarly, other authors have reported that pro-inflammatory macrophages are more glycolytic, 

produce more ROS, accumulate succinate and have a suppressed oxidative phosphorylation with 

respect to resting macrophages (O’Neill & Pearce, 2016). In turn, the levels of succinate affect the 

activity of hypoxia-inducible factor 1 (HIF-1), a key transcription factor in the expression of pro-

inflammatory genes (Tannahill et al, 2013). In activated macrophages (M1 subtype) an increased flux 

through the aspartate–arginosuccinate shunt feeds the Krebs cycle at fumarate, replenishing the cycle 

after the break point that occurs in M1 macrophages at the enzyme succinate dehydrogenase (SDH) 

(Mills et al, 2017). 

Here, we utilize two common murine models for IBD – the acute dextran sodium sulfate 

(DSS)-induced colitis model (Okayasu et al, 1990), and the chronic piroxicam-accelerated colitis 

(PAC) model in interleukin(IL)-10-/- mice (Berg et al, 2002a) for studying multi-level changes in 

metabolic profiles over the course of colitis development. We examine both types of disease states 

(acute and chronic), and most importantly, we examine two early states, from each model, in which 

there are no detectable symptoms, and therefore can be regarded as "pre-symptomatic". Nuclear 

magnetic resonance (NMR) metabolomics data on tissues and fecal extracts and liquid 

chromatography–tandem mass spectrometry (LC-MS/MS)-based proteomics data on tissues were 

combined to derive the molecular signature of disease onset and progression. From these data, we 

demonstrate i) how metabolomic profiling based on high-resolution magic angle spinning (HR-MAS) 

1H NMR of tissues can monitor the global metabolic shift associated with hypoxia also at early, 

preclinical states; ii) how tissue proteomics nicely complements the NMR findings; iii) how solution 
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1H NMR profiling of fecal extracts reveals pre-symptomatic states showcasing it potential in future 

applications as a non-invasive early diagnosis tool. 

 

Results and Discussion 

Clinical characterization and timeline of murine colitis models 

 By using two different colitis murine models we examine acute and chronic states, and most 

importantly, we examine also early "pre-symptomatic" states. In this subsection, we endoscopically 

and histologically define these states and disease models, in a similar manner to our work in 

(Shimshoni et al, 2019).  

Acute colitis was induced in wild type (WT) C57BL/6 mice via addition of 1.25% DSS into the 

drinking water for seven days (Fig 1A). Disease progression was monitored by endoscopic evaluation 

and histological analysis of colonic tissue at different time points (Fig S1). Inflammation degree was 

scored during endoscopic examination according to five parameters: mucosal transparency, mucosal 

wall granularity, stool consistency, blood vessel deformation and fibrin appearance in the colon 

lumen. Each parameter was given a score between 0-3 (Becker et al, 2006), for an overall score of 0-

15. An overall score of 0-4 was defined as “healthy”; 5-7 was defined as “mildly inflamed”; 8-11 as 

“inflamed”; and 12-15 as “severely inflamed”. Colon inflammation under these conditions peaks 

between days 7-10 (Fig 1A), as can be detected by endoscopy (Fig S1A). At day 10 all mice present 

with the two highest categories of colon inflammation. Importantly, clinical symptoms begin to 

appear after day 5. On day 4 animals are defined by endoscopic evaluation as “healthy” (Fig S1A) 

and seldom show mild immune cell infiltration as assessed by histological analysis (Fig S1B). 

Therefore, we regard day 4 as the “pre-symptomatic” state. 

To gain insight on chronic intestinal inflammation, we used C57BL/6 IL-10-/- mice that 

spontaneously develop chronic colon inflammation (Kühn et al, 1993). This inflammation is not 

chemically induced, but rather is considered to be a result of a dysregulated immune system, which 
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more resembles the clinical manifestation of chronic UC and CD patients and mimics a monogenic 

form of IBD (Glocker et al, 2009). In order to synchronize and accelerate the onset of chronic colitis, 

mice were exposed to 200 ppm piroxicam in their food for 14 days (Fig 1B) (Berg et al, 2002a). The 

result of this exposure was the development of IBD-like symptoms, as can be detected and scored 

using colonoscopy in the same manner as for the well-established DSS-induced model (Fig S1A). 

Histopathology in this model shows prominent immune cell infiltration into the mucosa, but with 

little ulceration or colonic crypt abolition (Fig S1B). The two models allow us not only to study 

different kinds of colitis, the transient acute colitis and the persistent chronic colitis; but also lead us 

to “zoom in” onto  two pre-symptomatic states, or inflammation-prone states – day 4 of the DSS 

model and the healthy naïve IL-10-/- mouse, by monitoring disease progression on a daily basis. With 

the described experimental procedures, we obtained five groups of mice for further analysis: 1) 

Healthy WT; 2) Day 4 of DSS (pre-symptomatic); 3) Day 10 of DSS (acute colitis); 4) Healthy IL-

10-/- (pre-symptomatic); and 5) Ill IL-10-/- (chronic colitis). 

 

Figure 1.  

Course of disease for the two murine colitis mode 

 

A. Timelines, acute model: Wild-type (WT) C57BL/6 mice, exposed to 1.25% (w/v) DSS in the 

drinking water for seven days; clinical and endoscopic symptoms peak on day 10.  

B. Timelines, chronic model: C57BL/6 IL-10-/- mice, exposed to 200 ppm piroxicam in the food 

for 14 days; clinical and endoscopic symptoms develop over the course of these 14 days and 

persist as chronic inflammation for at least 14 days. 
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Colitis leads to a shift towards anaerobic metabolism in the colon 

 

We set out to analyze metabolic changes that take place over the course of colitis, at the chosen 

five states mentioned above. To this end, the colon tissues were analyzed by untargeted HR-MAS 1H 

NMR metabolomics, untargeted LC/MS-MS proteomics and real-time PCR for a subset of genes 

involved in glycolysis.  

1H NMR spectra were acquired on mouse colon tissues with the final aim of identifying the 

metabolomic fingerprint of control, pre-symptomatic and symptomatic states. The spectra 

demonstrated reproducibility within each of the five groups. The metabolomic fingerprint in all 

spectra is made up of both broad and sharp features accounting for more than 130 resonances with 

different relative intensities within the 5 groups (Fig S2). This untargeted NMR approach (Takis et 

al, 2018; Vignoli et al, 2019) revealed that each state in both models has a distinct metabolic profile 

(Fig S3). The characteristic metabolomic profile of each state can be distinguished when all five states 

are considered together, with a 5-group 72% discrimination accuracy, according to a PCA-CA model 

(Fig 2A).  

LC/MS-MS proteomics was based on a dataset of 2045 non-redundant proteins expressed in 

all the five states, deriving from a previous work by some of us (Shimshoni et al, 2019). Out of 

them, 425 proteins involved in metabolic processes were identified using the Human Metabolic 

Atlas database (http://www.metabolicatlas.org). Considering this subset of proteins, the five 

different tissue states display differentiating proteomic profiles, with 5-group 75% discrimination 

accuracy, according to a PCA-CA model. (Fig 2B). Both analytical platforms well discriminate the 

symptomatic states from the corresponding controls. Importantly, pre-symptomatic states (day 4 of 

the DSS model and healthy IL-10-/-) can be discriminated from healthy WT samples despite no 

macroscopic inflammation is observed.  
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Figure 2.  

Metabolomic and proteomic profiles of different colitis states.  
 

A. PCA-CA analysis of NMR data. The PCA-CA score plots reveal different profiles of the five 

states in colitis, with a 5-group discrimination accuracy of 72%. 

B. PCA-CA analysis of LC-MS/MS proteomic data. The PCA-CA score plots reveal different 

profiles of the five states in colitis, with a 5-group discrimination accuracy of 75% for 

proteomics.  

In the plots each dots represents a different sample and each color a different group of mice: green 

dots, healthy WT (WT-HC) mice; orange dots, WT-D4; yellow dots, IL10-HC; red dots, WT-

D10; pink dots, IL10-ILL. 

 

The NMR spectra analyses lead to the identification of 22 metabolites (Table S1); several of 

them have significantly different levels in the various groups. Among those mainly responsible for 

the discrimination between healthy and pathological tissues, there are products of the glucose 

metabolism; in both chronic and acutely inflamed tissues, a significant increase in glucose levels was 

accompanied by a significant increase in lactate levels (Fig 3A). The observed anaerobic shift in 

colitis is consistent with the hypoxic conditions that develop during inflammation (Shah, 2016; 

Giatromanolaki et al, 2003; Taylor & Colgan, 2007). Consistently, a western blot analysis for 

hypoxia-induced factor (HIF)-1α on tissue extracts indicated high levels of HIF1α only in inflamed 

tissues (Fig 3A). Regarding glycolytic proteins, proteomics and mRNA data do not show clear trends, 

and the interpretation is complicated by the fact that glycolysis is mainly regulated by post-
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translational modification and feedback mechanisms rather than by changes in the enzyme levels 

(Berg et al, 2002b), (Fig S4, Table S2).  

The analysis of other metabolites, directly or indirectly, produced by glycolysis provided 

further information. Pyruvate levels remain below detection in our metabolomic data but some hints 

on the fate of this metabolite can be derived indirectly. Besides being reduced to lactate, pyruvate can 

be transaminated to produce alanine, whose levels are also increased both in samples from mice on 

day 10 of the DSS model and from ill IL-10-/- mice, compared to their healthy counterparts (Fig 3A). 

A significant portion of pyruvate can also be diverted toward glycine biosynthesis by 

phoshphoglycerate dehydrogenase (Phgdh) and serine hydroxymethyltransferase (Shmt2). 

Consistently, glycine, Phgdh, and Shmt2 levels are increased in day 10 and ill IL 10-/- samples (Fig 

3A).  

Our metabolomics and proteomics data also highlight alterations of the TCA cycle (Fig 3A 

and B, Table S2). Pyruvate can enter in the mitochondria to fuel the TCA cycle, being transformed 

into acetyl-CoA. Acetyl-CoA remains below the NMR detection limit, but we observed a reduction 

in the levels of the proteins involved, not only in pyruvate transport into the mitochondria (i.e., 

mitochondrial pyruvate carrier 2, Mpc2) (Fig 3A), but also in its conversion into acetyl-CoA 

(downregulation of the proteins of the Pyruvate Dehydrogenase Complex, (PDC), i.e., pyruvate 

dehydrogenase subunit 1, Pdha1, dihydrolipoyl transacetylase, Dlat; dihydrolipoamide 

dehydrogenase, Dld) (Fig 3A). 

Along the same lines, most of the proteins involved in the TCA cycle itself (e.g., ATP-citrate 

lyase, Acly; succinate dehydrogenase complex subunit A, Sdha; pyruvate carboxylase, Pc) are less 

abundant in both pathological mouse tissues (Fig 3A and B).  

Analogously, the metabolomic profiles highlighted an increase in the levels of the TCA cycle 

intermediates succinate and fumarate (Fig 3A), which accumulate due to inefficient TCA metabolism 

(Bernacchioni et al, 2017; Caracausi et al, 2018).  
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In addition to glycolysis-derived pyruvate, fatty acids and amino acids can supply substrates 

to the TCA cycle. The breakdown of fatty acids (β-oxidation) in the mitochondria generates acetyl-

CoA. Our proteomic results show that most of the enzymes taking part in the β-oxidation pathway 

display lower levels in chronic and acute colitis (e.g., hydroxyacyl-CoA dehydrogenase trifunctional 

multienzyme complex subunit α, Hadha; propionyl-CoA carboxylase subunit α, Pcca) (Fig 3A and 

B, Table S2), thus further reducing the cellular content of acetyl-CoA available to sustain the TCA 

cycle.  

Also branched chain amino acids (BCAA), isoleucine, valine and leucine, can be converted 

into acetyl-CoA and other organic molecules that enter the TCA cycle. Accordingly, we detected a 

strong reduction of proteins involved in the BCAA degradation pathway by branched chain keto acid 

dehydrogenase E1, α polypeptide, (Bckdha) (Fig 3A and B, Table S2). These data correlate well 

with an increasing trend in the levels of isoleucine and valine in pathological tissues (Fig 3A). 

Finally, and in agreement with all previous results, acute and chronic colitis tissues are 

characterized by a reduction in the protein involved in the oxidative phosphorylation such as some of 

the components of the Complex I – e.g., NADH:ubiquinone oxidoreductase core subunits s1, s2, s3, 

s5, s6, s7, v1, a2 and a6 (Ndufs1, Ndufs2, Ndufs3, Ndufs5, Ndufs6, Ndufs7,Ndufv1, Ndufa2, Ndufa6) 

(Fig 3A and B, Table S2).  
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Figure 3.  

Metabolomic and proteomic analysis of colon tissues  
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A. PCA-CA analysis of NMR data. The PCA-CA score plots reveal different profiles of the five 

states in colitis, with a 5-group discrimination accuracy of 72%. 

B. PCA-CA analysis of LC-MS/MS proteomic data. The PCA-CA score plots reveal different 

profiles of the five states in colitis, with a 5-group discrimination accuracy of 75% for 

proteomics.  

C. Dot plots of relative concentration levels of selected proteins and metabolites in the five 

colitis states and Western blots for hypoxia-induced factor (HIF)1α. Proteins and metabolites 

are grouped according to the metabolic process in which they are involved. Asterisks indicate 

significance relative to corresponding healthy state (either WT or IL10KO), unless otherwise 

indicated by bars. *p<0.05.  

D. Heat maps for relative mean abundance (in log2(LFQ) compared to healthy WT) of proteins 

involved in different metabolic processes. Downregulated / upregulated proteins are shown 

using blue / red color coding.  

In the plots each dots represents a different sample and each color a different group of mice: green 

dots, healthy WT (WT-HC) mice; orange dots, WT-D4; yellow dots, IL10-HC; red dots, WT-

D10; pink dots, IL10-ILL. 

 

 

Hence, by combining the two “omic” analyses, we were able to achieve a comprehensive 

picture of the metabolic profile of the intestinal tissues at each state, both acute and chronic. Increased 

anaerobic glycolysis is accompanied by an altered TCA cycle due to depressed acetyl-CoA 

production and consequent accumulation of fumarate and succinate; altered oxidative 

phosphorylation is suggested by reduced levels of Complex-I proteins (Fig 4). These results are in 

line with the metabolic characteristics of activated M1 intestinal macrophages (Mills et al, 2017).  
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Figure 4. 

Colitis leads to a metabolic shift in tissues  
 

The major metabolic processes that are differentially regulated in both acute and chronic colitis are 

indicated. Upregulated processes are described by red arrows and downregulated processes by blue 

bars. 
 

Pre-symptomatic metabolic profiles are shared across models 

Another key finding of this study is that pre-symptomatic states have a characteristic 

metabolic signature. Close investigation of our analysis of the DSS colitis model reveals that the pre-

symptomatic state, day 4, does not simply represent a progressive shift towards colitis, with some 

proteins (e.g., Pfkl, Acly and Pc) and transcript (e.g., Pflk and Pgk1) levels displaying an irregular 

trend. To assess the metabolic and proteomic similarity between the two pre-symptomatic states, we 

generated a metabolomic and a proteomic PCA-CA model on all samples except those of day 4 of 

the DSS model. When predicting day 4 of DSS samples on both the two models they were mostly 

predicted as belonging to the class of healthy IL-10-/- samples (with 80% accuracy for the 

metabolomic model and 88% accuracy for the proteomic model) (Fig 5). These findings demonstrate 

the convergence of the two "paths" towards inflammation, whether chronic or acute, with similar pre-

symptomatic states.  
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Figure 5.  

Pre-symptomatic metabolic profiles of tissues are shared across models  

 

A. PCA-CA prediction of WT-D4 group (orange crosses) using a training set composed of the 

other four groups according to metabolomics. WT-D4 samples are mainly predicted as the 

other pre-symptomatic state – IL10-/-HC, with a prediction accuracy of 80%. In particular, 

only two samples (5-WT-D4 and 8-WT-D4) are predicted as more advanced (WT-D10). 

B. PCA-CA prediction of WT-D4 group (orange crosses) using a training set composed of the 

other four groups according to proteomics. WT-D4 samples are mainly predicted as the other 

pre-symptomatic state – IL10-/-HC, with a prediction accuracy of  88%. In particular, only one 

sample (5-WT-D4) is predicted as les advanced (WT-HC). 

In the score plots, each symbol represents a different sample and each color a different group of 

mice: green dots, WT-HC; orange crosses, WT-D4; yellow dots, IL10-HC; red dots WT-D10; 

pink dots, IL10-ILL. 

 

 

Fecal metabolomic analysis can serve as a diagnostic and prognostic tool for intestinal 

inflammation 

Dysbiosis has been implicated as a hallmark and important player in IBD (Tamboli et al, 2004; 

Lloyd-Price et al, 2019), we sought to examine whether fecal metabolomics can be a good indicator 

of inflammation, and especially of pre-clinical states. To this end, we performed metabolomic 

analysis on fecal extracts corresponding to the five tissue states discussed above (healthy WT, day 4 

of DSS, day 10 of DSS, healthy IL-10-/- and chronically ill IL-10-/-). An untargeted metabolomic 
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fingerprinting approach demonstrated that each state has its own unique fecal metabolomic profile, 

as shown by the results of the PCA-CA analysis (Fig 6A). Among the five groups, our analysis 

provided a discrimination accuracy value of 93% (Fig 6A). Testing day 4 samples of the DSS model 

according to a PCA-CA model constructed for the other four groups reveals, also in this analysis, the 

similarity among the pre-symptomatic states – with an 89% prediction accuracy for day 4 of DSS as 

healthy IL-10-/- samples (Fig 6B). In the NMR spectra of fecal extracts 35 metabolites (Table S3) 

were identified and quantified; they belong to different chemical groups, such as fatty acids, amino 

acids and alcohols. In Fig 6C, the results of univariate analysis on selected metabolites are presented.  

Among the quantified metabolites there are butyrate, propionate and acetate, which are the 

main SCFA produced during fermentation by gut bacteria (McNeil et al, 1978; Topping & Clifton, 

2001). Interestingly, the levels of the metabolites involved in glucose metabolism, such as glucose, 

lactate, pyruvate and fumarate, are not significantly altered in the samples from chronic and acutely 

inflamed mice (Fig S5), indicating that the metabolome of feces does not directly reflect that of 

tissues, but probably the crosstalk between the microbiome and the host. 

SCFA are the major nutrients produced by bacterial fermentation of carbohydrates. Here the 

fecal butyrate, propionate and acetate were slightly increased, albeit not significantly, in chronically 

ill IL-10-/- with respect to healthy IL-10-/-, while no significant trend was identified comparing 

healthy WT and day 10 of DSS (Fig S6). Interestingly, an increase of these metabolites was detected 

when comparing day 4 of DSS with respect to healthy WT. Butyrate, propionate and acetate higher 

levels in day 4 of DSS where similar to the levels of these metabolites in healthy IL-10-/-, again 

supporting the similarity between the pre-symptomatic states. However, these findings seem to point 

to a different behavior in murine models compared to the human disease, as, SCFA levels have been 

reported to not change significantly in fecal samples of DSS-treated mice (Osaka et al, 2017), whereas 

reduced levels of SCFA in feces of IBD patients have been reported and linked to a shift in the 
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composition and in the metabolic activity of intestinal microbiota, specifically in the reduction in 

butyrate-producing bacterial groups (De Preter et al, 2015; Marchesi et al, 2007; Bjerrum et al, 2015). 

SCFA are mostly absorbed in the colon while less than 5% are excreted in the feces. Our 

results may reflect a reduced absorption/uptake and oxidation of SCFA during inflammation, 

indicated by the downregulation of some enzymes involved in butyrate metabolism/oxidation such 

as EHHADH, HADHA, PDHA1, ACAT1, ACAT2, ALDH2, and ACADS in acute and chronic 

inflamed tissues (Fig 3). Genes encoding butyrate uptake and oxidation were also found to be down-

regulated in inflamed mucosa of UC patients (Parada Venegas et al, 2019; De Preter et al, 2012). 

Hence, these results show that inflammation is tightly linked to the inhibition of genes related to 

SCFAs uptake and metabolism. 

We also observed a peculiar trend for the amino acids valine, isoleucine, alanine, methionine, 

tyrosine and phenylalanine. In the acute colitis model, their levels increase on going from healthy 

WT to day 4 of DSS, and then decrease on day 10 of DSS; while in the chronic colitis model their 

levels do not change (Fig 6C). No changes in either model are found in the amino acid glutamate 

(Fig 65). On the contrary, glycine shows a regular trend, significantly increasing in its levels in fecal 

samples from both inflamed states, with respect to their healthy controls. It is known that amino acids 

play significant roles in intestinal inflammation (He et al, 2018), being involved in multiple signaling 

mechanisms related to intestinal inflammation. For example, isoleucine and valine activate the GCN2 

pathway; methionine and glycine inhibit NF-κB signaling pathway; and tyrosine, valine and 

phenylalanine activate CaSR. No specific role is yet reported for alanine. Whether these differences 

reflect decreased absorption or increased loss by inflamed intestines needs to be elucidated, but is 

consistent with previous findings on pediatric IBD patients (Bosch et al, 2018). 

Creatine and choline display the same behavior described above for glycine (Fig 6C). The 

increase in creatine excretion in both pathological states may be attributed to muscle dysfunction 

leading to reduced ATP consumption via creatine phosphorylation. 4-hydroxyphenylacetate 
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decreases only in samples from mice with acute inflammation, while acetoin decreases in both colitis 

states. The levels of acetone and putrescine decrease in samples from mice with acute inflammation 

while they increase in those with the chronic disease (Fig 6C). Most notably, choline, which is a 

component of many biological molecules, like acetylcholine and lipids, has a strong correlation with 

endoscopic inflammation score (Fig 6D). This indicates that choline may serve as a fecal marker of 

inflammation. 

The observed trends in metabolite levels do not reflect those observed in tissues, most likely 

because the fecal metabolome results from a complex interplay between gut microflora metabolism 

and host metabolism. Inflammation causes an imbalance in the gut microbiota leading to changes that 

are still difficult to interpret in terms of biochemical pathways, but are extremely valuable at the 

diagnostic level as they contain a strong and distinctive metabolomic signature already at the pre-

symptomatic state. 
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Figure 6.  

Fecal metabolomic analysis 
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A. PCA-CA analysis of NMR-based metabolomic data of faecal extracts. The PCA-CA score plot 

reveals that feces have significantly different metabolomic profiles in the five colitis states of the 

two models, with a 5-group discrimination accuracy of 93%.  

B. PCA-CA prediction of WT-D4 group (orange crosses) using a training set composed of the other 

four groups (4-group discrimination accuracy 89%). WT-D4 samples are mainly predicted as the 

other pre-symptomatic state – IL10-HC, with a prediction accuracy of 89%. In particular, only one 

sample (1-WT-D4) is predicted as more advanced (WT-D10) and another one as less advanced 

(WT-HC).  

C. Dot plots of relative concentration levels of selected metabolites in the five states. Asterisks 

indicate significance relative to corresponding healthy state (either WT or IL10KO), unless 

otherwise indicated by bars. *p<0.05.  

D.  Plot depicting the polychoric correlation between fecal choline levels and endoscopic score 

(R=0.89). 

In all plots, each symbol represents a different sample and each color a different group of mice: green 

dots, WT-HC; orange dots, WT-D4; yellow dots, IL10-HC; red dots, WT-D10; pink dots, IL10-ILL. 

 

Conclusions 

Inflammation is known to be associated with hypoxia due to the extensive activity of the 

immune system. Our analysis provides, for the first time, a system-level view of how this hypoxia 

affects the respiratory state of the whole tissue – shifting it to anaerobic respiration, as evident by the 

combined metabolomic and proteomic analyses (Fig 4). Most remarkably, however, the metabolic 

profile of the pre-symptomatic states is distinct compared to ill, and most importantly, to healthy WT 

samples. A characteristic metabolomic signature of inflammation and pre-clinical states is evident 

also at the fecal levels. 

The two pre-symptomatic states are also very similar to each other, as revealed by testing day 

4 samples on the PCA-CA model built with the other four groups. Therefore, it is apparent that though 

at the tissue level no macroscopic or histological signs of inflammation can be detected, the 

metabolism of the tissue already begins to shift, as part of the early molecular events involved in the 

pathology. In addition, the similarity between the two types of pre-symptomatic states, preceding 

either chronic or acute inflammation, indicates that metabolically, both types of inflammation pass 

through the same metabolic-state. 

The diagnostic potential of our untargeted metabolic approach is most pronounced in the fecal 

sample analysis, giving rise to very high discrimination accuracy already in pre-symptomatic states 
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with low invasiveness. Specifically, choline seems to have a very high correlation with inflammation 

score, which is in line with a previous study showing a similar pattern in pediatric IBD patients (Kolho 

et al, 2016). The measured fecal metabolome does not reflect the trends observed in tissues, reflecting 

the contribution of the commensal microbiota in these samples, and therefore the profound 

differences among states may stem from the differences in microbial diversity that are known to be 

associated with IBD (Bibiloni & Schiffrin, 2010; Mottawea et al, 2016; Ott & Schreiber, 2006). This 

is also supported by a report on changes in fatty acid composition, coming from the microbiota, in 

fecal samples from IBD patients (De Preter et al, 2015). Therefore, global fecal metabolomics has 

potential for early diagnosis, as pre-symptomatic states have their own distinct profile.  

In conclusion, metabolism is profoundly affected by intestinal inflammation, from an early 

stage in the pathogenic process. Pre-clinical metabolic shifts can be detected on different levels of 

analysis – host tissue and fecal. These early metabolic signatures have a predictive potential that 

will aid disease management and prediction of flares. 
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Materials and Methods 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Recombinant Anti-HIF-1 alpha antibody Abcam ab179483 

GAPDH Antibody (FL-335)  Santa Cruz sc-25778 

Chemicals, Peptides, and Recombinant Proteins 

SYBR™ Green PCR Master Mix Applied Biosystems 4309155 

Ammonium bicarbonate Merck 1011315000 

2,2,2-Trifluoroethanol Acros organics 139751000 

Triflouroacetic acid Merck 1081780050 

Iodoacetamide Sigma-Aldrich I1149 

Lysyl Endopeptidase (LysC) Wako Chemicals 125-05061 

Sequencing Grade Modified Trypsin Promega V5111 

Piroxicam Sigma-Aldrich P5654 

Dextran Sodium Sulfate MP Biomedicals 0218055801 

Critical Commercial Assays 

PerfectPure RNA Tissue Kit 5Prime 2302410 

High Capacity cDNA Reverse Transcription 

Kit 

Applied Biosystems 4368814 

Deposited Data 

Mass-spectrometry raw data PRIDE of the ProteomeXchange consortium  

Experimental Models: Organisms/Strains 

Mouse: C57BL/6JOlaHsd Envigo  N/A 

Mouse: IL-10 KO (B6.129P2-Il10tm1Cgn/J) Jackson Laboratories 002251 

Software and Algorithms 

MaxQuant Max Planck Institute of Biochemistry 

(Tyanova et al, 2015) 
 

Perseus Max Planck Institute of Biochemistry 

(Tyanova et al, 2016b) 
 

 

Contact for Reagent and Resource Sharing 

Further information and requests for reagents may be directed to, and will be fulfilled by the 

corresponding author Irit Sagi (irit.sagi@weizmann.ac.il). 

 

Animals 

Seven-week old C57BL/6 male mice were purchased from Envigo and were allowed to adapt for one 

week before experimental procedure. IL-10-/- C57BL/6 mice from Jackson Laboratories were inbred 

at the Weizmann Institute of Science, and experiments were performed on six to eight-week old male 
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mice. All experiments and procedures were approved by the Weizmann Institute of Science animal 

care and use committees, protocol numbers 02230413-2, 06481012-1. 

 

Intestinal inflammation induction and evaluation 

Acute colonic inflammation was induced by administration of 1.25% DSS (MP Biomedicals LLC) in 

drinking water of C57BL/6 mice for seven days (Okayasu et al, 1990). Chronic colonic inflammation 

was accelerated and synchronized by peroral administration of 200ppm piroxicam (Sigma-Aldrich 

ltd.) to IL-10-/- C57BL/6 mice via supplementation in normal murine chow(Berg et al, 2002a). Mice 

were weighed 3 times a week over the course of the experiment. Colitis progression was evaluated 

over the course of the experiment using the Karl Stortz Coloview mini endoscope system and colonic 

inflammation was scored (0-15) as previously described (Becker et al, 2006). Inflammation scores 

were categorized according to the following: healthy (0-4); mildly inflamed (5-7); inflamed (8-11); 

severely inflamed (12-15). Another form of inflammation evaluation was histological analysis by 

H&E staining of formalin-fixed paraffin-embedded tissues sections.  

 

NMR-based Metabolomics 

Intact tissues were analyzed through High Resolution (HR) Magic Angle Spinning (MAS) NMR 

analysis (Vignoli et al, 2019; Beckonert et al, 2010). To this end, frozen colon samples were trimmed 

(15–20 mg) to fit HR-MAS ZrO2 rotor insert capacity (50 μL). Each insert was filled with 2H2O 

containing 5.8 mM sodium trimethylsilyl [2,2,3,3-2H4]propionate (TMSP). Inserts were covered with 

plug and plug-restraining screw and inserted into the 4 mm rotor for HR-MAS probe. 

HR-MAS spectra were recorded with a Bruker 600 MHz spectrometer equipped with HR-MAS TXI 

1H/13C/15N probe and magnetic field gradient along the magic-angle axis. Samples were spun at 4 

MHz at 277 K. 1H NMR spectra were acquired with the Carr, Purcell, Meiboom, and Gill (CPMG) 

(Carr & Purcell, 1954) sequence using a 1D spin–echo sequence with water presaturation (cpmgpr, 
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Bruker). 64 scans over a spectral region of 12 kHz were collected into 32 K points, giving an 

acquisition time of 1.36 s.  

Free induction decays were multiplied by an exponential function equivalent to 1 Hz line broadening 

before applying Fourier transform. Transformed spectra were automatically corrected for phase and 

baseline distortions. Chemical shift was calibrated to the proton of signal at δ 1.48 ppm. 

Fecal extracts were analyzed through in solution NMR experiments (Vignoli et al, 2019). Feces were 

mashed with 700 μL of ice-cold PBS and sonicated for 30 min to inactivate gut bacteria and achieve 

biochemical stability in the sample. The samples were then centrifuged at 10,000 g for 2 min, and 

550–600 μL of the supernatant was transferred into a new Eppendorf tube and stored at −80°C before 

the analysis. 

At the moment of the analysis, samples of frozen extracts were thawed at room temperature and 

shaken before use. A 630 µL aliquot of each sample was added to 70 µL of potassium phosphate 

buffer (1.5 M K2HPO4, 100% (v/v) 2H2O, 10 mM TMSP, at pH 7.4). 600 µL of each mixture were 

transferred into 4.25 mm NMR tubes (Bruker BioSpin srl) for analysis. 

1H NMR spectra were acquired using a Bruker 600 MHz metabolic profiler (Bruker BioSpin) 

operating at 600.13 MHz proton Larmor frequency and equipped with a 5 mm TXI 1H-13C-15N and 

2H-decoupling probe including a z axis gradient coil, an automatic tuning-matching (ATM) and an 

automatic sample changer (SampleJet). A BTO 2000 thermocouple served for temperature 

stabilization at the level of approximately 0.1 K at the sample. Before measurement, samples were 

kept for at least 5 minutes inside the NMR probehead for temperature equilibration (300 K). For each 

sample, a 1H NMR spectrum was acquired with the CPMG (Carr & Purcell, 1954) sequence using a 

1D spin–echo sequence with water presaturation. 256 scans over a spectral region of 12 kHz were 

collected into 73 K points, giving an acquisition time of 3.06 s . 

The raw data were multiplied by a 0.3 Hz exponential line broadening before Fourier transformation 

into 128 K points. Chemical shift was referenced to the signal of TMSP at δ 0.00 ppm.  
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All the spectra were binned for the subsequent multivariate statistical analysis. Binning is a means to 

reduce the number of total variables and to compensate for small shift in the signals, making the 

analyses more robust and reproducible. 

In particular, each spectrum of tissues was segmented in the region between 4.85–0.2 ppm into 0.01 

ppm chemical shift bins, and the corresponding spectral areas were integrated using the AMIX 

software (Bruker). The area of each bin was normalized to the total spectral area, calculated with 

exclusion of the lipid regions 2.88–2.72, 2.32–2.22, 2.12–1.98, 1.70–1.50, 1.46–1.22, and 0.96–0.76 

ppm. 

Each spectrum of fecal extract was segmented in the region between 10.0 - 0.2 ppm into 0.02 ppm 

chemical shift bins. The spectral region between 6.0 - 4.2 ppm, containing the water signal, was 

discarded. Finally, total area normation was carried out. 

The metabolites, whose peaks in the NMR spectra were well defined and resolved, were assigned. 

Signal identification was achieved using a library of NMR spectra of pure organic compounds, public 

databases (such as HMBD, Human Metabolic Database) (Wishart et al, 2012) storing reference NMR 

spectra of metabolites, spiking NMR experiments and literature data. The relative concentrations of 

the various metabolites in the different spectra were calculated by integrating the signal area(Vignoli 

et al, 2019; Wishart, 2008). 

 

Proteomics by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis  

Tissue slices from colons of WT or IL-10-/- mice at different stages of the inflammation models were 

immersed in a solution containing 50% trifluoroethanol (TFE), 25mM ammonium bicarbonate 

(Sigma Aldrich) and 15mM dithiothreitol (DTT) and coarsely homogenized by repeated cycles of 

boiling, freezing and sonication. Subsequently, samples were shaken at 30˚C, 1400 rpm for 30 min, 

followed by the addition of iodoacetamide (Sigma Aldrich) to a final concentration of 25 mM and 

further shaking for 30 min at 30˚C and 1400 rpm. TFE was then diluted to 25% with 50 mM ABC, 

LysC (Wako Chemicals, 1:100 lysC:protein ratio) and sequencing-grade modified trypsin (Promega, 
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1:50 trypsin:protein ratio) was added and incubated overnight at room temperature. On the following 

morning, more trypsin was added (1:80 trypsin: protein ratio) for 4 hours. Peptide mixtures were 

purified on C18 stage tips. Eluted peptides were loaded onto a 50 cm long EASY-spray reverse phase 

column and analyzed on an EASY- nLC- 1000 HPLC system (Thermo Scientific) coupled to a Q-

Exactive Plus MS (Thermo Scientific). Peptides were separated over 240 minutes with a gradient of 

5−28 % buffer B (80% acetonitrile and 0.1% formic acid). One full MS scan was acquired at a 

resolution of 70,000 and each full scan was followed by the selection of 10 most intense ions (Data 

dependent Top 10 method) at a resolution of 17,500 for MS2 fragmentation. 

Raw MS data was analyzed with MaxQuant software (Cox & Mann, 2008; Tyanova et al, 2016a) 

(version 1.5.2.18) with the built-in Andromeda search engine(Cox et al, 2011) by searching against the 

mouse reference proteome (UniprotKB,Nov2014). Enzyme specificity was set to trypsin cleavage 

after lysine and arginine and up to two miscleavages were allowed. The minimum peptide length was 

set to seven amino acids. Acetylation of protein N termini, deamidation of asparagine and glutamine, 

and oxidation of methionine were set as variable modifications. Carbamidomethylation of cysteine 

was set as a fixed modification. Protein identifications were sorted using a target-decoy approach at 

a false discovery rate (FDR) of 1% at the peptide and protein levels. Relative, label-free quantification 

of proteins was performed using the MaxLFQ algorithm integrated into MaxQuant environment with 

minimum ratio count of two(Cox et al, 2014). 

Bioinformatics analysis was performed with the Perseus program version 1.5.1.4 (Tyanova et al, 

2016b). The proteomic data was first filtered to remove the potential contaminants, proteins only 

identified by their modification site and reverse proteins. Next, the intensity values were log2 

transformed and data was filtered to have at least three valid values in each group. Missing values 

were imputed based on normal distribution. Proteins appearing in the Human Metabolic Atlas 

(http://www.metabolicatlas.org/) were chosen for analysis. 

 

Western blot analysis 
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Tissues were manually homogenized in RIPA buffer (20 mM Tris pH 7.4, 137 mM, NaCl, 10% 

glycerol, 0.1% SDS, 0.5% deoxycholate, 1% Triton, 2 mM EDTA, 1 mM phenylmethylsulfonyl 

fluoride, 20 µM leupeptin, 1 tablet/100 ml of cOmplete™ Protease Inhibitor Cocktail (Roche)). 

Western blot analysis was performed using anti-HIF1α antibody (Abcam), for detection of the protein 

at 110-120 kD. Anti-GAPDH (Santa Cruz) was used as the loading control and the protein was 

detected at 35 kD. 3-4 samples from different mice were run for each tissue state, and quantification 

was carried out using ImageJ. 

 

Statistical analysis 

Multivariate statistical analyses were performed both on binned NMR-spectra, for metabolomics, and 

on metabolism-associated proteins, for proteomics.  

Various kinds of multivariate statistical techniques were applied using R 3.0.2 in house scripts. 

Principal Component Analysis (PCA) was used to obtain a preliminary outlook of the data 

(visualization in a reduced space, clusters detection, screening for outliers). Canonical analysis (CA) 

was used in combination with PCA to increase the supervised separation of the analyzed groups. The 

global accuracy for classification was assessed by means of a Monte Carlo cross-validation scheme. 

Accordingly, each dataset was randomly divided into a training set (90% of the data) and a test set 

(10% of the data). The training set was used to build the model, whereas the test set was used to 

validate its discriminant and predictive power; this operation was repeated 500 times. Accuracy, 

specificity and sensitivity were estimated according to standard definitions. 

Student's t-test with false discovery rate (FDR) correction (Tusher et al., 2001), were used for the 

determination of the meaningful metabolites and differentially abundant proteins.  

 

 

Data and Software Availability 
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The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository with the dataset identifier PXD004740 and can be viewed by logging in with the 

following details: Username: reviewer98510@ebi.ac.uk; Password: hKx9zFSu. 

The NMR data have been deposited to the MetaboLights database (www. ebi.ac.uk/metabolights) 

with the accession number MTBLS1496. 
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