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ABSTRACT 

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, 
has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social 
and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there 
vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular 
details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral 
proteins in human cells and identified the human proteins physically associated with each using affinity-
purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human 
protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host 
factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical 
compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The 
identification of host dependency factors mediating virus infection may provide key insights into 
effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and 
other deadly coronavirus strains. 

 

MAIN 

The current pandemic of COVID-19  (Coronavirus Disease-2019), a respiratory disease that has led to over 
290,000 confirmed cases and 12,000 fatalities in over 100 countries since its emergence in late 20193,4,  is 
caused by a novel virus strain, SARS-CoV-2, an enveloped, positive-sense, single-stranded RNA 
betacoronavirus of the family Coronaviridae. Coronaviruses infecting humans historically included several mild 
common cold viruses e.g. hCoV-OC43, HKU, 229E5. However, over the past two decades, highly pathogenic 
human coronaviruses have emerged, including SARS-CoV in 2002 and 2003 with 8,000 cases worldwide and a 
death rate of ~10%, and MERS-CoV in 2012, which caused 2,500 confirmed cases and a fatality rate of 36%6. 
Infection with these highly pathogenic coronaviruses can result in Acute Respiratory Distress Syndrome (ARDS), 
which may lead to long-term reduction in lung function, arrhythmia, and death. Compared to MERS or SARS7,8, 
SARS-CoV-2 appears to spread more efficiently, making it difficult to contain and increasing its pandemic 
potential. To devise therapeutic strategies to counteract SARS-CoV-2 infection, it is crucial to develop a 
comprehensive understanding of how this coronavirus hijacks the host during the course of infection, and to 
apply this knowledge towards developing both new drugs and repurposing existing ones.  

So far, no clinically available antiviral drugs have been developed for SARS-CoV, SARS-CoV-2 or MERS-CoV. 
Clinical trials are ongoing for treatment of COVID-19 with the nucleotide analog RNA-dependent RNA 
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Polymerase (RdRP) inhibitor remdesivir9–11, and recent data suggests a new nucleotide analog may be effective 
against SARS-CoV-2 infection in laboratory animals12. Clinical trials on several vaccine candidates are also 
underway13, as well as trials of repurposed host-directed compounds inhibiting the human protease TMPRSS214. 
We believe there is great potential in systematically exploring the host dependencies of the SARS-CoV-2 virus 
to identify other host proteins already targeted with existing drugs. Therapies targeting the host-virus interface, 
where mutational resistance is arguably less likely, could potentially present durable, broad-spectrum treatment 
modalities15. Unfortunately, our minimal knowledge of the molecular details of SARS-CoV-2 infection precludes 
a comprehensive evaluation of small molecule candidates for host-directed therapies. We sought to address this 
knowledge gap by systematically mapping the interaction landscape between SARS-CoV-2 proteins and human 
proteins.  

 

Cloning and expression of predicted SARS-CoV-2 proteins 

Sequence analysis of SARS-CoV-2 isolates suggests that the 30kb genome encodes as many as 14 open 
reading frames (Orfs). The 5’ Orf1a / Orf1ab encodes polyproteins, which are auto-proteolytically processed into 
16 non-structural proteins (Nsp1-16) which form the replicase / transcriptase complex (RTC). The RTC consists 
of multiple enzymes, including the papain-like protease (Nsp3), the main protease (Nsp5), the Nsp7-Nsp8 
primase complex, the primary RNA-dependent RNA polymerase (Nsp12), a helicase/triphosphatase (Nsp13), 
an exoribonuclease (Nsp14), an endonuclease (Nsp15), and N7- and 2’O-methyltransferases 
(Nsp10/Nsp16)1,16,17. At the 3’ end of the viral genome, as many as 13 Orfs are expressed from nine predicted 
sub-genomic RNAs. These include four structural proteins: Spike (S), Envelope (E), Membrane (M) and 
Nucleocapsid (N)17, and nine putative accessory factors (Fig. 1a)1,16. In genetic composition, the SARS-CoV-2 
genome is very similar to SARS-CoV: each has an Orf1ab encoding 16 predicted Nsps and each has the four 
typical coronavirus structural proteins. However, they differ in their complement of 3’ open reading frames: 
SARS-CoV-2 possesses an Orf3b and Orf10 with limited detectable protein homology to SARS-CoV16, and its 
Orf8 is intact while SARS-CoV encodes Orf8a and Orf8b (Fig. 1b)1,16,18.  

Mature Nsps and all predicted proteins expressed from other SARS-CoV-2 Orfs (27 proteins plus one mutant) 
were codon optimized and cloned into a mammalian expression vector with a 2xStrep tag fused to either the N- 
or C-terminus19. Protein expression plasmids were transfected into human HEK293T cells, which were incubated 
for 40 hours before lysis in a mild detergent buffer. Viral proteins were affinity purified using MagStrep beads. 
Beads were washed, on-bead digestion was performed overnight, and peptides were desalted and analyzed by 
protein mass spectrometry. High confidence interactors were identified using SAINTexpress and the MiST 
algorithm19,20.  

To verify viral protein expression, we performed an anti-Strep western blot on input cell lysate, and with the 
exception of Nsp4, Nsp6, Nsp11, and Orf3b, we observed bands consistent with predicted protein sizes (24 of 
28 constructs). Despite the lack of detection via western blot we were able to detect expression of viral peptides 
Nsp4, Nsp6, and Orf3b in the proteomic analysis. The fourth construct not confirmed by western blot, the small 
peptide Nsp11, had a predicted molecular mass of 4.8 kDa (including tag) but an apparent mass of approximately 
30 kDa (Fig. 1c). SARS-CoV-2 Orf3b has limited homology to SARS-CoV Orf3b16, and its restricted expression 
as measured by both western blot and AP-MS may indicate that it is either not a bonafide protein coding gene 
or that it requires co-expression of other SARS-CoV-2 proteins for robust expression. Ultimately we proceeded 
with analysis of protein interaction data from 27 baits, and excluded Orf7b, which had high prey detection 
background (Fig. 1d). 
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Global analysis of SARS-CoV-2 host interacting proteins 

Our affinity purification-mass spectrometry analysis identified 332 protein interactions between SARS-CoV-2 
proteins and human proteins (Extended Data Fig. 1, Supplementary Tables 1, 2; also see Fig. 3). We studied 
the interacting human proteins in regards to their cell biology, anatomical expression patterns, expression 
changes during SARS-CoV-2 infection21 and in relation to other maps of pathogen interacting proteins19,22–30(Fig. 
2a). For each of the viral proteins, we performed Gene Ontology enrichment analysis (Fig. 2b, Extended Data 
Fig. 2), identifying the major cell biological processes of the interacting proteins, including lipoprotein metabolism 
(S), nuclear transport (Nsp7), and biogenesis of ribonucleoprotein (Nsp8). To discover potential binding 
interfaces, we performed an enrichment for domain families within the interacting proteins of each viral bait 
(Extended Data Fig. 3). As examples, we note the enrichment of DNA polymerase domains in the interactors of 
Nsp1 and the enrichment of bromodomains and extra-terminal domain (BET) family for interactors of E (see also 
Figs. 3, 4). In line with the latter, the interactors of E are also enriched in genes annotated for binding to acetylated 
histones (Fig. 2b).  

While the cells used for these AP-MS experiments, HEK-293T kidney cells, are permissive to SARS-CoV-2 
infection31, they do not represent the primary physiological site of infection. Therefore, we asked whether the 
host proteins bound by SARS-CoV-2 might be specifically relevant to the virus’s typical environment, lung tissue. 
We tested if the interacting human proteins were preferentially highly expressed, at the protein level, in any of 
29 human tissues32, which identified the lung as the tissue with the highest expression of the prey proteins 
relative to the average proteome (Fig. 2c). In accordance to this, when compared to overall RefSeq gene 
expression in the lung (median=3.198 TPM), the interacting proteins were more highly expressed (median=25.52 
TPM, p=0.0007; t-test, Extended Data Fig. 4) and were also specifically enriched in lung expression relative to 
other tissues (Extended Data Fig. 5). These data support the hypothesis that SARS-CoV-2 preferentially hijacks 
proteins available in lung tissue and the degree of tissue specific expression may facilitate the drug targeting of 
host factors with fewer systemic side-effects; this observation is particularly compelling given its derivation from 
HEK293 cells, which are themselves not lung derived. To further study the relevance of our map, we analyzed 
the recently reported protein abundance changes during SARS-CoV-2 infection33. We calculated, when possible, 

the correlation between changes in abundance of viral proteins and their human interaction partners across the 

4 timepoints reported. Interacting pairs tended to have stronger correlated changes than other pairs of viral-

human proteins (Fig. 2d, KS test p-value=4.8e−05), arguing that the AP-MS derived interactions are of high 

relevance for the target tissue and the infection context. We compared our SARS-CoV-2 interaction map with 

those derived for 10 other pathogens (Fig. 2e), identifying West Nile Virus (WNV)23 and Mycobacterium 
tuberculosis (Mtb)27 as having the most similar host protein interaction partners. The association with Mtb is 
particularly interesting considering it also infects lung tissue.  

Finally, we studied the evolutionary properties of the host proteins. Successful virus spread in a diverse 
population in theory could be facilitated by a reliance on conserved host molecular components, therefore we 
analyzed the conservation of the human proteins identified in the SARS-CoV-2 interactome. Relative to a control 
sample of genes, the 332 SARS-CoV-2 interacting human proteins had depleted missense and premature stop 
mutations in gnomAD34, indicating that they have reduced genetic variation in human populations (Extended 
Data Fig. 6).  

The SARS-CoV-2 interactome reveals novel aspects of SARS-CoV-2 biology 
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Our study highlighted interactions between SARS-CoV-2 proteins and human proteins with a range of functions 
including DNA replication (Nsp1), epigenetic and gene expression regulators (Nsp5, Nsp8, Nsp13, E), vesicle 
trafficking (Nsp6, Nsp7, Nsp10, Nsp13, Nsp15, Orf3a, E, M, Orf8), lipid modification (Spike), RNA processing 
and regulation (Nsp8, N), ubiquitin ligases (Orf10), signaling (Nsp8, Nsp13, N, Orf9b), nuclear transport 
machinery (Nsp9, Nsp15, Orf6), cytoskeleton (Nsp1, Nsp13), mitochondria (Nsp4, Nsp8, Orf9c), and 
extracellular matrix (Nsp9) (Fig. 3).  

A prominent number of interactions were related to lipid modifications and vesicle trafficking. Interestingly, the 
Spike protein (S) interacts with the GOLGA7-ZDHHC5 acyl-transferase complex, which likely mediates 
palmitoylation on its cytosolic tail (see also Appendix)35. Palmitoylation has been reported to facilitate membrane 
fusion by SARS-CoV Spike and suggests a potential target for therapeutic inhibition36. Interestingly, ZDHHC5 
also has a published role in allowing anthrax toxin to enter cells, suggesting that inhibition of this enzyme could 
have broad utility37. Host interactions of Nsp8 (signal recognition particle), Orf8 (endoplasmic reticulum quality 
control), M (ER structural morphology proteins), Nsp13 (golgins) may facilitate the dramatic reconfiguration of 
ER/Golgi trafficking during coronavirus infection, and interactions in peripheral compartments by Nsp6 and M 
(vacuolar ATPase), Nsp7 (Rabs), Nsp10 (AP2), E (AP3), and Orf3a (HOPS) may also modify endomembrane 
compartments to favor coronavirus replication.  

We identified protein-protein interactions with the main protease Nsp5, using both wild-type and catalytic dead 
(C145A) constructs. For wild-type Nsp5, we identified one high-confidence interaction, the epigenetic regulator 
histone deacetylase 2 (HDAC2), and predicted a cleavage site between the HDAC domain and the nuclear 
localization sequence, suggesting that Nsp5 may inhibit HDAC2 transport into the nucleus (Extended Data Fig. 
7), potentially impacting the published functions of HDAC2 in mediating inflammation and interferon 
response38,39. We also identified an interaction of Nsp5 (C145A) with tRNA methyltransferase 1 (TRMT1), which 
is responsible for synthesis of the dimethylguanosine (m2,2G) base modification on both nuclear and 
mitochondrial tRNAs40. We predict TRMT1 is also cleaved by Nsp5, removing its zinc finger and nuclear 
localization signal and likely resulting in an exclusively mitochondrial localization (Extended Data Fig. 7).  

SARS-CoV-2 interacts with multiple innate immune pathways 

We identified a number of cellular proteins implicated in innate immune signaling that are targeted by several 
SARS-CoV-2 viral proteins. Interestingly, we found that Nsp13 interacts with two key players of IFN signaling 
pathway including TANK-binding kinase 1 (TBK1) and TANK-binding kinase 1-binding protein 1 
(TBKBP1/SINTBAD). SINTBAD acts as a critical adaptor protein between TBK1 and IKKi and therefore mediates 
induction of IRF-dependent transcription41. Further, Nsp13 interacts with multiple proteins of the TLE family, 
which are known to modulate NF-κB inflammatory response42–44. RNF41/Nrdp1, an E3 ubiquitin ligase is targeted 
by Nsp15 protein which promotes activation of TBK1 and IRF3 and therefore increases type I interferon 
production45. Two other E3 ubiquitin ligases, TRIM59 and MIB1 regulate antiviral innate immune signaling and 
are usurped by Orf3a and Nsp9, respectively46,47. Orf9c protein was found to interact with multiple proteins that 
modulate IkB kinase and NF-kB signaling pathway including NLRX1, F2RL1, NDFIP248–50. We also found that 
Orf9b interacts with a mitochondrial import receptor, Tom70, which acts as an essential adaptor linking MAVS 
to TBK1/IRF3, resulting in the activation of IRF-351. 

N targets stress granule protein G3BP1, an essential antiviral protein which is known to induce innate immune 
response through multiple mechanisms52–54. Common among coronaviridae is the manipulation of stress 
granules (SG) and related RNA biology, possibly leading to suppression of stress granules and host translation 
shutoff55. This functionality seems to benefit viral replication, as stress granules are inhibitory to replication of 
MERS-CoV56 and other viruses57. The SARS-CoV-2 nucleocapsid (N) interactome includes many host mRNA 
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binding proteins, including the SG related factors G3BP1/2, the mTOR translational repressors LARP1, and the 
protein kinases CK2 (Fig. 4a). SGs are induced by protein kinase R (PKR)-mediated phosphorylation of eIF2α 
upon viral dsRNA recognition57. Promoting G3BP aggregation via the eIF4A inhibitor Zotatafin58,59 or reducing 
SG disassembly by Silmitasertib inhibition of CK260 warrant investigation for treatment of SARS-CoV-2. The 
mTOR inhibitor rapamycin disrupts the binding of LARP1 to mTORC161 and has been shown to reduce MERS 
infection by ~60% in vitro62, another drug that could be tested for repurposing.  

Orf6 of SARS-CoV has been shown to play a role in antagonizing host interferon signaling63; we identified a 
novel, high-confidence interaction between SARS-CoV-2 Orf6 and NUP98-RAE1, an interferon-inducible mRNA 
nuclear export complex64 that is hijacked or degraded by multiple viruses, including VSV, Influenza-A, KSHV, 
and Polio, and is a restriction factor for Influenza-A infection58,60,62,65. The X-ray structure of VSV M protein 
complexed with NUP98-RAE166 reveals key binding interactions that include a buried methionine residue on the 
M-protein packing into a hydrophobic pocket in RAE1, as well as neighboring acidic residues interacting with a 
basic patch on the NUP98-RAE1 complex (Fig 4b). These binding features are also present in a conserved motif 
in the C-terminal region of SARS-CoV-2 Orf6 (Fig. 4b, Extended Data Fig. 8), providing a structural hypothesis 
for the observed SARS-CoV-2–NUP98-RAE1 interaction. Moreover, a peptide containing the binding region of 
the VSV M protein was previously shown to outcompete RNA binding to NUP98-RAE1, suggesting a role in 
interfering with mRNA export66. These observations suggest a viral strategy to target the RNA nuclear export 
activity of RAE1, potentially revealing a mode of interferon antagonism by SARS-CoV-2. 

The novel Orf10 of SARS-CoV-2 interacts with a Cullin ubiquitin ligase complex 

Viruses commonly hijack ubiquitination pathways for replication and pathogenesis67. The novel Orf10 of SARS-
CoV-2 interacts with multiple members of a Cullin 2 (CUL2) RING E3 ligase complex (Fig. 4c), specifically the 
CUL2ZYG11B complex. ZYG11B, a substrate adapter of CUL2 that targets substrates with exposed N-terminal 
glycines for degradation65, is the highest scoring protein in the Orf10 interactome suggesting its direct interaction 
with Orf10. Orf10 may bind to the CUL2ZYG11B complex and hijack it for ubiquitination and degradation of 
restriction factors. The ubiquitin transfer to a substrate requires neddylation of CUL2 via NEDD8-activating 
enzyme (NAE), a druggable target that can be inhibited by the small molecule Pevonedistat68 (Fig. 4c).  

SARS-CoV-2 envelope interacts with bromodomain proteins 

Surprisingly, we find that the transmembrane protein E binds to the bromodomain-containing proteins BRD2 and 
BRD4 (Fig. 4d, Extended Data Fig. 9), potentially disrupting BRD-histone binding by mimicking histone structure. 
BRD2 is a member of the bromodomain and extra-terminal (BET) domain family whose members bind acetylated 
histones to regulate gene transcription69. The N-terminus of histone 2A shares local sequence similarity over an 
alpha-helix of approximately 15 residues, some of which are in a transmembrane segment, of Protein E (Fig. 
4d). Moreover, this matching region of the histone is spanned by acetylated lysine residues shown to bind 
BRD270. This analysis may suggest that Protein E mimics the histone to disrupt its interaction with BRD2, thus 
inducing changes in host's protein expression that are beneficial to the virus. 
For a more comprehensive overview of the virus-host interactions we detected, see Supplemental Discussion. 

Identification of existing drugs targeting SARS-CoV-2 human host factors. 

To identify small molecules targeting human proteins in the SARS-CoV-2 interactome, we sought ligands known 
to interact with the human proteins, often directly but also by pathway and complexes, drawing on 
chemoinformatics databases and analyses (Methods). Molecules were prioritized by the statistical significance 
of the interaction between the human and viral proteins; by their status as approved drugs, investigational new 
drugs (INDs, “clinical” in Table 1a,b), or as preclinical candidates; by their apparent selectivity; and by their 
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availability (for purchase availability notes, see Supplemental Tables 3 and 4). Chemoinformatics searches 
yielded 15 approved drugs, four investigational new drugs (clinical), and 18 pre-clinical candidates (Table 1a), 
while specialist knowledge revealed 12 approved drugs, 10 investigational new drugs (clinical), and 10 preclinical 
candidates (Table 1b). Of the 332 human targets that interact with the viral bait proteins with high significance, 
63 have drugs/INDs/preclinical molecules that modulate them (Fig. 3). If we reduce our protein interaction score 
threshold slightly, we find an additional four human targets, revealing a total of 67 human targets (Supplementary 
Tables 3 and 4). The drug-human protein associations may be overlaid on top of our protein interaction network, 
highlighting potentially druggable host interactions (Fig. 5a).  
  
There are several mechanistically interesting, and potentially disease-relevant drug-target interactions revealed 
in the chemoinformatic network (Fig. 5a). Among them, the well-known chemical probe, Bafilomycin A1, is a 
potent inhibitor of the V1-ATPase, subunits of which interact with Nsp6 and M. Bafilomycin’s inhibition of this 
cotransporter acts to prevent the acidification of the lysosome, inhibiting autophagy and endosome trafficking 
pathways, which may impact the viral life-cycle. Similarly, drugs exist to target several well-known epigenetic 
regulators prominent among the human interactors, including HDAC2, BRD2 and BRD4, which interact with viral 
proteins nsp5 and E, respectively (Figs. 3 and 5a). The approved drug Valproic acid (an anticonvulsant) and the 
pre-clinical candidate Apicidin inhibit HDAC2 with affinities of 62 μM and 120 nM, respectively. Clinical 
compounds ABBV-744 and CPI-0610 act on BRD2/4, with an affinity of 2 nM or 39 nM, respectively -- several 
preclinical compounds also target bromodomain-containing proteins (Table 1a,b). As a final example, we were 
intrigued to observe that the SARS-CoV-2 Nsp6 protein interacts with the Sigma receptor, which is thought to 
regulate ER stress response71. Similarly, the Sigma2 receptor interacted with the vial protein orf9. Both Sigma1 
and Sigma2 are promiscuous receptors that interact with many non-polar, cationic drugs. We prioritized several 
of these drugs based on potency or potential disease relevance, including the antipsychotic Haloperidol, which 
binds in the low nM range to both receptors72, and Chloroquine, which is currently in clinical trials for COVID-19 
and has mid-nM activity vs the Sigma1 receptor, and low μM activity against the Sigma2 receptor. Because 
many patients are already treated with drugs that have off-target impact on Sigma receptors, associating clinical 
outcomes accompanying treatment with these drugs may merit investigation, a point to which we return. Finally, 
in addition to the druggable host factors, a few of which we have highlighted here, the SARS-CoV-2-human 
interactome reveals many traditionally “undruggable” targets. Among these, for instance, are components of the 
centriole such as CEP250, which interacts with the viral Nsp13. Intriguingly, a very recent patent disclosure 
revealed a natural product, WDB002, that directly and specifically targets CEP250. As a natural product, 
WDB002 would likely be harder to source than the molecules on which we have focused on here, but may well 
merit investigation. Similarly, other “undruggable” targets may be revealed to have compounds that could usefully 
perturb the viral-human interaction network, and act as leads to therapeutics.  
  
Beyond direct interactions, several drug-pathway interactions seemed noteworthy. The human purine 
biosynthesis enzyme Inosine-5′-monophosphate dehydrogenase (IMPDH2) interacts with the viral protein nsp14. 
Several chemically diverse compounds inhibit IMPDH2, including the clinically approved mycophenolic acid (20 
nM), the approved antiviral drug ribavirin (200 nM), and the investigational new drug Merimepodib (10 nM) (Table 
1a). Intriguingly, the preclinical molecule Sanglifehrin A (Table 1b) is known to act as a molecular glue linking 
IMPDH with cyclophilin A (Fig. 5b)73, which itself is implicated in viral capsid packaging, even though it itself is 
not a human “prey” in the viral-human protein interactome. Similarly, direct viral-human interactions with proteins 
regulated by the mTORC1 pathway, such as LARP1, and FKBP7, which interact with the viral N and Orf8 
proteins, led us to inhibitors of mTORC1, even though that kinase itself is not found to directly interact with a 
viral protein (Fig. 5c). Sapanisertib and rapamycin are low nM inhibitors of mTORC1, while metformin is an 
indirect modulator of this protein complex.  
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Discussion 

We have used affinity purification-mass spectrometry to identify 332 high-confidence SARS-CoV-2-
human PPIs. We find the viral proteins connected to a wide array of biological processes, including protein 
trafficking, translation, transcription and ubiquitination regulation. Using a combination of a systematic 
chemoinformatic drug search with a pathway centric analysis, we uncovered close to 70 different drugs and 
compounds, including FDA approved drugs, compounds in clinical trials as well as preclinical compounds, 
targeting parts of the resulting network. We are currently testing these compounds for antiviral activity and 
encourage others to do the same as well as extract insights from the map that could have therapeutic value. 

More generally, this proteomic/chemoinformatic analysis is not only identifying drug and clinical 
molecules that might perturb the viral-human interactome, it gives these potentially therapeutic perturbations a 
mechanistic context.  Among those that may be infection relevant are the inhibition of lysosomal acidification and 
trafficking with Bafilomycin A1, via inhibition of V-ATPase74, and modulation of the ER stress and the protein 
unfolding response pathway by targeting the Sigma1 and Sigma2 receptor by drugs like haloperidol (Fig. 5a, 
Tables 1a,b).  Indeed, several of the human proteins in the interactome are targeted by drugs that have emerged 
phenotypically as candidate therapeutics for treating COVID-19, such as chloroquine75,76. While we do not 
pretend to have identified the molecular basis of chloroquine’s putative activity, we do note that this drug targets 
the Sigma1 and Sigma2 receptors at mid-nM and low μM concentrations, respectively.  Similarly, antibiotics like 
azithromycin have also been mooted as treatments for COVID-19.  While this too remains to be demonstrated, 
we note that Azithromycin has off-target activity against human mitochondrial ribosomes, components of which 
interact with the SARS-CoV-2 Nsp8 protein (MRPS5, MRPS27, MRPS2, and MRPS25). Other antibiotics that 
also have an off-target effect on mitochondrial ribosomes, such as chloramphenicol, tigecycline, and 
Linezolid77,78 may also merit study for efficacy.  Indeed, this logic may be extended.  Many COVID-19 patients 
will be on the drugs identified here, treating pre-existing conditions.  It may be useful to correlate clinical 
outcomes with the taking of these drugs, cross-referencing with the networks described here.  In some senses, 
this is already occurring phenomenologically, leading to concerns about ACE inhibitors such as captopril and 
enalapril, and for NSAIDs.  What this study provides is a systematic schema for clinical/drug associations going 
forward, giving them a mechanistic context that allows investigators to seek them directly.  

Systematic validation using genetic-based approaches79,80 will be key to determine the functional 
relevance of these interactions and if the human proteins are being used by the virus or are fighting off infection, 
information that would inform future pharmacological studies. It is important to note that pharmacological 
intervention with the agents we identified in this study could be either detrimental or beneficial for infection.  For 
instance, the HDAC2 inhibitors may compound the potential action of the Nsp5 protease to hydrolyze this human 
protein. Future work will involve generation of protein-protein interaction maps in different human cell types, as 
well as bat cells, and the study of related coronaviruses including SARS-CoV, MERS-CoV and the less virulent 
OC435, data that will allow for valuable cross-species and viral evolution studies. Targeted biochemical and 
structural studies will also be crucial for a deeper understanding of the viral-host complexes, which will inform 
more targeted drug design. 

Along with SARS-CoV-2, we have previously utilized global affinity purification-mass spectrometry (AP-
MS) analysis to map the  host-pathogen interfaces of a number of human pathogens including Ebola22, Dengue30, 
Zika30, Herpesvirus29, Hepatitis C28, Tuberculosis27, Chlamydia26 , Enteroviruses25, HIV19, HPV24, and West Nile 
Fever23. Excitingly, we have uncovered both shared and unique mechanisms in which these pathogens co-opt 
the host machinery during the course of infection. Although host-directed therapy is often not explored for 
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combatting pathogenic infections, it would be interesting to use this information to identify host factors that could 
serve as targets that would harbor pan-pathogenic activity so that when the next virus undergoes zoonosis, we 
will have treatment options available.  

 

 

Supplementary Information is available for this paper. 

Correspondence and requests for materials should be addressed to nevan.krogan@ucsf.edu 

Reprints and permissions information is available at www.nature.com/reprints 

The authors have not filed for patent protection on the SARS-CoV-2 host interactions or the use of predicted 
drugs for treating COVID-19 to ensure all the information is freely available to accelerate the discovery of a 
treatment.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

FIGURE LEGENDS 

Figure 1: AP-MS Workflow for Identification of SARS-CoV-2 Host Protein-Protein Interactions. (a) SARS-
CoV-2 genome annotation. (b) Table of the SARS-CoV-2 proteins, including molecular weight, sequence 
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similarity with the SARS-CoV homolog, and inferred function based on the SARS-CoV homolog. (c) Immunoblot 
detection of 2xStrep tag demonstrates expression of each bait in input samples, as indicated by red arrowhead. 
(d)  Experimental workflow for expressing each 2xStrep tagged SARS-CoV-2 fusion protein in biological triplicate 
in HEK293T cells, followed by affinity purification-mass spectrometry, and PPI scoring to identify 332 high 
confidence protein-protein interactions.  

Figure 2: Global Analysis of SARS-CoV-2 Protein Interactions. (a) Overview of global analyses performed. 
(b) Gene Ontology (GO) enrichment analysis performed on the human interacting proteins of each viral protein 
(Methods). The top GO term of each viral protein was selected for visualization. (c) Degree of differential protein 
expression for the human interacting proteins across human tissues. We obtained protein abundance values for 
the proteome in 29 human tissues and calculated the median level of abundance for the set of human interacting 
proteins (top 16 tissues shown).  This median value was then compared with the distribution of abundance values 
for the full proteome in each tissue and summarized as a Z-score from which a p-value was calculated and 
adjusted for multiple tests. (d) Distribution of correlation of protein level changes during SARS-CoV-2 infection 
for pairs of viral-human proteins. (e) Significance of the overlap of human interacting proteins between SARS-
CoV-2 and other pathogens.  

Figure 3: SARS-CoV-2 Protein-Protein Interaction Network. In total, 332 high confidence interactions are 
represented between 26 SARS-CoV-2 proteins and their human interactors. Red diamonds represent a SARS-
CoV-2 viral protein, interacting human host proteins are represented with circles, with drug targets in orange. 
Edge color is proportional to MiST score and edge thickness proportional to spectral counts. Physical interactions 
among host proteins are noted as thin black lines, protein complexes are highlighted in yellow, and proteins 
sharing the same biological process are highlighted in blue. 

Figure 4: The SARS-CoV-2 interactome reveals novel aspects of SARS-CoV-2 biology that can be 
targeted pharmacologically. (a) Protein N targets stress granule proteins. (i) Protein N interactome. (ii) Model 
for therapeutic targeting of N interactions in the formation of stress granules (SGs). SGs are known to exhibit 
antiviral activity, with the integrative stress response (ISR) inducing eIF2α phosphorylation and SG formation, 
and Casein kinase II (CK2) disrupting and preventing the formation of SGs. By activating SG formation, or 
inhibiting CK2, the cellular environment could potentially shift to a more antiviral state. (b) Orf6 interacts with an 
interferon-inducible mRNA nuclear export complex. (i) Orf6 interactome including small molecule inhibitors for 
RAE. (ii) Annotated C-terminal sequence of SARS-CoV-2 Orf6, highlighting previously described trafficking 
motifs and the putative NUP98-RAE1 binding sequence. Colors indicate chemical properties of amino acids: 
polar (G,S,T,Y,C, green), neutral (Q,N, purple), basic (K, R, H, blue), acidic (D, E, red), and hydrophobic (A, V, 
L, I, P, W, F, M, black). (iii) SARS-CoV-2 Orf6 carboxy-terminal peptide modeled into the binding site of the VSV 
M protein-NUP98-RAE1 complex (PDB ID: 4OWR). Orf6 shown in dark purple, M protein in yellow, NUP98 in 
green, and RAE1 in light purple. Orf6 and M protein residues labeled. RAE1 hydrophobic residues contacting 
the key methionine and basic patch residues of RAE1 and NUP98 are shown. (iv) Putative NUP98-RAE1 
interaction motifs present in proteins from several viral species. The consensus motif consists of negatively 
charged residues (red) surrounding a conserved methionine (yellow). (c) Orf10 interacts with the CUL2ZYG11B 
complex. (i) Orf10 interactome. (ii) The secondary structure of Orf10 contains an alpha helix motif. (iii) Surface 
representation of the homology model for CUL2ZYG11B complex, residues that are conserved amongst ZYG11B 
orthologues from various species are indicated in red are likely protein interaction surfaces for binding substrates 
and other proteins. (iv) A possible model of how Orf10 binds to the CUL2ZYG11B complex to hijack the complex 
for ubiquitination or viral restriction factors and how it can be targeted pharmacologically. (d) Envelope (E) 
interacts with bromodomain proteins. (i) E interactome. (ii) Sequence alignment of highlighted regions of E and 
Histone 2A (H2A). The positions with identical and similar amino acid residues are highlighted in red and yellow, 
respectively. Note the greater hydrophobicity of E may indicate a part of the alignment represents a 
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transmembrane segment. (iii) Model of how E might mimic the BRD2 native interaction partner Histone 2A and 
how BRD2 can be targeted pharmacologically.  

Figure 5: Drug-human target network. (a) Significant interactions identified by AP-MS between SARS-CoV-2 
baits (red diamonds) and human prey proteins (orange circles) are shown as in Fig 3. Chemoinformatic and 
expert analysis identified FDA approved drugs (green), clinical candidates (yellow), and preclinical candidates 
(purple) with experimental activities against the host proteins and processes, with representative chemicals 
shown. (b) Inosine Monophosphate Dehydrogenase 2 (IMPDH2) regulates de novo nucleic acid biosynthesis. It 
is a  target for proliferative diseases including cancer81 and autoimmune disorders, for instance by the approved 
drug mycophenolic acid82, and as a broad spectrum antiviral by Ribavirin83. While Ribavirin has activity against 
SARS in vitro84, it has low tolerability, something that might be addressed by the more selective Merimepodib, 
which is in phase II clinical trials85. (c) The mammalian target of Rapamycin (mTOR) pathway is a master 
regulator of cell proliferation and autophagy, which viruses including Influenza A are known to modulate86,87. 
Several proteins that interact with SARS-CoV-2 baits, including components of the Respiratory complex 1 by 
Nsp7, Nsp12, and Orf9c, the leucine importer B(0)AT2 (SLC6A15)88,89 by Nsp6 and LARP1 by N (not shown). In 
addition to Rapamycin, the mTOR pathway can be indirectly modulated by metformin, a widely prescribed 
diabetes drug, and by Sapanisertib, a drug in clinical trials for solid tumors61. 
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MATERIALS AND METHODS 

Genome annotation. The genbank sequence for SARS-CoV-2 isolate 2019-nCoV/USA-WA1/2020, accession 
MN985325, was downloaded on January 24, 2020. In total, we identified 29 open reading frames and 
proteolytically mature proteins encoded by SARS-CoV-21,16. Proteolytic products resulting from Nsp3 and Nsp5-
mediated cleavage of the Orf1a / Orf1ab polyprotein were predicted based on the protease specificity of SARS-
CoV proteases90, and 16 predicted nonstructural proteins (Nsps) were subsequently cloned (Nsp1-Nsp16). For 
the proteases Nsp3 (papain-like / Plpro)  and Nsp5 (3Clike / 3CLpro), we also designed catalytic dyad/triad 
mutants: Nsp3 C857A91 and Nsp5 C145A 92,93. Open reading frames at the 3’ end of the viral genome annotated 
in the original genbank file included 4 Structural proteins: S, E, M, N, and the additional open reading frames 
Orf3a, Orf6, Orf7a, Orf8, and Orf10. Based on analysis of open reading frames in the genome and comparisons 
with other annotated SARS-CoV open reading frames, we annotated a further four open reading frames: Orf3b, 
Orf7b, Orf9b, and Orf9c. 

Cell culture. HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (Corning) supplemented with 
10% Fetal Bovine Serum (Gibco, Life Technologies) and 1% Penicillin-Streptomycin (Corning) and maintained 
at 37°C in a humidified atmosphere of 5% CO2.  
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Transfection. For each affinity purification, ten million HEK293T cells were plated per 15-cm dish and 
transfected with up to 15 μg of individual Strep-tagged expression constructs after 20-24 hours. Total plasmid 
was normalized to 15 μg with empty vector and complexed with PolyJet Transfection Reagent (SignaGen 
Laboratories) at a 1:3 μg:μl ratio of plasmid to transfection reagent based on manufacturer’s recommendations. 
After more than 38 hours, cells were dissociated at room temperature using 10 ml Dulbecco’s Phosphate 
Buffered Saline without calcium and magnesium (D-PBS) supplemented with 10 mM EDTA for at least 5 minutes 
and subsequently washed with 10 ml D-PBS. Each step was followed by centrifugation at 200 xg, 4°C for 5 
minutes. Cell pellets were frozen on dry ice and stored at - 80°C. At least three biological replicates were 
independently prepared for affinity purification. 

Affinity purification. Frozen cell pellets were thawed on ice for 15-20 minutes and suspended in 1 ml Lysis 
Buffer [IP Buffer (50 mM Tris-HCl, pH 7.4 at 4°C, 150 mM NaCl, 1 mM EDTA) supplemented with 0.5% Nonidet 
P 40 Substitute (NP40; Fluka Analytical) and cOmplete mini EDTA-free protease and PhosSTOP phosphatase 
inhibitor cocktails (Roche)]. Samples were then frozen on dry ice for 10-20 minutes and partially thawed at 37°C 
before incubation on a tube rotator for 30 minutes at 4°C and centrifugation at 13,000 xg, 4°C for 15 minutes to 
pellet debris. After reserving 50 μl lysate, up to 48 samples were arrayed into a 96-well Deepwell plate for affinity 
purification on the KingFisher Flex Purification System (Thermo Scientific) as follows: MagStrep “type3” beads 
(30 μl; IBA Lifesciences) were equilibrated twice with 1 ml Wash Buffer (IP Buffer supplemented with 0.05% 
NP40) and incubated with 0.95 ml lysate for 2 hours. Beads were washed three times with 1 ml Wash Buffer and 
then once with 1 ml IP Buffer. To directly digest bead-bound proteins as well as elute proteins with biotin, beads 
were manually suspended in IP Buffer and divided in half before transferring to 50 μl Denaturation-Reduction 
Buffer (2 M urea, 50 mM Tris-HCl pH 8.0, 1 mM DTT) and 50 μl 1x Buffer BXT (IBA Lifesciences) dispensed into 
a single 96-well KF microtiter plate, respectively. Purified proteins were first eluted at room temperature for 30 
minutes with constant shaking at 1,100 rpm on a ThermoMixer C incubator. After removing eluates, on-bead 
digestion proceeded (below). Strep-tagged protein expression in lysates and enrichment in eluates were 
assessed by western blot and silver stain, respectively. The KingFisher Flex Purification System was placed in 
the cold room and allowed to equilibrate to 4°C overnight before use. All automated protocol steps were 
performed using the slow mix speed and the following mix times: 30 seconds for equilibration/wash steps, 2 
hours for binding, and 1 minute for final bead release. Three 10 second bead collection times were used between 
all steps. 

On-bead digestion. Bead-bound proteins were denatured and reduced at 37°C for 30 minutes and after bringing 
to room temperature, alkylated in the dark with 3 mM iodoacetamide for 45 minutes and quenched with 3 mM 
DTT for 10 minutes. Proteins were then incubated at 37°C, initially for 4 hours with 1.5 μl trypsin (0.5 μg/μl; 
Promega) and then another 1-2 hours with 0.5 μl additional trypsin. To offset evaporation, 15 μl 50 mM Tris-HCl, 
pH 8.0 were added before trypsin digestion. All steps were performed with constant shaking at 1,100 rpm on a 
ThermoMixer C incubator. Resulting peptides were combined with 50 μl 50 mM Tris-HCl, pH 8.0 used to rinse 
beads and acidified with trifluoroacetic acid (0.5% final, pH < 2.0). Acidified peptides were desalted for MS 
analysis using a BioPureSPE Mini 96-Well Plate (20mg PROTO 300 C18; The Nest Group, Inc.) according to 
standard protocols. 

Mass spectrometry data acquisition and analysis. Samples were re-suspended in 4% formic acid, 2% 
acetonitrile solution, and separated by a reversed-phase gradient over a nanoflow C18 column (Dr. Maisch). 
Each sample was analyzed on two different mass spectrometers. First, a 75 min acquisition, in which peptides 
were directly injected via a Easy-nLC 1200 (Thermo) into a Q-Exactive Plus mass spectrometer (Thermo), with 
all MS1 and MS2 spectra collected in the orbitrap. For all acquisitions, QCloud was used to control instrument 
longitudinal performance during the project94. All proteomic data was searched against the human proteome 
(uniprot reviewed sequences downloaded February 28th, 2020), EGFP sequence, and the SARS-CoV-2 protein 
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sequences using the default settings for MaxQuant95,96. Detected peptides and proteins were filtered to 1% false 
discovery rate in MaxQuant, and identified proteins were then subjected to protein-protein interaction scoring 
with both SAINTexpress20 and MiST19,97. We applied a two step filtering strategy to determine the final list of 

reported interactors which relied on two different scoring stringency cutoffs. In the first step, we chose all protein 

interactions that possess a MiST score ≥ 0.7, a SAINTexpress BFDR ≤ 0.05 and an average spectral count ≥ 2. 

For all proteins that fulfilled these criteria we extracted information about stable protein complexes they 

participate in from the CORUM98 database of known protein complexes. In the second step we then relaxed the 
stringency and recovered additional interactors that (1) form complexes with interactors determined in filtering 
step 1 and (2) fulfill the following criteria: MiST score ≥ 0.6, SAINTexpress BFDR ≤ 0.05 and average spectral 

counts ≥ 2. Proteins that fulfilled filtering criteria in either step 1 or step 2 were considered to be HC-PPIs and 

visualized with cytoscape99. Using this filtering criteria, nearly all of our baits recovered a number of HC-PPIs in 
close alignment with previous datasets reporting an average of ~6 PPIs per bait100. However, for a subset of 
baits (Orf8, Nsp8, Nsp13, and orf9c) we observed a much higher number of PPIs passing these filtering criteria. 
For these four baits, the MiST scoring was instead performed using an larger in-house database of 87 baits that 
were prepared and processed in an analogous manner to this SARS-CoV-2 dataset. This was done to provide 
a more comprehensive collection of baits for comparison, to minimize the classification of non-specifically binding 
background proteins as HC-PPIs. All mass spectrometry raw data and search results files have been deposited 
to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 
PXD018117101,102. PPI networks have also been uploaded to NDEx. 

Gene Ontology Over-representation Analysis. The targets of each bait were tested for enrichment of Gene 
Ontology (GO Biological Process) terms. The over-representation analysis (ORA) was performed using the 
enricher function of clusterProfiler package in R with default parameters. The gene ontology terms were obtained 
from the c5 category of Molecular Signature Database (MSigDBv6.1). Significant GO terms (1% FDR) were 
identified and further refined to select non-redundant terms. In order to select non-redundant gene sets, we first 
constructed a GO term tree based on distances (1-Jaccard Similarity Coefficients of shared genes) between the 
significant terms. The GO term tree was cut at a specific level (h=0.99) to identify clusters of non-redundant gene 
sets. For a bait with multiple significant terms belonging to the same cluster, we selected the broadest term i.e. 
largest gene set size.  
 
Virus Interactome Similarity Analysis. Interactome similarity was assessed by comparing the number of 
shared human interacting proteins between pathogen pairs, using a hypergeometric test to calculate 
significance. The background gene set for the test consisted of all unique proteins detected by mass 
spectrometry across all pathogens (N=10,181 genes). 
 
Orf6 peptide modeling. The proposed interaction between Orf6 and the NUP98-RAE1 complex was modeled 
in PyRosetta 4103 (release v2020.02-dev61090) using the crystal structure of Vesicular stomatitis virus matrix 
(M) protein bound to NUP98-RAE1 as a template66 (PDB 4OWR downloaded from the PDB-REDO server104). 
The M protein chain (C) was truncated after residue 54 to restrict the model to the putative interaction motif in 
Orf6 (M protein residues 49-54, sequence DEMDTH). These residues were mutated to the Orf6 sequence, 
QPMEID, using the mutate_residue function in the module pyrosetta.toolbox, without repacking at this initial 
step. After all six residues were mutated, the full model was relaxed to a low energy conformation using the 
FastRelax protocol in the module pyrosetta.rosetta.protocols.relax. FastRelax was run with constraints to starting 
coordinates and scored with the ref2015 score function. The resulting model was inspected for any large 
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energetic penalties associated with the modeled peptide residues or those NUP98 and RAE1 residues 
interacting with the peptide, and was found to have none. The model was visualized in PyMOL (The PyMOL 
Molecular Graphics System, Version 2.3.4 Schrödinger, LLC.).  

CUL2ZYG11B homology model generation. The CRL2ZYG11B homology model was built with Swissmodel105 and 
Modeller106 by using the homology template of each domain from PDB database (PDB codes: 4b8o, 5jh5,1g03, 
and 6r7n). The ZYG11B model has two structured domains: a leucine rich repeat (LRR) and Armadillo Repeat 
(ARM) at the N and C-terminus respectively. The linker between each domain was not modelled due to high 
flexibility between residues 32 to 49 and residues 304 to 322. Putative protein interaction surfaces on ZYG11B 
were modelled based on contiguous surface exposed residues that are conserved in ZYG11B orthologues from 
C. elegans to H. sapiens (ZY11B_HUMAN; ZY11B_MOUSE; F1M8P2_RAT; ZYG11_XENLA; ZYG11_DANRE; 
ZYG11_CAEEL) and located at typical substrate binding sites in the homologous structures of LRR and ARM 
domain co-complexes. 

Alignment of Protein E and Histone H2A. In order to align protein E and histone H2A, the structure of the 
protein E SARS-CoV homolog (PDB ID: 2MM4) was compared to the human nucleosome structure (PDB ID: 
6K1K). Protein E was structurally aligned to the histone subunits using Pymol’s “align” function 
(https://pymolwiki.org/index.php/Align). Align performs a sequence alignment followed by a structural 
superposition, and then carries out zero or more cycles of refinement in order to reject structural outliers found 
during the fit. The best superposition was obtained for H2A residues 49-60 & 63-70 and Protein E residues 25-
44 at an RMSD of 2.8Å, as reported in Figure 4d. 

Chemoinformatic Analysis of SARS-CoV2 Interacting Partners. To identify drugs and reagents that 
modulate the 332 host factors interacting with SARS-CoV-2-HEK293T (MiST >= 0.70), we used two 
approaches: 1) a chemoinformatic analysis of open-source chemical databases and 2) a target- and pathway-
specific literature search, drawing on specialist knowledge within our group. Chemoinformatically, we retrieved 
2,472 molecules from the IUPHAR/BPS Guide to Pharmacology (2020-3-12) that interacted with 30 human 
"prey" proteins (38 approved, 71 in clinical trials), and found 10,883 molecules (95 approved, 369 in clinical 
trials) from the ChEMBL25 database107 (Supplementary Tables 5, 6). For both approaches, molecules were 
prioritized on their FDA approval status, activity at the target of interest better than 1 μM, and commercial 
availability, drawing on the ZINC database108. FDA approved molecules were prioritized except when clinical 
candidates or preclinical research molecules had substantially better selectivity or potency on-target. In some 
cases, we considered molecules with indirect mechanisms of action on the general pathway of interest based 
solely on literature evidence (e.g., captopril modulates ACE2 indirectly via its direct interaction with Angiotensin 
Converting Enzyme, ACE). Finally, we predicted 6 additional molecules (2 approved, 1 in clinical trials) for 
proteins with MIST scores between 0.7-0.6 to viral baits (Supplemental Tables 3 and 4). Complete methods 
can be found here (www.github.com/momeara/BioChemPantry/vignette/COVID19). 

 

SUPPLEMENTARY INFORMATION  

Supplementary table 1: Scoring results for all baits and all proteins 

Supplementary table 2: SARS-CoV 2 high confidence interactors  
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Supplementary table 3: Literature-derived drugs and reagents that modulate SARS-Cov-2 interactors. Drug-
target associations drawn from chemoinformatic searches of the literature, including information about 
purchasability  

Supplementary table 4: Expert-identified drugs and reagents that modulate SARS-CoV-2 interactors.   Drug-
target associations drawn from expert knowledge of human protein interactors of SARS-Co-V2  and reagents 
and drugs that modulate them; not readily available from the chemoinformatically-searchable literature  

Supplementary table 5: Raw chemical associations to prey proteins IUPHAR/BPS Guide to Pharmacology (2020-
3-12)  

Supplementary table 6: Raw chemical associations to prey proteins ChEMBL25  

Supplementary Methods: Computational methods used to propagate tables and supplemental figures  

Supplementary Discussion: In depth look at the SARS-CoV-2 individual bait subnetworks   
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Table 1a. Literature-deriveda drugs and reagents that modulate SARS-Cov-2 interactors.  
 
 
 

Compound  
Name 

Compound  
Structure 

Human  
Gene Viral Bait Drug  

Status 
Activity 

 (nM) 

JQ1109 

 

BRD2/4 E Pre-clinical 
BRD inhibitor  
IC50 = 40-120 

 

RVX-208109 

  

BRD2/4 E Clinical Trial 
BRD inhibitor  

IC50 = 50-1800 
 

Silmitasertib110,111  
 

  

CSNK2A2 N Approved 
(Cancer) 

CK2 inhibitor  
IC50 = 1 

 

TMCB112 
 

 

CSNK2A2 
 N Pre-clinical 

 

Multi-targeted 
protein kinase 

inhibitor 
Ki = 21 

 

Apicidin113 

  

HDAC2 Nsp5 Pre-clinical  HDAC inhibitor  
IC50 = 120 

Valproic Acid114–116 
  

HDAC2 Nsp5 

Approved 
(CNS 

diseases, 
Cancer) 

HDAC2 inhibitor  
IC50 = 62,000 
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Bafilomycin A1117 

 

 

ATP6AP1 
ATP6V1A 

Nsp6 
M Pre-clinical ATPase inhibitor  

IC50 = 100 

E-52862118 

 

 

SIGMAR1 Nsp6 Clinical Trial Sigma 1 antagonist  
IC50 = 17 

PD-144418119 

 

 

SIGMAR1 Nsp6 Pre-clinical Sigma 1 antagonist  
Ki = 0.8 

RS-PPCC120 

  

SIGMAR1 Nsp6 Pre-clinical Sigma 1 agonist 
 Ki = 1.5 

PB28121 

  

SIGMAR1 
TMEM97 

 

Nsp6 
Orf9c Pre-clinical Sigma 1/2 modulator 

 IC50 = 15 

Haloperidol72 

 

SIGMAR1 
TMEM97 

Nsp6 
Orf9c 

Approved 
(CNS 

diseases) 

Sigma 1/2 modulator 
Ki = 2-12 

Entacapone122,123 

  

COMT Nsp7 
Approved 

(Parkinson's 
disease) 

COMT inhibitor  
IC50 = 151 

Indomethacin124 

  

PTGES2 Nsp7 
Approved 

(Inflammation, 
Pain) 

Prostaglandin E2 
synthase inhibitor 

IC50 = 750 
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Metformin125 
  

NDUFs Nsp7 
Orf9c 

Approved 
(Diabetes) 

MRC 1 inhibitor 
(indirect) 

Ponatinib126 

 

RIPK1 Nsp12 Approved 
(Cancer) 

RIPK1 inhibitor  
IC50 = 12 

H-89127 

  

   
PRKACA Nsp13 Pre-clinical 

Protein kinase A 
inhibitor  
KD = 48 

Merimepodib128 

  

IMPDH2 Nsp14 Clinical Trial IMPDH inhibitor  
Ki = 10 

Migalastat129 

  

GLA Nsp14 
Approved 

(Fabry 
disease) 

 α-Gal inhibitor  
IC50 = 40 

Mycophenolic acid130 

  

IMPDH2 Nsp14 
Approved 

(Organ 
rejection) 

IMPDH inhibitor 
 IC50 = 20 

Ribavirin131 

  

IMPDH2 Nsp14 Approved 
(Viral infection) 

IMPDH inhibitor 
IC50 = 100-250 

XL413132 

  

DNMT1 Orf8 Clinical Trial CDC7 inhibitor  
IC50 = 3.4 

CCT 365623133 
 

 

LOX 
 

Orf8 
 Pre-clinical 

LOXL2 inhibitor  
IC50 = 1500 
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Midostaurin134 

  

MARK2/3 Orf9b Approved 
(Cancer) 

Protein kinase 
inhibitor 
MARK1  
KD = 100 
MARK3  
KD = 23 

 
 

Ruxolitinib135 

  

MARK2/3 Orf9b Approved 
(Myelofibrosis) 

Protein kinase 
inhibitor  
MARK1  
KD = 660 
MARK3  

 KD > 10000 
 

ZINC1775962367136 

  

DCTPP1 Orf9b Pre-clinical 
dCTPase inhibitor 

 IC50 = 47 
 

ZINC4326719137 

  

DCTPP1 Orf9b Pre-clinical 
DCTPP1 inhibitor 

 IC50 = 19 
 

ZINC4511851138 

  

DCTPP1 Orf9b Pre-clinical 
dCTPase inhibitor 

 IC50 = 20 
 

ZINC95559591139 

 

 

MARK3 
TBK1 

Orf9b 
Nsp13 Pre-clinical 

Protein kinase 
inhibitor  
MARK3  
IC50 = 12 

TBK1 
IC50 = 6 

 

AC-55541140 

  

F2RL1 Orf9c Pre-clinical 
PAR agonist  
pEC50 = 6.7 

 

AZ8838141 

  

F2RL1 Orf9c Pre-clinical 
PAR antagonist 

 IC50 = 344 
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Daunorubicin142 

  
 

ABCC1 Orf9c Approved 
(Cancer) 

Topoisomerase 
inhibitor  
Ki = 70 

GB110143 

  

F2RL1 Orf9c Pre-clinical  PAR2 agonist  
EC50 = 280 

S-verapamil144 

  

ABCC1 Orf9c Approved 
(Hypertension) 

Ca2+ channel 
inhibitor and drug 
efflux transporter 

inhibitor 
Ki = 113 

AZ3451141 

  

F2RL1 Orf9c Pre-clinical 
PAR2 negative 

allosteric modulator  
pKD = 15 

 
 

a. These drug-target associations are drawn from chemoinformatic searches of the literature, drawing on 
databases such as ChEMBL107, ZINC108 and IUPHAR/BPS Guide to Pharmacology145 
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Table 1b. Expert-identifieda drugs and reagents that modulate SARS-CoV-2 interactors.  
 
 

Compound  
Name 

Compound  
Structure 

Human  
Gene/ 

Process 
Viral 
Bait 

Drug  
Status 

Activity  
(nM) 

 
ABBV-74469 

  

BRD2/4 E Clinical Trial 
BRD 

inhibitor  
KD = 2.1 

dBET6146 

  

BRD2/4 E Pre-clinical 

Degrades 
BRD 

proteins  
IC50 < 
10000 

 
MZ1147 

  

BRD2/4 E Pre-clinical 

Degrades 
BRD 

proteins  
KD = 120-

228 

 
CPI-0610148 

 

 

BRD2/4 E Clinical Trial 

 
BRD2/4 
inhibitor 
BRD2 

IC50 = 25 
BRD4 

IC50 = 18 
 
 

 
Sapanisertib61,149  

  

LARP1     N Clinical Trial 

mTOR 
inhibitor  
IC50 = 1 
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Rapamycin61,150  

  

LARP1 
FKBP15 

FKBP7/10 

N 
Nsp2 
Orf8 

Approved  
(Organ 

rejection) 

mTOR 
inhibitor   

(with 
FKBP) 

IC50 = 2.0 
 

 
Zotatifin151  

  

EIF4E2/H Nsp2 Clinical Trial 

 
EIF4a 

inhibitor 
IC50 = 1.5  

 
Verdinexor152 

 

NUPs 
RAE1 

Nsp4 
Nsp9 
Orf6 

Clinical Trial 

XPO1 
nuclear 
export 

inhibitor 
IC50 = 960 

 

 
Chloroquine153 

 

SIGMAR1 Nsp6 Approved  
(Malaria) 

Sigma 1 
binder 

Ki = 100 

 
Dabrafenib154 

 

 

NEK9 Nsp9 Approved  
(Cancer) 

NEK9 
inhibitor  
IC50 = 1 

 

WDB002 

 

CEP250 
 

Nsp13 
 Clinical Trial 

CEP250 
inhibitor  

(with 
FKBP) 

Kd = 0.29 
 
 

 
Sanglifehrin A73 

 
 

IMPDH2 Nsp14 Pre-clinical 

PPIA-
IMPDH2 

modulator 
PPIA KD = 

0.2 
IDPDH2 
Binding 
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EC50 = 
11.5 (with 

PPIA) 

 
FK-506155 

 

 

FKBP7 
FKBP10 Orf8 

Approved  
(Organ 

rejection) 

FKBP 
binder 

 
Pevonedistat68 

 
 

CUL2 
 

Orf10 
 

Clinical Trial 
 

NEDD8-
activating 
enzyme 
inhibitor  

IC50 = 4.7 
 

 
Ternatin 4156  

 

  

Translation   Pre-clinical 
eEF1A 
inhibitor 
IC50 = 71 

 

 
4E2RCat157 

  

Translation   Pre-clinical 

eIF4E/G 
PPI 

inhibitor 
 IC50 = 
13500 

 

 
Tomivosertib158,159  

  

Translation   Clinical Trial 
MNK1/2 
inhibitor  

IC50 = 2.4 

 
Compound 2160 

  

Viral 
Transcription   Pre-clinical 

Cyclophilin 
inhibitor  
KD = 24 
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Compound 10161 

  

Viral 
Transcription   Pre-clinical 

PI4K-IIIβ 
inhibitor  

IC50 = 3.4 
 

PS306130 

 
 

ER protein 
processing   Pre-clinical 

 
Sec61 

inhibitor  
IC50 = 20-

500 
 

IHVR-19029162,163 
 

 

ER protein 
processing 

 
 Clinical Trial 

 

 
Antiviral 
activity 

IC50 = 1200 
  
 

Captopril164 
  

Cell Entry   Approved 
(Hypertension) 

ACE 
inhibitor 
 Ki = 3 

Lisinopril165 

 

 
 

Cell Entry   Approved 
(Hypertension) 

ACE 
inhibitor  
Ki = 0.27 

Camostat166,167 

  

Cell Entry   Approved  
(Pancreatitis) 

 
 

Serine 
protease 1 

inhibitor 
IC50 < 1000 

 

Nafamostat166,168 

  

Cell Entry   Approved 
(Anticoagulant) 

 
Serine 

protease 1 
inhibitor 

IC50 = 100 
  

Chloram- 
phenicol169 

 
  

Mitochondrial 
ribosome  

Approved  
(Bacterial 
infection) 

Mito- 
chondrial 
ribosome 
inhibitor 

IC50 = 7400 
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Tigecycline170 

 
 

Mitochondrial 
ribosome  

Approved  
(Bacterial 
infection) 

Mito- 
chondrial 
ribosome 
inhibitor 

IC50 = 3300 
 

 
Linezolid171 

 

Mitochondrial 
ribosome  

Approved  
(Bacterial 
infection) 

Mito- 
chondrial 
ribosome 
inhibitor 
IC50 = 
16000 

 

 

a. These molecules derive from expert analysis of human protein interactors of SARS-Co-V2  and reagents and 
drugs that modulate them; not readily available from the chemoinformatically-searchable literature.  
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