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Abstract. 

Differential Scanning Fluorimetry (DSF) is a method that enables rapid determination of a 

protein’s apparent melting temperature (Tma). Owing to its high throughput, DSF has found 

widespread application in fields ranging from structural biology to chemical screening. Yet DSF 

has developed two opposing reputations: one as an indispensable laboratory tool to probe protein 

stability, another as a frustrating platform that often fails. Here, we aim to reconcile these disparate 

reputations and help users perform more successful DSF experiments with three resources: an 

updated, interactive theoretical framework, practical tips, and online data analysis. We anticipate 

that these resources, made available online at DSFworld 

(https://gestwickilab.shinyapps.io/dsfworld/), will broaden the utility of DSF.  

 

 

Introduction. 

Differential Scanning Fluorimetry (DSF) is a biochemical assay used to measure the 

apparent melting temperature (Tma) of a purified protein. In a typical DSF experiment, a protein 

solution is combined with a dye (e.g. SYPRO Orange) and heated in a qPCR instrument1. The DSF 

dye is minimally fluorescent in solution, but fluoresces brightly when bound to the hydrophobic 
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regions of unfolded proteins. Therefore, as the protein unfolds during heating and reveals binding 

sites for the dye, fluorescence increases proportionally to unfolded protein abundance. The Tma is 

then calculated as the midpoint of the resulting fluorescence versus temperature curve, and higher 

Tmas suggest a more stable native protein. Because Tmas are broadly sensitive to changes in the 

biochemical state of the native protein, such as the binding of ligands1-7, mutations8,9, and protein-

protein interactions10,11, DSF is widely used to monitor diverse biochemical events via the 

associated change in Tma (∆Tma) 12,13. 

Compared to previous methods of Tma determination, DSF excels in accessibility and 

throughput. For example, circular dichroism (CD)14 and differential scanning calorimetry (DSC) 
15,16, the biophysical gold-standard techniques for Tma determination, each require dedicated 

instruments, 50 µL to 2 mL of high-micromolar protein solution, and typically analyze a single 

solution at a time. In contrast, DSF requires little-to-no specialized instrumentation, 1 to 20 µL of 

low-micromolar protein solution, and accommodates throughputs from PCR tubes to 1536-well 

microtiter plates.  

Given these advantages, DSF is used widely by labs in academia, government, and industry 

alike. For example, DSF may rapidly identify stabilizing buffer condition,, enabling structural 

characterizations17-19 or formulations of biotherapeutics20. High-throughput DSF screens are used 

to identify candidate binders to proteins of interest independent of enzymatic activity7,12,21. DSF 

has also been used to search for small-molecule correctors for genetically destabilized proteins22-

25 which underlie many misfolding diseases13,26,27  such as cystic fibrosis28,29, Gaucher’s disease30 

and Fabry’s disease31. For example, our lab conducted a primary chemical screen by DSF to 

identify ligands for cataract-associated forms of alpha B-crystallin32. These applications and others 

have been excellently reviewed12,33. 

Yet DSF regularly fails. Sometimes a validated ligand induces no ∆Tma, a replicated 

experiment produces different results, the data cannot be fit to a simple sigmoid, and so on. While 

excellent resources exist guiding applications of successful DSF, as well as some descriptions of 

its systematic shortcomings33,34, there is currently little to no framework for optimizing failed DSF 

conditions into successful ones, let alone how to do so efficiently. Instead, failures and solutions 

are passed on at conferences or group meetings if at all, so when an experiment fails, it is often 

unclear what to try next. 
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The purpose of this paper is therefore to guide readers from failed to successful DSF. This 

begins with re-joining DSF with its theoretical underpinnings—a combination of unfolding 

thermodynamics and kinetics, and dye-binding—in a convenient and usable manner. In the first of 

three resources, we start with an empirical assessment of the ability of the current theoretical 

framework to describe real DSF data, and find that it overlooks two widespread features which 

carry important practical ramifications: kinetic influence on protein unfolding, and atypical dye 

activation. We present a correspondingly-updated theoretical framework and associated 

computational model for DSF, and demonstrate its increased ability to describe widely-observed 

empirical phenomena in DSF at odds with the current framework. We make this model available 

as an interactive online tool at DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In the 

second resource, we build on this updated framework to identify common but largely undescribed 

technical pitfalls which ruin even well-designed DSF experiments, and present experimental best-

practices to minimize them. Finally, we provide a free DSF data analysis software at 

www.DSFworld.com. DSFworld addresses major existing limitations in data, including 

customizable visualizations based on user-defined experimental variables, as well as streamlined 

handling of complex, multi-transition data. Together, we hope that these three resources—theory, 

practical tips and data analysis—will help the community perform more successful DSF 

experiments. 

 

 

Results. 

Section I: An improved theoretical framework for DSF.  

In a DSF experiment, the measured fluorescence signal is a product of multiple molecular 

events, including protein unfolding, dye binding, and dye activation (e.g. an increase in quantum 

yield). The current theoretical framework (termed here “Model 1”) underlying the design and 

interpretation of DSF experiments includes two major assumptions: (i) that protein thermal 

unfolding reflects thermodynamic equilibrium and (ii) that dye fluorescence provides a proxy for 

unfolded protein abundance.  

Here, we demonstrate that this widespread theoretical framework for DSF falls short in two 

straightforward, yet important, ways. First, we show experimental and theoretical evidence that 

the kinetics of protein unfolding, not just the thermodynamics, influences the outcome of most 
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DSF experiments. Second, we show that dye binding is not always exclusive to the unfolded state; 

rather, the dye sometimes binds to the native state. In other cases, the dye fails to bind the unfolded 

states, such that it cannot accurately reveal the unfolding process. Incorporating these 

considerations, we propose an improved theoretical framework for DSF, termed “Model 2”. 

Currently, interpretation of most DSF experiments assumes that protein unfolding is 

dominated by thermodynamic contributions, yet the results of extensive CD and DSC studies have 

suggested that kinetics plays a major role, especially for thermal unfolding35,36. Based on this 

classical literature, we hypothesized that DSF results might also include a contribution from 

kinetics. If so, calculated Tma values measured by DSF would be expected to depend on the rate 

at which the sample is heated (°C / min). To test this idea, a model thermodynamic unfolder (hen 

egg white lysozyme) 37 and a model kinetic unfolder (malate dehydrogenase; MDH)38 were 

analyzed by DSF at systematically increased heating rates (0.5, 1, 2 and 4 ºC/min; Figure 1a). As 

expected, we found that the calculated Tma value for lysozyme (69 °C) was largely unaffected  by 

heating rate (∆Tma of only 0.8 °C, calculated between the extreme heating rates of 0.25 and 2 

ºC/min; Figure 1b, c). Conversely,  a strong effect was observed for MDH (∆Tma = 3.1 ºC; Figure 

1b, c). To understand how widespread this kinetic contribution might be, we tested six additional 

proteins that vary in structure and molecular mass (PPIF, PerAB, PPIE, Per2, Hsc70, 

CHIP/STUB1; Supplemental Table 1).  Strikingly, the Tma values for all six proteins, like MDH, 

also varied substantially with heating rate (∆Tma =  2.2 to 5.4 ºC; Figure 1b, Supplemental Table 

1). This result suggests that kinetics does significantly influence the outcomes of many DSF 

experiments. 

To incorporate unfolding kinetics into the theoretical framework of DSF, we chose the 

simplest of the classic Lumry-Eyring models which combine thermodynamics and kinetics of 

unfolding: 39  

 

𝑁𝑎𝑡𝑖𝑣𝑒, 𝐹𝑜𝑙𝑑𝑒𝑑	𝑆𝑡𝑎𝑡𝑒	 ⇌ 		𝑅𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑦	𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑	𝑆𝑡𝑎𝑡𝑒𝑠	 → 	𝐼𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑦	𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑	𝑆𝑡𝑎𝑡𝑒𝑠  

 

The use of this model is informed by pioneering work on the analysis of DSC 

experiments35. However, we had to adapt it for use in simulating DSF data by including the 

contribution of dye binding. Specifically, we multiplied the abundance of each protein state F(T) 

and the kinetic partitioning between these states, L(T), by the extent to which they each activate 
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the dye D(T). Importantly, the D(T) term is a product of both a dye’s binding affinity and its 

quantum yield. Thus, in Model 2, the measured fluorescence is predicted to be a sum of the RFU 

contributions from dye binding to each of the three states (RFUnative, RFUreversibly unfolded, 

RFUirreversibly unfolded), and corrected for the empirically observed temperature-dependent losses in 

fluorescence, yielding the final model:  
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𝑅𝐹𝑈};; = 𝑅𝐹𝑈9:;<=< +	𝑅𝐹𝑈u=v.		xyz. +	𝑅𝐹𝑈���=v.		xyz.   [Model 2] 

 

As a head-to-head test, we simulated DSF results at varied heating rates from either Model 

1 (the current DSF theoretical framework) or Model 2 and compared them to the experimental data 

from Figure 1. As expected, we found that Model 1 could not account for the dependence of Tma 

on heating rate, while Model 2 successfully recapitulated it in magnitude and direction for both 

MDH (∆Tma = +2.2 to 5.4 ºC empirical; +6 ºC theoretical), and the thermodynamic unfolder 

lysozyme (∆Tma = +0.8 ºC empirical; +0.8 ºC theoretical) (Supplementary Figure 1). This 

agreement supports the utility of Model 2 for improved interpretation of DSF data.  

We next tested whether Model 2 could recapitulate two additional, widespread conundrums 

in DSF experiments.  First, we explored the issue of validated ligands producing negative ∆Tma 

values. In the thermodynamic Model 1 framework, selective ligand binding to the native protein 

must increase Tma, such that calculated ∆Tma values should always be positive. However, negative 

∆Tma values appear routinely in published reports, even when the ligand is properly validated by 

other techniques21,32,40-42. How is this possible? Using Model 2, we generated a theoretical DSF 

dataset, in which we varied the impact of ligand binding on the activation energy of protein 

unfolding (Ea), and found that decreased Ea values were sufficient to increase kinetic partitioning 

into an irreversible unfolded state and produce negative ∆Tma values (Figure 2c). Thus, Model 2 

was able to produce theoretically sound reason for why negative ∆Tma values are sometimes 

observed. We also noted that these negative ∆Tma values were accompanied by a systematic 

decrease in the slope of the transition (Figure 2d), suggesting that analysis of curve shape, not just 

∆Tma, is both theoretically-justified and potentially advantageous. At the least, these results 

prompt re-evaluation of the current practice of discarding all negative ∆Tma hits from high 

throughput DSF screens.  

Next, we examined why, for some proteins, DSF fails to reproduce the melting curves that 

are expected from CD or DSC. For example, it is relatively common to encounter DSF curves in 

which the fluorescence starts high at low temperature and then decreases, rather than increases, 

during heating. We hypothesized that this effect might be due, in part, to aberrant binding of the 

dye to the native, folded state. To test this idea, we generated a theoretical DSF dataset from Model 
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2, in which the affinity of the dye for protein states—native, reversibly unfolded, and irreversibly 

unfolded—was individually enhanced. We found that, when dye was activated by the native state, 

the resulting Tma values were aberrantly elevated (Figure 1 c), matching what is often observed in 

practice. In the other extreme, when dye was not activated by the unfolded states, the fluorescence 

was “flat” and unfolding transitions were not detectable (Figure 2e, right panel). These results also 

agree with our empirical observations of some proteins (Supplemental Figure 3). Extending this 

concept to data analysis, we found that including a temperature-dependent initial fluorescence 

population in the fitted sigmoid model improves the accuracy of Tma values calculated for proteins 

with native-state dye activation (described in more detail in Section III). Finally, extending this 

concept to the bench, we found that elimination of extraneous sources of dye activation is a critical 

step in optimizing DSF conditions (described in more detail in Section II). 

An interactive, online tool for comparison of Models 1 and 2 is available at DSFworld and 

the associated R script is publicly available on GitHub.  

 

II. Practical tips, theoretically grounded 

Although the theoretical framework described in Section I appears to be a useful tool to 

improve DSF experimental design and interpretation, it does not account for experimental artifacts. 

A separate consideration of artifacts is important because common ones can produce effects on 

fluorescence that qualitatively resemble those introduced by using Model 1. In this section, we 

describe potential sources of these artifacts, alongside five best-practices to avoid them. In 

addition, to reducing the impact of these artifacts, the other goal of this section is to improve 

reproducibility and maximize sensitivity of DSF experiments.  

 

i. Include no-protein controls for every condition.  

Because DSF relies on the use of dye fluorescence as a proxy for protein unfolding, 

identifying and minimizing sources of protein-independent fluorescence is a critical step. Indeed, 

the fluorescence of SYPRO Orange is known to be sensitive to excipients that are common in 

biological buffers, such as glycerol, detergents, lipids and EDTA34,43. Here, we focus on two 

especially pernicious and common sources of protein-independent fluorescence: dye binding to 

colloidal aggregates and dye binding to the plastic used in manufacture of some microtiter plates.  
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Dye binding to plastic is a common problem in DSF. This artifact manifests as significant 

fluorescence in the absence of any protein (Figure 3a). In extreme cases, this artifact produces a 

fluorescence transition that, upon first inspection, mimics the shape of a curve that might result 

from dye binding to a folded protein (Figure 3b). One can readily discriminate between these 

possibilities by testing dye fluorescence in buffer without protein. An under-appreciated aspect of 

this artifact is that it varies between plate lots (e.g. microtiter plates manufactured at different 

times). Thus, because offending plates might have the same catalog number and vendor, each new 

lot should be tested for protein-independent dye-activation before use (see Supplemental Figure 4 

for a plate compatibility test protocol).  

When a DSF experiment involves addition of a small molecule, we found that an additional 

control must be performed to reduce artifacts associated with dye activation by to the compound. 

Much like plate-related artifacts, these ones manifest as a protein-independent increase in dye 

fluorescence. We suspected that dye binding to colloidal aggregates might underlie some of these 

cases. This hypothesis is based on work describing the formation of colloidal aggregates by small 

molecules as a recognized mechanism of pan-assay interference compounds (PAINS)44-46.  To test 

this idea, we assembled a panel of eight compounds that have been reported to form colloidal 

aggregates, but that otherwise vary in chemical structure (Supplementary Figure 5)47,48. 

Interestingly, seven of the eight compounds induced protein-independent fluorescence in the DSF 

experiment, which was sufficient to obscure the melting transition of lysozyme (Figure 4, 

Supplementary Figures 6 & 7). Importantly, we also found that the addition of 5X SYPRO Orange 

(equivalent to 10 µM, Supplementary Figures 8 & 9) further aggravated colloidal aggregation of 

all compounds (Supplementary Figures 6). Thus, dyes and compounds can sometimes combine to 

create significant artifacts. Together, these results implicate aggregates as another source of 

protein-independent dye activation.  

Beyond conducting “no-protein” and “compound-only” controls, what other steps should 

be taken to reduce the impact of artifacts? If possible, minimize the use of glycerol, which can 

produce viscosity-related changes in dye fluorescence. Likewise, the use of  detergents, EDTA, or 

other additives should be minimized and any stock solutions fresh filtered before use. As a 

benchmark, we often use fresh solutions of 0.001% Triton X-100 or 1 mM EDTA without issue. 

It is also recommended that each experiment includes a benchmarked positive control. For 

example, we typically include a DSF standard composed of 10 µM hen egg white lysozyme and 
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10 µM (“5X”) SYPRO Orange in buffer (e.g. 10 mM HEPES, 200 mM NaCl pH 7.2 ; Tma ~ 69 

°C). If this standard produces atypical data (e.g. high initial fluorescence, aberrant Tma value), this 

suggests a reagent-based artifact. Even with these precautions, it is sometimes difficult to 

completely eliminate all contributions of artifacts. For example, a protein might not be stable in 

the absence of detergent. In our experience, it is reasonable to proceed if the contribution of the 

artifact is less than 10% of the desired signal.  

 

ii. Optimize heating rates.  

One practical implication of Model 2 is that both Tma values and curve shape are sensitive to the 

heating rate employed. In addition to the theoretical implications, this relationship is also 

practically useful: in our hands, both the reproducibility and sensitivity of DSF data can be 

optimized by varying the heating rate employed. For example, when a known ligand interaction 

produces small ∆Tma, the value can often be increased by heating at 20, 40, 60, or 120 seconds 

per degree. These adjustments balance the relative contributions of variables in Model 2, such as 

the kinetic component of unfolding, and allow enhancement in signal to noise ratio. Similarly, 

ligand-induced ∆Tma values are often enhanced by increasing the ligand concentrations by 2 to 

10-fold above the Kd. This adjustment can compensate for temperature-dependent losses in binding 

affinity, which are often not included in common Kd measurements by isothermal calorimetry 

(ITC), surface plasmon resonance (SPR) or other methods. In the literature, reports of changes 

from 2 – 12 ºC currently dominate, from 1 – 2 ºC are also common. Changes exceeding 15 ºC are 

rare for non-covalent interactions, though exceptions are possible--the binding of biotin increases 

the Tma of streptavidin by a remarkable 47 ºC5. An important corollary of these observations is 

that Tma (or ∆Tma) values collected using different thermocycling protocols are not comparable. 

Not all commercial qPCR instruments cool efficiently or keep time accurately, so compared 

experiments should be performed on the same instrument when possible.  

In addition to improving signal, optimized thermocycling protocols can also make DSF 

results more reproducible and easier to analyze. For example, shallow or poorly resolved 

transitions are difficult to fit using common methods, such as first derivate. When these data 

features are encountered, it is sometimes helpful to switch to up-down heating mode.  In up-down 

mode thermocycling, the reaction is re-cooled to 25 ºC between heating increments (Supplemental 

Figure 2), and fluorescence is measured at the low-temperature steps. As implied by Model 2, up-
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down heating monitors exclusively irreversibly unfolded states, providing a potentially simplified 

portrait of otherwise complex unfolding transitions.  

 

iii. Optimize buffers and additives to stabilize the protein. A common problem in DSF 

experiments is the presence of protein aggregates in the starting sample. Often, this issue appears 

as high initial fluorescence, likely due to binding and activation of dye by the contaminating, 

aggregate. In this case, filtering typically removes the aggregate and the interfering signal. 

However, if the problem persists, dye may be detecting the folded protein (as discussed in Section 

I, Figure 2e). To minimize the contribution of this event, buffer conditions can sometimes be varied 

to stabilize the protein and/or occlude the dye binding sites. For example, adding co-factors (e.g. 

ADP), coordinating metals (e.g. LiCl, MnCl2) 49, or endogenous ligands can sometimes help, 

perhaps by competing for dye-binding sites. Another approach is to stabilize the protein by 

adjusting the ionic strength of the buffer and/or including additives, such as DMSO or sucrose.  

 

iv. Heed visual cues. During experimental set-up, trust your eyes. DSF dyes absorb in the visible 

spectrum, and while minor variations in visual pigmentation and intensity are normal, significant 

deviations often portend unreliable results. For example, aggregation of the SYPRO Orange in 

stock solutions can occur regardless of storage conditions (i.e. anywhere between 25 ºC and -80 

ºC). Aggregated SYPRO Orange appears as a solution with dull pigmentation (Figure 4a), and, if 

used, it produces both protein-independent fluorescence and muted transitions (Figure 4b, right). 

Fresh stocks should be made and filtered to remove aggregates. Similarly, look for changes in 

color for any solution, especially when a new buffer, additive or small molecule is introduced. 

SYPRO Orange loses both fluorescence in DSF as well as room-temperature pigmentation below 

~pH 5  (Supplementary Figure 10). Conversely, protein-independent SYPRO Orange fluorescence 

induced by small molecule additives often corresponds to an increase in visual pigmentation 

(Supplementary Figure 10).  

 

v. Know when to change assays. DSF isn’t right for all questions, or all proteins. For example, 

ITC50, SPR51 or similar platforms are likely to be superior methods to determine the Kd of ligand 

binding. Similarly, chemical (rather than thermal) denaturation is a better way to determine the 

∆Gunfold for a protein, because it provides a closer approximation of equilibrium unfolding. Rather, 
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DSF excels in accessibility and throughput. Thus, if other biophysical methods do not provide a 

Kd or ∆Gunfold for the system of interest, than it is unlikely that DSF will “fix” the issue. Rather, 

any apparent change in Tma could be the result of one of the artifacts mentioned above.  

 

Section III. Data analysis 

Inaccessibility of robust, efficient data analysis remains a significant and widespread 

bottleneck for DSF users. Recent reports have presented both scripts and websites for the analysis 

of DSF data52-57, we found that two substantial bottlenecks remained unaddressed. First, there 

remains a need for tools to efficiently, and flexibly visualize the effects of experimental variables 

to facilitate data interpretation and optimizations. At DSFworld, we address this issue in the 

following manner (Figure 5): raw RFU data can first be uploaded either exactly as exported by 

most standard qPCR instruments, or as a csv file with temperature in the left-most column and 

data in the columns to the right. Then, any number of experimental variables (i.e. ligand, ligand 

concentration, pH, and protein) can be efficiently assigned using a provided plate-layout template. 

The user-defined experimental variables become automatically available for use in the generation 

of customized plots. Wells which are identical in all assigned variables are automatically 

considered replicates and can be plotted as averages with standard deviations. Together, these 

features facilitate rapid, flexible comparison of multiple experimental variables. Plot aesthetics 

such as text size and titles can be customized, and final plots can be downloaded in high resolution 

as pdfs. 

The second bottleneck we attempt to address at DSFworld is the availability of flexible and 

robust curve fitting, particularly for complex or multi-component transitions. To create an analysis 

pipeline rooted in both the theoretical framework of DSF and the diversity present in real DSF 

data, we began by assembling a panel of 35 purified proteins of diverse size, structure, and 

oligomeric state, and then performed DSF experiments on each one in multiple conditions (e.g. 

buffer, ligand) to generate 347 individual DSF curves (Supplementary Figure 11). Drawing from 

the implication from Model 2 that DSF data analyses should allow for both room-temperature dye 

binding, we composed four sigmoid models for fitting: a single or double decaying sigmoid (fits 

1 and 3), or a single or double decaying sigmoid with high initial fluorescence (fits 2 and 4). 

Strikingly, we found that 341/347 curves were well described by at least one of the four fits (see 

Supplementary Note 2). At DSFworld, Tma values can be determined by either the maximum of 
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the first derivative, or any of the four fits. After fitting, the best model can be either selected 

manually from an interactive plot, or automatically based on the Bayesian Information Criterion. 

The full analysis workflow, from raw data uploading to results downloading, is available at 

DSFworld58-68 and as stand-alone scripts and modular web applications on GitHub.  

 

Discussion.  

 Here, we present three resources to help users design, optimize and troubleshoot DSF 

experiments: interactive theoretical modeling, practical tips and online data analysis. These efforts 

culminate in an on-line resource: DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In the 

first Section, we found that linking DSF experiments to established protein unfolding theory 

improved our ability to predict common problems and design potential solutions. For example, 

using a panel of seven proteins of diverse size, we observed that kinetics plays a significant role 

in the outcome of DSF experiments, motivating reconsideration of the thermodynamic framework 

that is widely used to-date. Accordingly, we present an updated theoretical model, Model 2, which 

includes attention to both thermodynamics and kinetics of unfolding. Using simulated results, we 

demonstrate that changes in the activation energy of unfolding (Ea) effect curve shape and Tma, 

providing a possible explanation for how legitimate ligands can sometimes decrease, rather than 

increase, ∆Tma. This is an important advance because such reports in the literature are often called 

into question as potential artifacts. Given the current interest in protein stability, a fresh, theory-

driven approach to this question seems warranted.  

These improved models illustrate that curve shape, not just Tma, is a useful feature of DSF 

experiments. For example, ligand binding might be evident by a change of curve shape, even if 

the ∆Tma is modestly affected. However, it is important to note here that the physical mechanisms 

responsible for this observation are often not clear. Going forward, it will be important to establish, 

using structural and computational methods, if there are specific elements of curve shape (e.g. 

slope, initial fluorescence, number of transitions) that are most informative. In the meantime, we 

suggest a broader view of DSF results than just a singular focus on Tma.  

Other fields of biophysical measurement, such as SPR, have benefitted from application of 

user-initiated, quality control criteria. These efforts often coalesce around shared, online resources. 

Towards that goal, we report an online DSF data visualization and analysis at DSFworld.  As part 

of this effort, we include customizable data fitting, visualization and plotting features, which 
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includes Tma calculation by first derivative or any of four sigmoidal models. Furthermore, we have 

made the full code for DSFworld available on GitHub, alongside both stand-alone scripts and 

modularized web applications for each of the individual data analysis problems resolved at 

DSFworld. This repository can serve as both a venue and resource for the continued improvement 

of challenges in DSF data analysis.  

We hope readers can then use these resources—theory, technical tips, and data analysis— as a 

foundation to drive DSF forward through their own innovations, designing powerful experiments 

and completing them easily. 
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Materials and methods.  

For all procedures, no unexpected or unusually high safety hazards were encountered.  

 

Differential Scanning Fluorimetry. Unless otherwise noted, conditions for all DSF experiments 

were: 10 µM protein; 10 µM (“5X”) SYPRO Orange, (Thermo Fisher Scientific Ref S6650, Lot 

2008138) in 10 mM HEPES 200 mM NaCl pH 7.20 0.22 µm filtered (Millex-GS 0.22 µm sterile 

filter unit, ref SLGS033ss, lot R8EA61590), with a final DMSO concentration of 0.1% and final 

reaction volume 10 µL per well in a 384-well microtiter plate (Axygen PCR-284-LC480WNFBC 

Lot 09819000). DSF experiments were monitored in a BioRad CFX 384 qPCR in the FRET 

channel.  
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Dynamic Light Scattering. From 5 mM stocks in DMSO (Sigma Aldrich prod 276855-100 mL lot 

SHBK3913), six three-fold serial dilutions of each compound were prepared in DMSO (150 – 0.2 

µM), diluted in 10 mM HEPES 200 mM NaCl pH 7.20, and combined with either buffer or 

lysozyme, with or without SYPRO Orange, to final concentrations of 10 µM lysozyme, 150 – 0.20 

µM compound, 10 µM SYPRO Orange, 2.5% DMSO. All reagents were filtered prior to use 

Millex-GS 0.22 µm sterile filter unit, ref SLGS033ss, lot R8EA61590. 20 µL of each final solution 

was added to a DLS plate with no plate seal, and colloidal aggregation was measured using a Wyatt 

Technologies DynaPro Plate Reader II (acquisition time 2 sec, 20 acquisitions, with auto-

attenuation, with temperature control, 25 °C). For the matched DSF experiments, 10 µL of the 

same solutions was added to each well of a DSF plate (Axygen PCR-284-LC480WNFBC Lot 

09819000) and heated from 25 – 95 °C at a heating rate of 1 °C/min and monitored in the FRET 

channel of a BioRad CFX384. Experiments were performed in technical triplicate and presented 

as mean +/- standard deviation.  

 

Glycerol viscosity. 5000X SYPRO Orange was diluted to 10 µM (“5X”) in each glycerol:ddH2O 

mixtures (mol/mol; Sigma-Aldrich G7893-2L) and mixed thoroughly. Then, 40 µL of each 

mixture was added to each well of a clear, flat-bottom 384-well plate (Greiner Bio-One ref 

781091). Solutions were photographed in ambient daylight. On a Molecular Devices SpectraMax 

M5 fitted with a 384-well plate adaptor, absorbance spectra was measured from 350 – 700 nm. 

Emission following excitation at 485 nm was collected every 10 nm from 515 nm to 750 nm.  

 

Structure and concentration of 5000X SYPRO Orange. From 200 µL of 5000X SYPRO Orange 

stock (Thermo Fisher Scientific Reference S6650, Lot 2008138), a dry red powder was produced 

by removal of DMSO under reduced pressure in the dark (GeneVac EZ-2 Elite, High  BP setting, 

lamp off). Presented results are from six technical replicates over two separate experiments. LC-

MS spectra were collected on an Agilent ACQ-TQD in 0.1% Formic Acid; NMR spectra were 

collected in d6-DMSO on a Bruker (400 MHz 1H/100 MHz 13C).  

 

See Supplementary Methods for a detailed list of materials.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002543
http://creativecommons.org/licenses/by/4.0/


References.    
1. Lo, M.-C. et al. Evaluation of fluorescence-based thermal shift assays for hit identification 

in drug discovery. Analytical Biochemistry 332, 153–159 (2004). 
2. Lim, Y. T. et al. An efficient proteome-wide strategy for discovery and characterization of 

cellular nucleotide-protein interactions. PLoS ONE 13, e0208273–30 (2018). 
3. Morton, A., Baase, W. A. & Matthews, B. W. Energetic origins of specificity of ligand 

binding in an interior nonpolar cavity of T4 lysozyme. Biochemistry 34, 8564–8575 
(1995). 

4. Schwarz, F. P. Interaction of cytidine 3‘-monophosphate and uridine 3’-monophosphate 
with ribonuclease A at the denaturation temperature. Biochemistry 27, 8429–8436 (1988). 

5. Donovan, J. W. & Ross, K. D. Increase in the stability of avidin produced by binding of 
biotin. Differential scanning calorimetric study of denaturation by heat. Biochemistry 12, 
512–517 (1973). 

6. Clayton, G. M. et al. Structural Basis of Chronic Beryllium Disease: Linking Allergic 
Hypersensitivity and Autoimmunity. Cell 158, 132–142 (2014). 

7. Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to 
detect ligand interactions that promote protein stability. Nature Protocols 2, 2212–2221 
(2007). 

8. Karpusas, M., Baase, W., Matsumura, M. & Matthews, B. Hydrophobic packing in T4 
lysozyme probed by cavity-filling mutants. Proc. Natl. Acad. Sci. U.S.A. 86, 8237–8241 
(1989). 

9. Matsumura, M., Becktel, W. J., Matthews, B.Brian. Hydrophobic stabilization in T4 
lysozyme determined directly by multiple substitutions. Nature 1979 277:5696 334, 406–
410 (1988). 

10. Tan, C. S. H. et al. Thermal proximity coaggregation for system-wide profiling of protein 
complex dynamics in cells. Science 359, 1170–1177 (2018). 

11. Beardslee, R. A. & Donovan, J. W. Heat stabilization produced by protein-protein 
association. J. Biol. Chem. 250, 1966–1971 (1975). 

12. Gao, K., Oerlemans, R. & Groves, M. R. Theory and applications of differential scanning 
fluorimetry in early-stage drug discovery. 1–20 (2020). doi:10.1007/s12551-020-00619-2 

13. Denny, R. A., Gavrin, L. K. & Saiah, E. Recent developments in targeting protein 
misfolding diseases. Bioorganic & Medicinal Chemistry Letters 23, 1935–1944 (2013). 

14. Greenfield, N. J. Using circular dichroism collected as a function of temperature to 
determine the thermodynamics of protein unfolding and binding interactions. Nature 
Protocols {1}, {2527–2535} (2006). 

15. Celej, M. S., Dassie, S. A., Gonzalez, M., Bianconi, M. L. & Fidelio, G. D. Differential 
scanning calorimetry as a tool to estimate binding parameters in multiligand binding 
proteins. Analytical Biochemistry {350}, {277–284} (2006). 

16. Bruylants, G., Wouters, J. & Michaux, C. Differential scanning calorimetry in life science: 
Thermodynamics, stability, molecular recognition and application in drug design. 
CURRENT MEDICINAL CHEMISTRY {12}, {2011–2020} (2005). 

17. Chari, A. et al. ProteoPlex: stability optimization of macromolecular complexes by sparse-
matrix screening of chemical space. Nat Methods 12, 859–865 (2015). 

18. Ristic, M., Rosa, N., Seabrook, S. A. & Newman, J. Formulation screening by differential 
scanning fluorimetry: how often does it work? Acta Cryst (2015). F71, 1359-1364  
[doi:10.1107/S2053230X15012662] 1–6 (2015). doi:10.1107/S2053230X15012662 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002543
http://creativecommons.org/licenses/by/4.0/


19. Boivin, S., Kozak, S. & Meijers, R. Optimization of protein purification and 
characterization using Thermofluor screens. Protein Expression and Purification 91, 192–
206 (2013). 

20. Samra, H. S. & He, F. Advancements in High Throughput Biophysical Technologies: 
Applications for Characterization and Screening during Early Formulation Development 
of Monoclonal Antibodies. Mol. Pharmaceutics 9, 696–707 (2012). 

21. Simeonov, A. Recent developments in the use of differential scanning fluorometry in 
protein and small molecule discovery and characterization. Expert Opinion on Drug 
Discovery 8, 1071–1082 (2013). 

22. Benjamin, E. R. et al. Co-administration With the Pharmacological Chaperone AT1001 
Increases Recombinant Human Î±-Galactosidase A Tissue Uptake and Improves Substrate 
Reduction in Fabry Mice. Molecular Therapy 20, 717–726 (2016). 

23. Jorge-Finnigan, A. et al. Pharmacological chaperones as a potential therapeutic option in 
methylmalonic aciduria cblB type. Hum Mol Genet 22, 3680–3689 (2013). 

24. Lucas, T. G., Gomes, C. M. & Henriques, B. J. in Protein Misfolding Diseases: Methods 
and Protocols (ed. Gomes, C. M.) 255–264 (Springer New York, 2019). 

25. Støve, S. I., Flydal, M. I., Hausvik, E., Underhaug, J. & Martinez, A. Chapter 15 - 
Differential scanning fluorimetry in the screening and validation of pharmacological 
chaperones for soluble and membrane proteins. Protein Homeostasis Diseases 329–341 
(Elsevier Inc., 2020). doi:10.1016/B978-0-12-819132-3/00015-4 

26. Cohen, F. & Kelly, J. W. Therapeutic approaches to protein- misfolding diseases. Nature 
1979 277:5696 426, 905–909 (2003). 

27. Chaudhuri, T. K. & Paul, S. Protein-misfolding diseases and chaperone-based therapeutic 
approaches. FEBS Journal 273, 1331–1349 (2006). 

28. Okiyoneda, T. et al. Mechanism-based corrector combination restores &Delta;F508-
CFTR folding and function. Nature Chemical Biology 1–13 (2019). 
doi:10.1038/nchembio.1253 

29. Clancy, J. P. et al. Results of a phase IIa study of VX-809, an investigational CFTR 
corrector compound, in subjects with cystic fibrosis homozygous for the F508del-
CFTRmutation. Thorax 67, 12–18 (2011). 

30. Sheth, J. et al. Gaucher disease: single gene molecular characterization of one-hundred 
Indian patients reveals novel variants and the most prevalent mutation. 1–11 (2019). 
doi:10.1186/s12881-019-0759-1 

31. Siekierska, A. et al. α-Galactosidase aggregation is a determinant of pharmacological 
chaperone efficacy on Fabry disease mutants. J. Biol. Chem. 287, 28386–28397 (2012). 

32. Makley, L. N. et al. Pharmacological chaperone for α-crystallin partially restores 
transparency in cataract models. Science 350, 674–677 (2015). 

33. Simeonov, A. Recent developments in the use of differential scanning fluorometry in 
protein and small molecule discovery and characterization. Expert Opinion on Drug 
Discovery 8, 1071–1082 (2013). 

34. Kroeger, T. et al. EDTA aggregates induce SYPRO orange-based fluorescence in thermal 
shift assay. PLoS ONE 12, e0177024–21 (2017). 

35. Sanchez-Ruiz, J. M. Theoretical analysis of Lumry-Eyring models in differential scanning 
calorimetry. Biophysical Journal 61, 921–935 (1992). 

36. Extended theoretical analysis of irreversible protein thermal unfolding. 1–7 (2003). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002543
http://creativecommons.org/licenses/by/4.0/


37. Meersman, F. et al. Consistent Picture of the Reversible Thermal Unfolding of Hen Egg-
White Lysozyme from Experiment and Molecular Dynamics. Biophysical Journal 99, 
2255–2263 (2010). 

38. Mansini, E., Oestreicher, E. G. & Ribeiro, L. P. Effects of temperature on the 
mitochondrial malate dehydrogenase of adult muscle of Toxocara canis. Archives 
Internationales de Physiologie et de Biochimie 97, 447–453 (2008). 

39. Eyring, R. L. H. Conformation Changes of Proteins. 1–11 (2015). 
doi:10.1021/j150512a005 

40. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 
2 (TRIB2) pseudokinase in cancer cells. 1–15 (2018). 

41. Dai, R. et al. Fragment-based exploration of binding site flexibility in Mycobacterium 
tuberculosis BioA. JOURNAL OF MEDICINAL CHEMISTRY 58, 5208–5217 (2015). 

42. Tae, H. S. et al. Identification of Hydrophobic Tags for the Degradation of Stabilized 
Proteins. ChemBioChem 13, 538–541 (2012). 

43. Gao, K., Oerlemans, R. & Groves, M. R. Theory and applications of differential scanning 
fluorimetry in early-stage drug discovery. 1–20 (2020). 

44. McGovern, S. L., Caselli, E., Grigorieff, N. & Shoichet, B. K. A Common Mechanism 
Underlying Promiscuous Inhibitors from Virtual and High-Throughput Screening. 
JOURNAL OF MEDICINAL CHEMISTRY 45, 1712–1722 (2002). 

45. Owen, S. C., Doak, A. K., Wassam, P., Shoichet, M. S. & Shoichet, B. K. Colloidal 
Aggregation Affects the Efficacy of Anticancer Drugs in Cell Culture. ACS Chem. Biol. 7, 
1429–1435 (2012). 

46. McLaughlin, C. K. et al. Stable Colloidal Drug Aggregates Catch and Release Active 
Enzymes. ACS Chem. Biol. 11, 992–1000 (2016). 

47. Ganesh, A. N., Donders, E. N., Shoichet, B. K. & Shoichet, M. S. Colloidal aggregation: 
From screening nuisance to formulation nuance. Nano Today 19, 188–200 (2018). 

48. Owen, S. C., Doak, A. K., Wassam, P., Shoichet, M. S. & Shoichet, B. K. Colloidal 
Aggregation Affects the Efficacy of Anticancer Drugs in Cell Culture. ACS Chem. Biol. 7, 
1429–1435 (2012). 

49. Makley, L. N. et al. Pharmacological chaperone for α-crystallin partially restores 
transparency in cataract models. Science 350, 674–677 (2015). 

50. Freyer, M. W. & Lewis, E. A. in Biophysical Tools for Biologists, Volume One: In Vitro 
Techniques 84, 79–113 (Elsevier, 2008). 

51. Boozer, C., Kim, G., Cong, S., Guan, H. & Londergan, T. Looking towards label-free 
biomolecular interaction analysis in a high-throughput format: a review of new surface 
plasmon resonance technologies. Current Opinion in Biotechnology 17, 400–405 (2006). 

52. Phillips, K. & la Peña, de, A. H. The Combined Use of the Thermofluor Assay and 
ThermoQ Analytical Software for the Determination of Protein Stability and Buffer 
Optimization as an Aid in Protein Crystallization. Current Protocols in Molecular Biology 
94, 10.28.1–10.28.15 (2011). 

53. Lee, M. E., Dou, X., Zhu, Y. & Phillips, K. J. Refolding Proteins from Inclusion Bodies 
using Differential Scanning Fluorimetry Guided (DGR) Protein Refolding and 
MeltTraceur Web. Current Protocols in Molecular Biology 125, e78–16 (2018). 

54. Lee, P.-H., Huang, X. X., Teh, B. T. & Ng, L.-M. TSA-CRAFT: A Free Software for 
Automatic and Robust Thermal Shift Assay Data Analysis. SLAS DISCOVERY: 
Advancing Life Sciences R&D 24, 606–612 (2019). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002543
http://creativecommons.org/licenses/by/4.0/


55. Wang, C. K., Weeratunga, S. K., Pacheco, C. M. & Hofmann, A. DMAN: a Java tool for 
analysis of multi-well differential scanning fluorimetry experiments. Bioinformatics 28, 
439–440 (2012). 

56. Rosa, N. et al. Meltdown: A Tool to Help in the Interpretation of Thermal Melt Curves 
Acquired by Differential Scanning Fluorimetry. Journal of biomolecular screening 20, 
898–905 (2015). 

57. Sun, C., Li, Y., Yates, E. A. & Fernig, D. G. SimpleDSFviewer: A tool to analyze and 
view differential scanning fluorimetry data for characterizing protein thermal stability and 
interactions. Protein Sci. 29, 19–27 (2019). 

58. R Core Team. R: A Language and Environment for Statistical Computing. (2019). 
59. Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application 

Framework for R. (2019). 
60. Owen, J. rhandsontable: Interface to the ‘Handsontable.js’ Library. (2018). 
61. Sali, A. & Attali, D. shinycssloaders: Add CSS Loading Animations to ‘shiny’ Outputs. 

(2020). 
62. Attali, D. & Edwards, T. shinyalert: Easily Create Pretty Popup Messages (Modals) in 

‘Shiny’. (2018). 
63. Wickham, H. et al. Welcome to the tidyverse. 4, 1686 (2019). 
64. Bailey, E. shinyBS: Twitter Bootstrap Components for Shiny. (2015). 
65. Grosjean, P. SciViews-R. (2019). 
66. Wickham, H. modelr: Modelling Functions that Work with the Pipe. (2019). 
67. Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Ben Bolker. minpack.lm: R Interface to the 

Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus 
Support for Bounds. (2016). 

68. Ryan, J. A. & Ulrich, J. M. quantmod: Quantitative Financial Modelling Framework. 
(2019). 

 
 
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002543
http://creativecommons.org/licenses/by/4.0/


Figures.  

 
Figure 1. The kinetics of protein unfolding impact DSF results. a. Schematic of the four 
thermocycling protocols used to generate results presented in b, highlighting the different elapsed 
times required to reach the same temperature between them. b. From the diverse eight protein 
panel, seven display heating-rate dependent changes in Tma, similar to the model irreversible 
unfolder malate dehydrogenase (MDH). Only the model reversible unfolder lysozyme shows 
heating rate-independent Tmas. c. Raw DSF data for model equilibrium unfolding protein 
lysozyme and model kinetic unfolding protein MDH at the four ramp rates. No-protein controls 
(5X SYPRO Orange in buffer) are shown in grey. Results presented are the average of from three 
technical replicates +/- standard deviation. 
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Figure 2. An updated thermodynamic-kinetic DSF data model “Model 2” recapitulates 
empirical observations and motivates a nuanced interpretation of DSF results. a. The mixed 
thermodynamic-kinetic unfolding model used, comprising an initial equilibrium “thermodynamic” 
step followed by an irreversible “kinetic” step. Dye detection is quantified for each folding state 
individually. b. Schematic of model construction. Top: The contribution of each folding state to 
the final simulated DSF data. The relative population of a state is given by its equilibrium 
population K(T), modified by kinetic influence L(T). RFU is the product of the population of a 
state and the extent to dye detects it D(T). Bottom: The observed DSF data is obtained by summing 
RFU contributions for all states followed by multiplication by a protein-independent Temperature-
dependent decay in fluorescence. c. Decreased activation energy of unfolding is sufficient to 
decrease Tma. d. DSF curve shape is significantly altered by changing only activation energy of 
unfolding (Ea(T)). e. Model simulations of different DSF data obtained for the same unfolding 
trajectory as the dye detection of the various states changes. Left: ideally, dye detects only unfolded 
states. middle: dye detection of folded states gives high initial RFU and an obscured transition. 
right: no detection of unfolded states produces no transition. f. The model presented in this paper 
can be explored further in the Interactive Modeling section of DSFworld 
https://gestwickilab.shinyapps.io/dsfworld/. 
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Figure 3.  No protein controls reveal misleading protein-independent fluorescence. a. 
Spaghetti plots of DSF data from one DSF-compatible microtiter plate lot (Lot 1, left), and two 
DSF-incompatible plate lots (Lots 3, 3). In a DSF-compatible plate, 5X SYPRO produces no 
significant fluorescence at any temperature in the absence of protein. In incompatible plate lot 2 
(left), 5X SYPRO in buffer alone produces “phantom” melting curves in all wells (red). In 
incompatible plate lot 3 (right), 5X SYPRO in buffer alone produces high, decaying signal in all 
wells (red). In both cases, protein-independent fluorescence is more than sufficient to distort or 
dwarf typical DSF data for the model protein lysozyme in a compatible plate lot (blue, left and 
right). 
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Figure 4. Atypical color suggests non-optimal conditions. a. Typical, soluble 5000X SYPRO 
Orange stock appears dark and clear, and produces orange 5X working solutions (left), while 
spontaneously aggregated freshly-thawed 5000X SYPRO Orange appears cloudy and light, and 
produces markedly pale 5X working solutions. b. DSF data collected for the model protein 
lysozyme using soluble 5X SYPRO Orange shows a clear, accurate melting curve and no protein-
independent fluorescence (left). The same experiment performed using the pale, aggregated stock 
produces high room-temperature fluorescence and an obscured melting curve and increased 
protein-independent fluorescence (right). c. Room-temperature activation of SYPRO Orange, in 
this figure by increasing concentrations of glycerol, often produces pink-pigmented solutions 
during experimental set-up. 
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Figure 5.  Online data visualization and analysis at DSFworld. a. Upload raw DSF data exactly 
as exported for supported instruments, or with Temperature in the left-most column and RFU data 
to the right. b. If desired, define replicates and experimental conditions by editing the names table 
directly, or uploading a custom csv plate layout (see template) to define any number of variables 
(e.g. compounds, concentrations, buffers). Rapidly visualize the effect of each condition tested in 
the “make plot” panel by sub-plotting and/or varying colors and line types by any user-defined 
variables. In this mock example, the effects of NaCl concentration on Tma sensitivity to the 
binding of ligands is explored. Set custom titles and text size for publication- and presentation-
quality figures. c. Choose a Tma method, either dRFU or one of four sigmoid fits. c. Download 
Tmas, plots, and various formats of raw and analyzed data for publications, presentations, or 
further analysis. 
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