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Abstract 

Intermittent fasting (IF) is a lifestyle intervention comprising a dietary regimen in 

which energy intake is restricted via alternating periods of fasting and ad libitum food 

consumption, without compromising nutritional composition. While epigenetic 

modifications can mediate effects of environmental factors on gene expression, no 

information is yet available on potential effects of IF on the epigenome. In this study, 

we found that IF causes modulation of histone H3 lysine 9 trimethylation (H3K9me3) 

epigenetic mark in the cerebellum of male C57/BL6 mice, which in turn orchestrates 

a plethora of transcriptomic changes involved in the robust metabolic switching 

processes commonly observed during IF. Interestingly, both epigenomic and 

transcriptomic modulation continued to be observed after refeeding, suggesting that 

memory of the IF-induced epigenetic change is maintained at the locus. Notably 

though, we found that termination of IF results in a loss of H3K9me3 regulation of the 

transcriptome. Collectively, our study characterizes a novel mechanism of IF in the 

epigenetic-transcriptomic axis, which controls myriad metabolic process changes. In 

addition to providing a valuable and innovative resource, our systemic analyses 

reveal molecular framework for understanding how IF impacts the 

metaboloepigenetics axis of the brain.  

 

 

Highlights: 

o Intermittent fasting (IF) and refeeding modifies epigenome in the 

cerebellum 

o Integrative epigenomic and transcriptomic analyses revealed metabolic 

switching  

o IF affects the metaboloepigenetics axis in regulating metabolic processes 

o Integrative analyses revealed a loss of epigenetic reprogramme following 

refeeding 

 

 

 

Keywords: Intermittent Fasting, Epigenetics, Transcriptomics, Metabolism, 
Cerebellum 
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1. Introduction 

Intermittent fasting (IF) is a dietary regimen that restricts energy intake by alternate 

periods of fasting and ad libitum food consumption, without compromising nutritional 

composition. Many animal studies have established that IF ameliorates the 

development of age-related cardiovascular, neurodegenerative and metabolic 

diseases and promotes longevity. Despite extensive experimental evidence 

supporting such protection by IF, our understanding of the underlying molecular 

mechanisms is still poor. Epigenetic modifications have been shown to be pivotal in 

mediating the influence of environmental factors on genomic status. Indeed, many 

age-related diseases are polygenic and confounded by environmental influences 

(Boyle et al., 2015), suggesting that interactions between the environment and 

genetic framework may underlie the complex pathophysiology of chronic 

diseases.  

 

Calorie restriction (CR) is one form of environmental manipulation that can 

impact the epigenome through various epigenetic modifications and 

consequently affect a plethora of biological pathways that modulate age-related 

epigenetic events. For instance, CR can influence the epigenetic regulation of 

immuno-metabolic adaptation and attenuate age-dependent epigenetic drift, thus 

reducing the pathogenesis of age-related diseases (Hernández-Saavedra et al., 

2019; Maegawa et al., 2017; Molina-Serrano and Kirmizis, 2017). IF is a lifestyle 

intervention representing a potential environmental factor capable of influencing an 

individual’s epigenome. However, understanding of IF-induced epigenetic changes is 

currently lacking and the potential epigenetic effects of refeeding after IF are 

unknown. Thus, it is of great interest whether IF may serve as an environmental 

trigger that can influence epigenomic profile.  

 

H3K9me3 is often associated with constitutive heterochromatin or inactive 

euchromatin, and has been extensively reported to be modulated during CR 

(Molina-Serrano et al., 2019; Sen et al., 2016; Vaquero and Reinberg, 2009; Xie 

et al., 2016). In studies using the epigenetic clock (Horvath et al., 2015), the 

cerebellum, a major brain region harbouring a large population of neuronal cells 

(Bahney et al., 2017; WallÃ¸e et al., 2014), was recently reported to age more 
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slowly than other parts of the human body, and to contain a circadian oscillator 

that responds robustly to energy restriction (Delezie et al., 2016; Mendoza et al., 

2010). It was hypothesized that as the large population of cells within the 

cerebellum would require high energy demand, they should be sensitive to 

energy restriction and induce robust metabolic changes in response.  Thus, we 

decided to investigate the effects of IF and refeeding on the modulation of 

H3K9me3 in the cerebellum. We studied the epigenomic and transcriptomic 

profiles resulting from two common IF regimens, time-restricted fasting for 16 

hours (IF16) or 24 h on alternate days (i.e. ‘every other day’; EOD), in mice for 

three months. Also, we assessed changes in epigenomic and transcriptomic 

patterns after refeeding in mice refed for two months (IF16.R or EOD.R) following 

the IF regimens. We found  that both types of IF regimen were capable of 

distinctly affecting the modulation of H3K9me3, which in turn differentially 

regulated different aspects of the transcriptome, especially in the metabolic axis. 

Moreover, we found that following refeeding, mice that had been subjected to 

either IF regimen demonstrated differential epigenomic and transcriptomic 

profiles. However, following abolition of IF, there was a loss of epigenetic 

memory in the transcriptome. Our data thus provide novel insights into the 

epigenetic-transcriptomic axis of IF and refeeding mechanisms in the cerebellum.  

 

2. Results 

2.1 IF mice show decreased body weight without a change in fuel 

preferences  

The summarized study design includes the timing of interventions and blood and 

tissue collection (Figure 1). Male C57BL/6N mice were fed a normal chow diet (on a 

caloric basis: 58%, 24%, and 18% of carbohydrate, protein, and fat, respectively). 

Mice were randomly assigned to one of the three study groups, AL (ad libitum), daily 

IF16, or EOD schedules, beginning at 3 months of age. First, we monitored the 

physiological effect of IF and the refeeding regimens on C57/BL6 mice. Both IF16 

and EOD groups had a lower body weight than AL mice after three-months of IF 

(Figure S1a), but were not different from each other. After the two-months refeeding 

regimen, i.e. IF16.R, EOD.R, and AL.R mice, did not differ in body weight (Figure 

S1a). Aging in mice was associated with an increase in their average body weight 
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(Figure S1a). Overall, the energy intake of mice subjected to IF or refeeding was not 

different to that of control mice (Figure S1b). Next, we investigated the composition 

of energy intake to examine whether mice compensated for energy restriction 

through a preferential shift in the specific macromolecules from which energy was 

obtained. Notably, the energy intake from each compositional source (carbohydrate, 

fat, protein) was not different across the three study groups (AL, IF, EOD) (Figure 

S1c). However, mice in the corresponding refeeding group (AL.R, IF.R, EOD.R) 

consistently showed a higher energy intake for each compositional source (Figure 

S1c). Our findings, therefore exclude the possibility that differences in body weight 

during IF were due to an altered composition of energy intake.  

 

Blood analyses showed that both IF16 and EOD mice had lower glucose and higher 

ketones than AL mice (Figure S2a and b). Interestingly, prolonged energy restriction 

resulted in a greater change in both glucose and ketone homeostasis, suggesting 

that the differential impact of energy restriction on fuel utilization is time-dependent. 

However, following refeeding, no differences were observed in blood glucose levels 

across study groups but a significant change in blood ketone levels was observed in 

EOD.R mice. (Figure S2a and b). Concordantly, body composition analysis 

indicated a reduction in the Lee index or the body fat mass, in both IF16 and EOD 

mice, as compared to AL mice (Figure S2c). No differences were observed in body 

fat mass following refeeding ( Figure S2c). Thus, our data show that IF and 

refeeding have a differential impact on physiological homeostasis in mice.  

 

2.2 IF induces epigenetic modifications in the cerebellum that are maintained 

following refeeding 

To establish whether IF may influence the epigenetic landscape, we carried out ChIP 

(chromatin immunoprecipitation) of the H3K9me3 locus in the cerebellum and 

sequenced the resulting fragments by next-generation sequencing (NGS). ChIP-seq 

data from the three study groups, AL, IF16, and EOD, were compared on a three-

dimensional principal component analysis (3D-PCA) score plot (Figure 2a). The 

3D-PCA plot showed differential occupancy sites for IF16 and EOD as compared 

to AL, suggesting that the gene expression patterns modulated by H3K9me3 may 

be distinct between the two IF regimens. The profiles of ChIP-seq data for both, IF16 

and EOD, at the H3K9me3 mark around transcriptional start sites (TSSs) of 
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annotated genes were different than AL (Figure 2b). Gene expression at the 

H3K9me3 locus was enriched in IF16 relative to AL, whereas it appeared to be 

repressed in EOD mice. Comparision of peaks (significantly enriched genomic 

intervals in the ChIP-seq dataset) profiles identified 939 differential peaks in IF16 

and 241 differential peaks in EOD, as compared to AL, respectively (Figure 2c). Of 

these, 123 differential peaks were common between IF16 and EOD (Figure 2c). 

Collectively, our observations demonstrate that IF modulates the epigentetic 

landscape in the cerebellum by inducing differential H3K9me3 mark on several 

genes with some being conserved across both the IF regimens and others distinct 

for either IF16 or EOD groups.  

 

Histone modifications induced by environmental influences have been reported to be 

stable throughout somatic cell division (Abdelsamed et al., 2018; Almouzni and 

Cedar, 2016; Gensous et al., 2019; Pal and Tyler, 2010; Vickers, 2014). Hence, we 

investigated whether the effects of IF on H3K9me3 were maintained following 

refeeding. Interestingly, our findings revealed that mice subjected to refeeding 

(IF16.R and EOD.R) continue to display differential occupancy sites as compared 

to the control group (AL.R), suggesting that the modulation of gene expression 

by H3K9me3 was maintained after termination of IF (Figure 2d). The ChIP-seq data 

profiles at the H3K9me3 mark around TSSs of annotated genes were strikingly 

different for IF16.R and EOD.R as compared to AL.R (Figure 2e). Overall, histone 

marks were downregulated in IF16.R but upregulated in EOD.R (Figure 2e). 

Following refeeding, 219 differential peaks were identified for IF16.R and 47 

differential peaks in EOD.R as compared to AL.R (Figure 2f). Of these, 7 differential 

peaks were common to IF16.R and EOD.R (Figure 2f). Functional analysis of genes 

associated with the differential peaks for IF16 and EOD showed enrichment of Gene 

Ontology (GO) terms relevant to metabolic processes and cellular transportation 

(Figure 2g), whereas terms related to redox processes, metabolic processes, DNA 

damage and repair response, and transcriptional-related events were enriched for 

the genes associated with the differential peaks for IF16.R and EOD.R (Figure 2h).  

 

2.3 Transcriptomic analysis of IF and refeeding in the cerebellum 

Following the changes detected in the epigenetic landscape, we next profiled the 

global cerebellum transcriptome by RNA-sequencing to ascertain the alterations in 
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gene expression following IF and refeeding. Partial least square-discriminant 

analysis (PLS-DA) grouped the data into three clusters largely corresponding to the 

three study groups, AL, IF16 and EOD (Figure 3a). The clustering patterns 

suggested that IF16 and EOD induced differential effects on global gene 

expression as compared to AL. Notably, unsupervised hierarchical clustering of 

the data also resulted in distinct segregation into AL, IF16 and EOD groups 

(Figure 3b). Global gene expression profiles of IF16 and EOD were more similar 

to each other and strikingly different from that of AL, although specific clusters of 

genes showed stark differences between IF16 and EOD (Figure 3b), suggesting that 

IF induces time-dependent changes to the transcriptome. This finding is consistent 

with the results of the PLS-DA analysis and further reinforces the findings from the 

blood analyses. Volcano plots on the results of differential expression analysis 

(Figure 3c) identified 892 significantly differentially expressed genes in IF16 as 

compared to AL. Of these, 453 genes were up-regulated and 439 genes were 

down-regulated in IF16 (Figure 3c). On the other hand, 1472 genes were 

significantly differentially expressed in EOD as compared to AL; of these, 552 

genes were up-regulated and 920 genes were down-regulated in EOD (Figure 

3c). We carried out the GO enrichment analysis for the differentially expressed 

genes to identify the biological processes affected by both IF regimens. The top 

20 enriched GO terms for IF16-induced differentially expressed genes were 

associated with circadian rhythm process, transcription related events, and 

steroid lipid metabolic process (Figure 3d). In addition to transcription related 

events and steroid lipid metabolic process, the differentially expressed genes in 

EOD were associated with cell proliferation, and differentiation through 

modulation of signaling pathways such as Ras protein, platelet-derived growth 

factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) signaling 

pathways, suggesting a wider repertoire of transcriptional modulation with 

prolonged IF (Figure 3d). In summary, IF modulates the transcriptome in a time-

dependent manner in agreement with the results of the ChIP-seq analysis.   

 

Fasting and refeeding has been reported to have differential effects on the 

transcriptome profile in different organisms and organs (Kinouchi et al., 2018; 

Yang et al., 2019; Zhang et al., 2011). We examined the impact of refeeding on 

the transcriptome and notably found using PLS-DA analysis distinct clusters of 
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AL.R, IF16.R and EOD.R with minimal overlap, indicating significant differences 

in the transcriptome profiles across the groups in spite of similar and abundant 

food intake (Figure 3e). Unsupervised hierarchical clustering further showed 

distinct expression profiles across the three groups, (Figure 3f). Volcano plots 

identified 1326 significantly differentially expressed genes between IF16.R and 

AL.R; of these, 457 genes were up-regulated and 867 genes were down-

regulated in IF16.R (Figure 3g). On the other hand, 1180 genes were 

significantly differentially expressed between EOD.R and AL.R; of these, 630 

genes were up-regulated and 550 genes were down-regulated in EOD.R (Figure 

3g). Functional analysis of the differentially expressed genes in IF16.R as 

compared to AL.R showed that they were associated with cellular transportation 

process, translation related events, nervous system development including 

dendrite morphogenesis and neuron migration and projection, neurotransmitter 

activities and learning as well as fatty acid biosynthesis and oxidative 

phosphorylation (Figure 3h). On the other hand, differentiation of genes 

propagated by EOD.R as compared to AL.R was related to neurotransmitter 

activities, cellular transportation process, translational-related events, 

sphingolipid and glycogen metabolic process, as well as autophagy mechanisms 

(Figure 3h). These results indicate that fasting and refeeding have 

heterogeneous effects on the transcriptome, and provide further evidence that 

these regimens induce differential adaptive molecular responses to energy 

restriction and abundance.  

 

2.4 IF and refeeding regulate distinct as well as common biological 

processes  

We carried out an integrative analysis of the ChIP-seq datasets from IF and 

refeeding mice to compare the epigenetic landscape at H3K9me3 sites following the 

two regimens. 3D-PCA plot shows a clear separation of the ChIP-seq dataset from 

each biological condition (Figure 4a). Notably, IF16 and IF16.R were closer to each 

other as compared to EOD and EOD.R. Results obtained from the normalized strand 

cross-correlation curve show strong fragment-length peak whereas fingerprint plot 

demonstrate patterns of broad repressive mark typical of H3K9me3, highlighting high 

quality control of ChIP-seq dataset (Figure 4b and c). Moreover, normalized strand 

cross correlation curve demonstrated a higher focal enrichment signal for IF16 and a 
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lower localized enrichment signal for EOD, as compared to AL (Figure 4b). Overall, 

the enrichment signal of the IF ChIP-seq dataset was apparently higher than that of 

the refeeding dataset, which was less distinct across the biological conditions 

(Figure 4c). Normalized heatmap analysis across the groups showed that the overall 

histone marks patterns around the H3K9me3 locus were enriched in IF16, but 

downregulated in EOD, relative to AL (Figure 4d). In contrast, the overall gene 

expression pattern for IF16.R was downregulated while EOD.R was upregulated, as 

compared to AL.R (Figure 4d). Further, global gene expression around the TSS at 

H3K9me3 locus was generally higher for refeeding groups than IF groups. Broadly, 

these results further suggest that the regimens exert a differential impact on the 

H3K9me3 landscape. 

 

We carried out a network analysis on the functional annotations of genes associated 

with differential peaks (Figure S4). Cluster profiling on the resulting network 

revealed that genes associated with differential peaks in IF16, as compared to AL, 

orchestrate a myriad of functions (Figure S4a). These functions can be categorized 

into several metabolic processes, such as fatty acid, glycerolipid, carbohydrate 

(glucose and glycogen), and protein metabolism. The genes associated with the 

differential peaks were also related to a plethora of signaling pathways such as G-

protein coupled receptor (GPCR), Janus kinase (JAK) and signal transducer and 

activator of transcription protein (STAT), bone morphogenetic protein (BMP), Wnt, 

and integrin-mediated signaling pathways. Furthermore, they also facilitate 

transcription-related events, transport, circadian rhythm and chromatin organization. 

Cluster profiling of genes associated with the differential peaks in IF16.R, as 

compared to AL.R, showed fewer functional annotations (Figure S4a). These 

functional annotations showed terms associated with metabolic processes such as 

glycogen, peptide, quinolinate, collagen and chondroitin sulfate proteoglycan 

metabolism. Other functions of the differential peak-associated genes included those 

related to the GPCR signalling pathway, cyclic adenosine monophosphate (cAMP) 

kinase activity, pyrimidine nucleotide transport into mitochondrion, as well as small 

RNA interference. Despite fewer clusters being present in the profiling output 

following refeeding, we observed a total of 118 differential peaks that were 

maintained following refeeding after the IF16 regimen (Figure 4e). Cluster profiling 

of these differential peaks highlighted functions related to lipoprotein lipase activity, 
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protein ubiquination, quinolinate catabolic process, tetrahydrofolate metabolism, and 

glycogen biosynthetic process (Figure S4a).  

 

Compared to AL, EOD differential peaks were associated with functions related to 

lipid metabolism (e.g. fatty acid biosynthetic process, low-density lipoprotein particle 

receptor catabolic process, and sterol metabolic process and signalling), 

carbohydrate metabolism (e.g. malate and acetyl-coA metabolic processes), protein 

catabolism, tetrahydrofolate metabolic process as well as mucopolysaccharide and 

heparan sulfate proteoglycan metabolic processes (Figure S4b). These differential 

peaks were also associated with neurotransmitter biosynthesis (e.g. serotonin) and 

endosomal transport, complement activation, histone modification and RNA 

processing, and regulation of the Wnt signaling pathway. Furthermore, cluster 

profiling of EOD.R differential peaks as compared to AL.R, revealed fewer functional 

annotations compared to EOD vs. AL ( Figure S4b). These differential peaks were 

enriched for glycogen and proteoglycan biosynthetic process, and quinolinate and 

tetrahydrofolate metabolic processes. Moreover, these differential peaks were 

related to the GPCR signalling pathway, DNA repair, anatomical structure 

development and sensory perception of mechanical stimuli (Figure S4b). A total of 

156 differential peaks were maintained between EOD and EOD.R, when compared 

to AL and AL.R, respectively (Figure 4f). These peaks mediated key metabolic 

processes, such as carbohydrate metabolism (e.g. carbohydrate utilization, and GDP 

L-fucose and glycogen metabolic processes), quinolinate and exogeneous drug 

catabolism as well as catalyzing processes, such as equilibrioception, RNA 

interference, complement activation and neurotransmitter secretion (Figure S4b).  

 

To determine whether age-associated changes may have a confounding effect on 

the observed functional annotations, we investigated age-associated differential 

peaks between AL and AL.R (Figure 4g). Our results revealed significant ontologies 

belonging to terms such as lipid and steroid metabolic process, transcriptional-

related events, organism development processes (e.g. palate, organ morphogenesis, 

motor neuron axon guidance, brain and cerebellum development) as well as redox 

processes. Many of these age-associated changes were evident in functional 

ontologies of both IF16.R and EOD.R, as well as in IF. Our findings thus raise the 

possibility that age is an important factor influencing epigenetic reprogramming at the 
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H3K9me3 locus, and it may have a confounding effect  on the changes brought 

about by refeeding. Thus, it is unlikely that the epigenetic maintenance reported in 

this study is due only to IF without any age-associated effects.   

 

2.5 Integrative transcriptomic dataset of IF and refeeding demonstrate 

distinct and common regulation of a plethora of metabolic processes  

We next conducted an integrative transcriptomic analysis between the IF and 

refeeding datasets. The PLS-DA plot showed that the AL, IF16, and EOD 

transcriptomic datasets were separated from each other, occupying three unique 

cluster regions (Figure 5a). Heat map analysis revealed a stark variation in gene 

expression patterns among the different groups (Figure 5b). Gene network 

analysis revealed that genes differentially expressed in IF16 compared to AL, 

belonged to various functional clusters spanning metabolic processes, such as fatty 

acid catabolism, sphingolipid metabolism, amino acid and mitochondrial pyruvate 

transport, as well as protein deubiquitination and ubiqutination (Figure S5a). In 

IF16.R, genes differentially expressed compared to AL.R were related to protein 

ubiquitination and peptide and ATP metabolism (Figure S5a), among other 

processes. A total of 83 differentially expressed genes were maintained between 

IF16 and IF16.R when compared to AL and AL.R respectively (Figure 5c). These 

genes were involved in a plethora of metabolic processes, such as 3’-

phosphoadenosine 5’-phosphosulfate and S-adenosylmethionine biosynthesis, 

quinolinate catabolism, as well as xylulose and estrogen metabolic processes 

( Figure S5a). In addition, genes involved in GPCR and Hippo signalling pathways, 

transport (e.g. zinc ion import into synaptic vesicles, nuclear retention of unspliced 

RNA and urea transmembrane transport), cellular differentiation (e.g. B cell and 

epithelial cell differentiation), replication fork maintenance, interferon-gamma 

secretion, cellular response to chromate, and collagen fibril organization also 

showed maintenance between the feeding conditions.  

 

Compared to AL, EOD-induced genes differentially expressed were involved in 

steroid biosynthesis, protein ubiquitination, and glycosylphosphatidylinositol 

metabolism (Figure S5b). These genes also mediated GPCR and TOR signaling 

pathways, anatomical structure development, as well as ribosome biogenesis. 

Conversely, relative to AL.R, EOD.-induced differentially expressed genes were 
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involved in metabolism-related activities, such as peptide biosynthesis and transport, 

protein ubiquination, RNA biosynthesis, as well as generation of precursor 

metabolites and energy, and GPCR signaling pathways ( Figure S5b). Despite a 

lower gene ontology output compared to both IF16 and IF16.R, a greater number of 

differentially expressed genes was maintained (a total of 132) between EOD and 

EOD.R (Figure 5d). Notably, these genes were involved in metabolism (e.g. citrate 

metabolic process, amylopectin biosynthesis, quinolinate catabolism, protein 

ubiquination, dipeptide and lipid transport), transcription-related events, and the 

GPCR and target of rapamycin complex 1 (TORC1) signaling pathways ( Figure 

S5b). These genes also mediate negative regulation of other processes (e.g. 

dendritic spine maintenance, FasL and CD4 biosynthesis), modifications (e.g. 

histone succinylation, tRNA aminoacylation for protein translation, peptidyl-aspartic 

acid hydroxylation and peptidyl-glutamic acid modification), anatomical structure 

development, regulation of muscle system process, cerebellar granule cell precursor 

proliferation, cellular response to glial cell derived neurotrophic factor, sodium 

transport, and establishment of cell polarity.  

 

Since we observed age-associated changes the epigenome, we investigated if age 

is a confounder for the transcriptome dataset (Figure 5e). Gene ontologies of age-

associated differentially expressed genes belonged to transcription and translation 

events, transportation, DNA damage and repair responses, mitochondrial electron 

transport, TOR signalling, protein folding and destabilization, and apoptosis. Many of 

these gene ontologies overlapped with some of the terms enriched during refeeding 

and maintained differentially expressed genes suggesting a possible influence of age 

in addition to feeding effects.  

 

2.6 Integrative epigenomic and transcriptomic dataset highlight robust 

metabolic processes regulated by H3K9me3 modulation during IF in a 

temporal-dependent manner 

We next investigated the profile of differentially expressed genes in both regimens 

that were regulated by H3K9me3 modulation using integrative multi-omics. A total of 

208 differentially expressed genes governed by H3K9me3 were found to be common 

between IF16 and AL (Figure 6a). As IF modulation of the H3K9me3 mark resulted 

in robust metabolic process changes, we focused on gene ontologies related to the 
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term “metabolism” and categorized them into three major arms: carbohydrate, lipid, 

and protein (Figure 6b). Of the 208 differentially expressed genes, 89 were 

responsible for regulating metabolism. Between IF16 and AL, genes associated with 

carbohydrate and steroid metabolic processes were upregulated, whereas those 

involved in lipid and protein metabolic processes were downregulated (Figure 6b). 

Also, many of these genes were involved in more than one function, suggesting that 

the conglomerate of these 89 genes is necessary to reflect the overall metabolic 

changes observed. We then broadly separated both the upregulated and 

downregulated differentially expressed genes governed by H3K9me3 locus and 

analyzed their pathway changes related to metabolism (Figure 6c). Notably, 

upregulated genes mediated pathways related to circadian rhythm, various signalling 

arms (e.g. mitogen-activated protein kinases [MAPK], Ras-related protein 1 [Rap1] 

and Ras), as well as aspects of metabolism (e.g. sphingolipid, sulfur and vitamin B6). 

Conversely, downregulated genes were involved in sphingolipid, phospholipase D, 

mTOR, Hippo and adipocytokine pathways, as well as the regulation of lipolysis in 

adipocytes and bile secretion (Figure S6). Only 25 H3K9me3-controlled differentially 

expressed genes were observed between IF16.R and AL.R (Figure 6d). However, 

gene ontologies of these 25 genes revealed only two broad categories of positive 

regulation of the apoptotic signaling pathway and regulation of DNA-templated 

transcription (Figure 6e). Overlap analysis of these H3K9me3 regulated differentially 

expressed genes between IF16 and IF16.R, relative to AL and AL.R, respectively, 

investigating if metabolic changes were maintained following refeeding showed that 

no differentially expressed genes intersected between the two regimens (Figure 6f).  

 

Similar pipeline analysis for EOD and EOD.R revealed 423 differentially expressed 

genes to be governed by H3K9me3 between EOD and AL (Figure 7a). Gene 

ontology analysis revealed upregulation of carbohydrate, protein, fatty acid and 

triglyceride metabolic processes, and downregulation of steroid metabolism (Figure 

7b). Chord diagram analysis revealed that 175 of the 423 differentially expressed 

genes were responsible for regulating metabolism (Figure 7c). Two other notable 

details were observed in the case of EOD, compared to IF16. EOD showed a large 

number of differentially expressed genes, involved in a number of metabolic 

processes; many of the upregulated genes controlled the protein metabolic axis 

(Figure 7c). Analysis of the differentially expressed genes revealed more 
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upregulated terms than downregulated terms. Upregulated differentially expressed 

genes governed a plethora of signaling pathways (e.g. Rap1, Forkhead box O [foxO], 

sphingolipid, longevity regulating, cyclic adenosine monophosphate [cAMP], 5’-

adenosine monophosphate kinase [AMPK], Ras, MAPK, phosphatidylinositol, Toll-

like receptor, glucagon, mTOR, thyroid hormone, adipocytokine, and relaxin), as well 

as circadian rhythm, sphingolipid metabolism, folate and unsaturated fatty acids 

biosynthesis, insulin resistance, parathyroid hormone synthesis, secretion and action, 

and fatty acid elongation. Downregulated differentially expressed genes mediated 

pathways related to steroid and unsaturated fatty acids biosynthesis, metabolism 

(e.g. cysteine, methionine, pyrimidine, glutathione), vitamin digestion and absorption, 

as well as circadian rhythm (Figure S6b). H3K9me3-controlled differentially 

expressed genes analysis revealed 18 genes between EOD.R and AL.R (Figure 7d), 

categorized into two broad semantics: phospholipid metabolic process and 

myelination (Figure 7e). An overlap analysis of H3K9me3-regulated differentially 

expressed genes between EOD and EOD.R, relative to AL and AL.R respectively, 

found no differentially expressed genes that intersected between the two regimen 

(Figure 7f).  

 

As there was a temporal difference in the modulation of differentially-expressed 

genes by H3K9me3 in both IF16 and EOD, to reinforce our findings we looked at 

plausible interactions between H3K9me3 peaks with the transcriptome track of 

selected genes (Figure 8). Evaluation of representative genes distinctly modulated 

only in IF16 and EOD (e.g. Aldob and Gbe1 respectively), showed that a peak 

change at the H3K9me3 locus resulted in upregulated expression of both genes 

(Figure 8a-b). Next, we compared representative genes that were modulated in both 

IF16 and EOD (e.g. Elovl2 and Fads2) as a result of H3K9me3 modulation. Similar to 

previous observations, H3K9me3 modulation resulted in upregulation of Elovl2 

expression and downregulation of Fads2 expression (Figure 8c-d), highlighting the 

distinct impact of varying the period of energy restriction on relative gene expression 

patterns. Thus, IF can affect gene expression in a temporal manner impacting 

metabolic changes differently. Indeed, when we mapped the differentially expressed 

genes from both IF regimens that were governed by H3K9me3 changes onto a 

metabolic map, more nodes were present during EOD than IF16, and the metabolic 

profile was very different (Figure S7a-b). During IF16, most differentially expressed 
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genes were involved in carbohydrate metabolism, whereas in EOD there was a 

metabolic switch from carbohydrate metabolism to lipid and amino acid metabolism 

(Figure S7b). When we focused on the anabolic and catabolic changes of these 

metabolic pathways as a whole, we observed that the metabolic utilization of key 

macromolecules differed greatly between IF16 and EOD. For instance, for EOD, 

biosynthesis of carbohydrate, amine, and polyamine was greater than for IF16, but 

biosynthesis of amino acids, fatty acids, and lipids was less (Figure S8a). On the 

other hand, EOD degraded less carbohydrate, amines, and polyamines than IF16, 

but degraded more amino acids, fatty acids, and lipids than IF16 ( Figure S8b). 

Collectively, there was a loss of maintenance of differentially expressed genes at the 

H3K9me3 locus following refeeding. This reinforces the notion that neither IF16 nor 

EOD are robust enough to induce epigenetic reprogramming at this locus to maintain 

the transcriptomic changes, even with the abolition of IF. Instead, it appears that 

IF16 and EOD induce metabolic changes to respond to energy restriction through 

modulation of the H3K9me3 locus in the cerebellum. However, our findings indicate 

that EOD can induce more robust metabolic switching than IF16, providing a novel 

insight that temporal regulation of H3K9me3 leads to distinct metabolic switching 

processes in the cerebellum. 

 

3. Discussion 

Accumulating evidence indicates that IF has numerous benefits for metabolic 

health, and is a plausible medical intervention. However, many studies may show 

different benefits of IF often because of confounding factors arising from differing 

periods of time-restricted feeding as well as inter-individual differences in 

response (Gabel et al., 2018; Journal et al., 2015; Paoli et al., 2019; 

Trepanowski and Bloomer, 2010). As such, the present study evaluated the 

temporal effects of IF by adopting different timepoints during IF and refeeding, 

and considered the epigenetic milieu of IF and refeeding to understand how this 

regulatory cascade may help to explain any response differences.  

 

Considerable evidence has shown that CR and epigenetics are interlinked, 

providing a clearer understanding on various aspects of regulation of gene 

expression patterns through this axis. H3K9me3 is a key player in CR-induced 
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modulation, which in turn affects metabolic adaptation and aging processes 

(Hernández-Saavedra et al., 2019; Maegawa et al., 2017; Molina-Serrano and 

Kirmizis, 2017). This epigenetic locus has also been widely implicated in 

metabolic modulation in different organs and disease states, suggesting that 

H3K9me3 has an important role in metabolic adaption (Strauss and Reyes-

dominguez, 2014; Villeneuve et al., 2008; Yu et al., 2012). However, there is no 

available information on whether IF may also affect the epigenome. Here, we 

established that both IF and refeeding regimens can distinctly modulate the 

H3K9me3 tag. Our data indicate a novel mechanism in which both IF and 

refeeding influence metaboloepigenetics at the H3K9me3 locus, similar to 

observations in CR studies. Moreover, studies have reported that H3K9me3 can 

affect biological processes such as redox and DNA damage and repair response 

under excessive energy balance state (Gordon et al., 2015; 2018; Zhong et al., 

2018). This was also observed in our study following refeeding. Our dataset is 

therefore consistent with other studies and indicates a role for H3K9me3 

modulation as a notable player in this dietary context.   

 

Recent studies have reported that the cerebellum affects circadian oscillation, 

which controls food anticipation behaviour (Delezie et al., 2016; Mendoza et al., 

2010), and functions as an epigenetic clock during aging (Horvath et al., 2015). 

Given the large population of neuronal cells residing within the cerebellum and 

the corresponding energy demand, it is hypothesized that the cerebellum should 

be highly sensitive to energy restriction (Howarth et al., 2009, 2012; Kuzawa et 

al., 2014). Indeed, the transcriptomic dataset for both IF and refeeding, reveals 

robust changes in gene expression compared to control, indicating that both 

regimens act via a transcriptomic axis. It was also observed that the duration of 

fasting and refeeding distinctly affected the transcriptome. IF16-induced 

differentiation of genes was associated with the circadian rhythm process, which 

may explain the chronobiological changes in the cerebellum during food 

anticipation towards energy deprivation (Delezie et al., 2016; Mendoza et al., 

2010). Moreover, both IF regimens modulated steroid lipid metabolic changes, 

highlighting metabolic switching processes typical of fasting, which in turn may 

affect neurodevelopment and neurodegeneration in the cerebellum (Kawamoto, 

2016; Zhang et al., 2011). In addition, it was reported that 24-hour fasting 
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induced stem cell regeneration by metabolic switching (Mihaylova et al., 2018). 

Here, we also established that EOD differentially expressed genes modulate 

cellular proliferation and differentiation by modulating signaling pathways such as 

Ras protein, PDGFR, and EGFR. Our data offer a transcriptomic lens to 

understanding the mechanistic aspects of how fasting impacts different signalling 

arms to regulate proliferation and differentiation in the cerebellum. 

 

Integrative epigenetic and transcriptomic analyses of both fasting and refeeding 

datasets revealed both to have a profound effect on H3K9me3, but IF appears to 

have a greater effect on the transcriptome than refeeding. Network construction 

analysis of the epigenome shows that both IF16 and EOD induce H3K9me3 

modulation, which in turn regulates fatty acid (e.g. fatty acid oxidation and 

biosynthesis), carbohydrate (e.g. acetyl-CoA and tricarboxylic acid cycle) as well 

as protein (e.g. protein catabolism) metabolism. At the transcriptomic level we 

also observe such changes in lipid (e.g. fatty acid catabolism and steroid 

biosynthetic process), carbohydrate (e.g. amino acid and mitochondrial pyruvate 

transport) and protein (e.g. protein deubiquination and ubiquination) metabolism 

suggestive of coordinated control of such metabolic events. Interestingly, our 

findings also show that, despite only an 8-hour difference in energy restriction, 

different facets of metabolic processes are distinctly modulated in both IF16 and 

EOD. For instance, we observed glucose and glycogen metabolic changes 

during IF16, but malate and acetyl-coA metabolic changes were only obereved 

during EOD as a result of H3K9me3 modulation. Therefore, different arms of 

cellular metabolic pathways are being modulated distinctly in different IF 

regimens to provide different energy metabolite sources to meet energy 

demands. Besides metabolism, both IF16 and EOD can induce other differential 

biological changes at the epigenomic and transcriptomic level, such as various 

signalling pathways, anatomical structure development, and RNA splicing events.  

 

Refeeding following IF appears to also affect both the epigenome and 

transcriptome, governing several distinct biological processes in a temporal-

dependent manner. Contrary to fasting, fewer genes and peaks were impacted 

upon refeeding, indicating a reduced effect on the epigenome and transcriptome. 

Moreover, certain functional maintenance was apparent at both the H3K9me3 
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locus as well as gene expression, suggesting that epigenetic reprogramming of 

gene expression may occur as a result of IF. Our study highlighted age as a 

potential confounding factor in the precise mapping of effects of refeeding 

following IF, as observed through differences in body weight and expression 

profiles of AL and AL.R mice. Indeed, many previous studies have also 

emphasized that aging has a profound effect on the level of H3K9me3 mark and 

transcriptome patterns in the cerebellum (Dillman et al., 2017; Maleszewska et 

al., 2016; Sidler et al., 2017; Snigdha et al., 2016). Consistent with these reports, 

we found that many differences in genes and peaks observed in mediating 

biological effects in refeeding overlap with age-associated biological changes. 

Hence, it is possible that age affects epigenetic reprogramming at the H3K9me3 

locus, which makes it indeterminate that most of the epigenetic maintenance 

reported in this study between both types of regimen is induced fully by IF alone.  

 

Collectively, our study shows for the first time that fasting can affect H3K9me3, 

which regulates the many biological changes relevant to IF, some of which have 

been reported in different organ settings. In addition, since both IF regimens 

affected the epigenome and transcriptome distinctly, our data provide a plausible 

explanation that a distinct modulation of both the epigenome and transcriptome 

axis may produce different outcomes, which in turn may help to explain the lack 

of standardization in reported IF effects due to different IF regimens being 

employed. Given that several metabolic processes at both epigenomic and 

transcriptomic levels were modulated because of fasting, whether the 

transcriptomic changes governing these metabolic process changes are 

governed by H3K9me3 modulation need to be studied. Our multi-omics analysis 

revealed that differentially expressed genes from both IF regimens governed by 

H3K9me3 were involved in a variety of metabolic processes. Between IF16 and AL, 

carbohydrate and steroid metabolic processes appear to be upregulated, whereas  

lipid and protein metabolic processes were downregulated. However, comparison of 

EOD and AL revealed a metabolic shift whereby carbohydrate, protein, fatty acid and 

triglyceride metabolic processes were upregulated, with a corresponding 

downregulation of steroid metabolism. These metabolic changes in both IF regimens 

appeared to be orchestrated by unique as well as common genes. For instance, both 

Aldob (responsible for glycolysis (Le et al., 2018; Peng et al., 2008)) and Gbe1 
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(responsible for glycogen storage (Akman et al., 2011; Iijima et al., 2018)), were 

uniquely upregulated in IF16 and EOD, respectively. However, in both IF16 and EOD 

common genes, such as Elovl2 (involved in de novo lipogenesis, lipid storage, and 

subsequent fat mass expansion (Pauter et al., 2014; Rennert et al., 2018)) and 

Fads2 (involved in biosynthesis of polyunsaturated fatty acids (Huang et al., 2017; 

Reynolds et al., 2018)), were upregulated and downregulated, respectively, in a 

temporal manner. In addition, different signalling arms were modulated distinctly in 

IF16 and EOD. For example, common pathways, such as the adipocytokine, mTOR, 

and sphingolipid metabolic pathways, were downregulated in IF16 but upregulated in 

EOD. In contrast, unique signalling pathways, such as FoxO and AMPK, were 

distinctly modulated only in EOD. For certain signalling pathways, we observed that 

the different genes were modulated in the two regimens. For instance, in the MAPK 

pathway, Angpt1 was involved only in IF16, whereas Egfr was involved only in EOD. 

Indeed, global metabolic mapping revealed different metabolic profiles in IF16 and 

EOD, with asymmetrical trigger of different milieu of carbohydrate, lipid, and protein 

cellular metabolic pathways, as well as performing varying degrees of anabolism and 

catabolism of these macromolecules. While most of the signalling pathways have 

been previously reported to be influenced by fasting (Ahima et al., 2006; Bujak et al., 

2015; Choi et al., 2018; Dogan et al., 2011; Goldstein et al., 2016; Guo et al., 2016; 

Jensen et al., 2019; Kim, 2009; Li et al., 2019; Luo et al., 2018; Mahadik, 2012; 

Martins et al., 2016; Miyazaki et al., 2004; Morikawa et al., 2004; Nicklin et al., 2013; 

Pel and Lines, 2015; Rodrı et al., 2012; Tulsian et al., 2018; Wee and Wang, 2017; 

Wijngaarden et al., 2019; Yoon et al., 2018), our findings suggest a temporal link of 

the signaling response to the period of energy restriction. This is achieved by 

manipulating the epigenetic and transcriptomic cascade differently, which in turn 

results in varied metabolic arms being triggered to respond to energy demand.  

 

In the case of refeeding, differentially expressed genes governed by H3K9me3 were 

involved in positive regulation of apoptotic signalling and transcription in IF16.R, and 

phospholipid metabolism and myelination in EOD.R. Many studies have reported the 

role of H3K9me3 in influencing these biological processes (Black and Whetstine, 

2011; Liu et al., 2015, 2017; Lu et al., 2018; Olcina et al., 2015; Ye et al., 2017). 

However, despite subjecting biological groups to excess energy balance following IF, 

it is observed that differentiation of certain genes is modulated distinctly in a 
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temporal-dependent manner at the H3K9me3 site. While age may be a confounding 

factor in mediating these changes, we explored the possibility of epigenetic 

reprogramming and memory due to IF. Our findings show that there is a loss of 

differentially expressed gene maintenance at the H3K9me3 locus. This may mean 

that both IF16 and EOD are not sufficiently robust to induce epigenetic 

reprogramming at this locus following refeeding, or that H3K9me3 may not be the 

sole epigenetic mechanism of IF. Therefore, the roles of other epigenetic regulatory 

mechanisms of IF should be consider for epigenetic maintenance.  

 

Here we have presented a novel mechanism for how IF affects the 

metaboloepigenetics axis in regulating a myriad of metabolic processes to bring 

about robust metabolic switching responses in the cerebellum. Decoding the precise  

crosstalk between epigenetics and transcriptional rewiring in the context of IF, and its 

impact on molecular memory and other mechanisms will thus be useful in elucidating 

and gauging the overall benefits of IF.  

 

4. Methods 

4.1 Ethical Compliance Statement 

All animal procedures were approved by the National University of Singapore Animal 

Care and Use Committee and performed according to the guidelines set forth by the 

National Advisory Committee for Laboratory Animal Research (NACLAR), Singapore. 

All sections of the manuscript were performed in accordance with ARRIVE (Animal 

Research: Reporting in Vivo Experiments) guidelines. 

 

4.2 Intermittent Fasting & Refeeding Regimen 

C57/BL6NTac male mice (InVivos Pte Ltd, Singapore) were raised for 3-month-old 

with ad libitum access to food using standard Teklad Global 18% protein rodent diet 

(Envigo, United Kingdom) and water. Mice were then randomly assigned to three 

study groups subjected to ad libitum (AL) feeding, IF for 16 hours per day (IF16), or 

for 24 hours on alternate days (i.e. ‘every other day’; EOD) for three months. Mice 

placed under IF16 regimen were provided access to food from 7 a.m. to 3 p.m. when 

it was removed for 16 hours daily. For EOD regimen mice, food was provided from 7 

a.m. to 7 a.m. the next day, following which it was removed for the next 24 hours. All 
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mice had ad libitum access to water, while the AL mice had ad libitum access to both 

food and water. In the refeeding regimen, all three groups of mice had ad libitum 

access to both food and water for two months.  

 

During the entire experiment, the mice were housed in animal rooms at 20 to 22°C 

with 30 to 40% relative humidity under a 12-hour light/dark cycle. A series of 

physiological tests were performed on the mice. Body weight was measured weekly. 

Nasoanal length was measured for Lee index (body weight/nasoanal length) 

calculation on the day of animal euthanasia. Blood glucose and ketones were 

measured using a FreeStyle Optimum Meter and corresponding test strips (Abbott 

Laboratories, UK) at baseline and monthly via the tail bleed method. Both tests were 

performed at 7 a.m. Lastly, monthly food/energy consumption was recorded to 

measure calorie intake (weight of food consumed x kcal/g of food). The entire 

experimental workflow is illustrated using BioRender software (Figure 1a). 

 

4.3 Cerebellum Tissue Collection 

Following the fasting or refeeding regimen, animals were anesthetized and 

euthanized. EOD mice were euthanized on a food-deprivation day. All mice were 

euthanized between 7 a.m. and noon. The cerebellum was harvested, immediately 

flash frozen and stored at -80 °C.  

 

4.4 Chromatin Immunoprecipitation (ChIP) 

The frozen cerebellum was crushed into a fine powder with liquid nitrogen using a 

pestle and mortar. The tissue was then crosslinked with 1% formaldehyde (Merck, 

New Jersey, United States) for 10 min at room temperature and the reaction was 

stopped by adding glycine (Abcam, Cambridge, United Kingdom) to a final 

concentration of 0.125 M for 5 min at room temperature. Fixed cells were rinsed 

twice with PBS with a protease (Thermo Scientific, Massachusetts, USA) inhibitor in 

1:1000 ratios and resuspended in 10 ml of lysis buffer (10mM Tris-HCl pH 8, 0.25% 

Triton X-100, 10mM EDTA, 0.1M NaCl). The lysates were then subjected to further 

lysis using a Dounce tissue grinder (Sigma-Aldrich, Missouri, United States) for 14-

16 strokes. The lysates were then suspended in 1% SDS lysis buffer (50mM 

HEPES-KOH pH 7.5, 150mM NaCl, 2mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate, 1% SDS) and ultracentrifuged at 18000rpm for 30 minutes. 
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Subsequently, the chromatin jelly was resuspended in 0.1% SDS lysis buffer (50mM 

HEPES-KOH pH 7.5, 150mM NaCl, 2mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate, 0.1% SDS) and subjected to another round of ultracentrifugation at 

18000 rpm for 30 min. Next, the lysate was resuspended in 0.1% SDS buffer and 

sonicated for 15 cycles of 30 s on, and 30 s off in a sonicator (Diagenode, New 

Jersey, USA) and centrifuged at 14000 rpm for 10 min. Approximately 500 ng of 

sonicated chromatin was stored at -80°C as an input DNA control.  

 

The remaining sonicated chromatin was incubated with 30 ul of Protein G 

Dynabeads (Invitrogen, California, United States) previously conjugated overnight to 

4 ug of ChIP-grade H3K9me3 antibody (Abcam, Cambridge, United Kingdom). The 

beads were then washed for 5 minutes once, in low salt 0.1% SDS FA lysis buffer 

(50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate, 0.1% SDS), and then high salt 0.1% SDS FA lysis buffer (50 

mM HEPES-KOH pH 7.5, 350 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate, 0.1% SDS), followed by a LiCl buffer wash (10 mM Tris-HCl 

pH 8, 0.25 mM LiCl, 1 mM EDTA, 0.5% NP40, 0.5% sodium deoxycholate). Lastly, 

the immunoprecipitated material was washed twice with TE buffer (10 mM Tris-HCl 

pH 8, 1 mM EDTA), and elutedwith ChIP elution buffer (50 mM Tris-HCl pH 8, 10 

mM EDTA, 1% SDS) incubation for 2 hours at 68°C for both input and 

immunoprecipitated DNA. Finally, chromatin was incubated for 1-hour with RNase at 

37°C, and digested with 10 ul of 5 mM NaCl and 5 ul of Proteinase K overnight at 

68°C. DNA was then extracted using phenol-chloroform and eluted in nuclease-free 

water.  

 

Extracted DNA was quantified using Quantifluor double-stranded DNA kit (Promega 

Corporation, Australia) as per manufacturer instruction. 20X TE buffer was first 

diluted 20 times, before diluting the Quantifluor dsDNA dye in 1:400 ratio to prepare 

the working solution. In each sample, 1 ul of DNA was diluted in 200 ul of working 

solution, whereas for blank and standard, 2 ul of 1xTE buffer and 2 ul of provided 

DNA standard (100 ng/ul) were diluted in similar volume of working solution. Both 

blank and standard solution were used for calibration to plot a standard curve before 

actual measurement of DNA concentration. For fragment size analysis, 100 ng of 

DNA was first purified using a QIAquick PCR purification kit (Qiagen, Japan) 
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according to the manufacturers’ protocol. The resulting purified DNA was then mixed 

with a loading dye (Thermo Scientific, Massachusetts, USA) at a 1:50 ratio and  run 

in a 1% agarose gel (Lonza, Switzerland) at 100 V for 30 min and stained with SYBR 

safe dye (Invitrogen, California, United States). Imaging was carried out using 

ChemiDocXRS+ imaging system (Bio-Rad Laboratories, California, USA). 

Fragments of the ideal size of 100-500 base-pairs were selected for the analysis.  

 

A library was prepared using New England Biolabs Ultra II DNA Kit for Illumina (New 

England Biolabs, United States) according to the manufacturer’s instructions. The 

immunoprecipitated material was sequenced using the 150-bp paired-end protocol 

provided by Illumina Genome Analyzer 1.9 (Novogene, Beijing). All data obtained 

from each sample were pooled for analysis. A brief experimental workflow is 

illustrated using BioRender software (Figure 1b). 

 

4.5 ChIP Sequencing Bioinformatics Analysis 

Raw reads were checked for quality using FastQC (Babraham Bioinformatics, United 

Kingdom). Reads with low quality (proportion of low-quality bases larger than 50%) 

or N ratio (unsure base) larger than 15% were discarded. Moreover, reads with 

adaptor at the 5’-end or those without adaptor and inserted fragment at the 3’-end 

were also discarded as well. Next, the reads will be trimmed at the adaptor sequence 

at the 3’-end. A further discarding of reads whose length are less than 18 units of 

nucleotides following trimming will be conducted.  The reference genome for Mus 

musculus (mm10) and gene model annotation files were downloaded from the 

National Center for Biotechnology Information (NCBI) genome database. 

Reference genome indexing and mapping of the quality checked paired-end 

reads to the reference genome was carried out using the Burrows-Wheeler 

Alignment Tool (v0.7.17) (Li and Durbin, 2010). MACS2 callpeak and MACS2 

bdgdiff software ( Zhang et al., 2008) peak detection and comparisons, respectively. 

Strand cross-correlation was computed on the resulting peaks and plotted using 

GraphPad Prism software (v5). Heatmaps, fingerprint, and principal component 

analysis (PCA) plots were generated using DeepTools2 software (Ramírez et al., 

2016). Three-dimensional PCA plot was constructed using Sigmaplot software (v1.3). 

Venn diagrams were prepared using Bioinformatics & Evolutionary Genomics online 

software (Bioinformatics & Evolutionary Genomics, Belgium). The functional 
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significance of peaks was analyzed using webserver g:Profiler (Reimand et al., 2016) 

and DAVID (Jiao et al., 2012). Gene ontology (GO) terms with adjusted p-value < 

0.05 were considered as significantly enriched among the pool of differentially 

expressed peaks. Diagrams representing GO enrichment analysis results were 

plotted using GraphPad Prism software (v5) and ggplot2 R package (v3.1.1).  

 

4.6 Total Eukaryotic mRNA Extraction 

RNA from cerebellum tissue was isolated using EZ-10 DNAaway RNA Mini-

Preps Kit (Bio Basic, Canada) according to the manufacturers’ protocol. Briefly, 

frozen cerebellum samples were homogenized and lysed in the lysis buffer. 

Contamination of genomic DNA was prevented by using the gDNA eliminator column. 

Purity of RNA was determined by using the Nanodrop ND-1000 (Thermo Fisher 

Scientific, USA), while RNA integrity was assessed by agarose gel electrophoresis 

as well as the Agilent 2100 Bioanalyzer (Agilent, USA). Enriched RNA was of high-

quality, demonstrating an OD260/OD280 ratio of 1.9-2.0 from Nanodrop readings, two 

distinct bands indicating 28S and 18S following agarose gel electrophoresis, and 

RNA integrity number ≥  6.8 with a smooth base line using the Agilent 2100 

Bioanalyzer. 

 

Following the isolation of high-quality and pure total RNA from cerebellum tissues, 

cDNA library was constructed using the NEBNext® UltraTM RNA library preparation 

kit as per the manufacturers’ protocol (New England BioLabs, USA). mRNA was first 

purified via the addition of poly-T-oligo-attached magnetic beads, and subjected to 

random fragmentation using a fragmentation buffer. The first strand of cDNA was 

synthesized using a random hexamer primer and RNase H- (M-MuLV reverse 

transcriptase). The second strand of cDNA was synthesized using DNA polymerase I 

and RNase H, and the resulting double stranded cDNA was then purified using 

AMPure XP beads. The overhangs of these purified double-stranded cDNA were 

further processed by exonuclease and polymerase to create blunt ends, and the 3’ 

ends of these DNA fragments were adenylated and subsequently ligated with the 

NEBNext hairpin loop structure adaptor on both ends for hybridization. For optimal 

isolation of cDNA fragments of approximately 150-200 base pairs in length, the DNA 

fragments were purified using the AMPure XP system (Beckman Coulter, USA), 
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followed by PCR amplification and purification by AMPure XP beads to obtain the 

DNA fragments representing the complete library. The resulting libraries were 

sequenced using HiSeqTM 2500 Illumina platform to obtain a minimum 12GB raw 

data per sample (Illumina, USA). A brief experimental workflow was illustrated using 

BioRender software (Figure 1b). 

 

4.7 mRNA Sequencing Bioinformatics Analysis 

The reference genome for Mus musculus (mm10) and gene model annotation 

files were downloaded from the National Center for Biotechnology Information 

(NCBI) genome database. The reference genome was indexed and the paired-

end quality checked reads were mapped to the reference genome using the 

STAR aligner (v2.5) (Dobin et al., 2013). Reads mappingto each gene were 

qualified using HTSeq (v0.6.1) (Anders et al., 2015). Fragments per kilobase of 

exon model per million mapped reads (FPKM) for each gene were computed 

based on the gene length and the number of reads mapped to the gene. The 

FPKM value was then used for estimation of gene expression levels. A total of 

35275 unique RNA transcripts were quantified in the cerebellum datasets. 

Differential gene expression analysis was performed using the DESeq2 R 

Package (v2_1.6.3) (Anders and Huber, 2010) Using a negative binomial 

distribution model for the gene counts. The resultant p-values were then adjusted 

using Benjamini and Hochberg’s test to control false discovery rate (FDR). Genes 

with adjusted p<0.05 were assigned as differentially expressed.  

 

PLS-DA (Partial least squares-discriminant analysis) plots were constructed using 

the mixOmics R package (v6.6.2) (Rohart et al., 2017). Venn diagrams were 

prepared using online software (Bioinformatics & Evolutionary Genomics, Belgium). 

Heatmaps were built using pheatmap R package (v1.0.12) (Rohart et al., 2017), 

while the volcano plots in this study were prepared using the ggplot2 R package 

(v3.0.0). Gene ontology (GO) enrichment analysis for differentially expressed genes 

was carried out using g:Profiler (Reimand et al., 2016), DAVID (Jiao et al., 2012) and 

Enrichr (Kuleshov et al., 2016) webservers. GO terms with adjusted p-value < 0.05 

were considered to be significantly enriched among the pool of differentially 

expressed genes. Enrichment analysis diagrams were plotted using GraphPad 

Prism software (v5) and ggplot2 R package (v3.1.1). 
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4.8 Integrative ChIP and mRNA Sequencing Analysis  

To identify the number of differential expressed genes that were modulated by 

H3K9me3, a Venn analysis was performed (Bioinformatics & Evolutionary 

Genomics, Belgium) and illustrated using Inkscape software (v0.92) as Euler 

diagrams. Next, we performed a series of GO interrogation and visualization of 

the overlapped genes using GOplot R package (v1.0.2) (Walter et al., 2015) and 

Inkscape software (v0.92) respectively. ChIP peaks and mRNA tracks were 

visualized in the Integrative Genome Browser (v2.5.3) (Robinson, 2012; 

Robinson et al., 2017; Thorvaldsdóttir et al., 2013). Network analysis and 

visualization of the overlapped genes were achieved using the STRING (v11.0)  

(Szklarczyk et al., 2019) webserver and Cytoscape software (v3.7.1) (Paul 

Shannon et al., 2003). The ClusterOne (v1.0) plugin in Cytoscape was used with 

default parameters to obtain significant gene clusters. Metabolic pathways 

analysis was painted as metabolic maps using iPath3 online software tool (v3) 

(Darzi et al., 2018) and metabolic cellular functions performed using BioCyc 

Omics dashboard software (19.0) (Karp et al., 2016; Paley et al., 2017). 

 

4.9 Statistical Analysis 

Experimental data were analyzed using GraphPad Prism software (v5) for statistical 

analysis. Two-way analysis of variance (ANOVA) was used, followed by Dunnett’s 

post-hoc test, for weight, glucose and ketone measurement. Numerical values were 

expressed as mean ± standard error of the mean (S.E.M). A p-value<0.05 was 

considered statistically significant. Correlation was determined using the “cor.test” 

function in R with options set alternative= “greater” and method= “Spearman”. All 

experiments were performed using at least three biological replicates per 

condition, and Pearson correlation coefficients of at least 0.9 demonstrated high 

coverage and reproducibility (Figure S3). Statistical analysis for bioinformatics was 

performed associated documentation default parameters. 
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Accession Numbers 

High-throughput sequencing data have been submitted to the NCBI Sequence 

Read Archive (SRA) under accession number GSE135945. 

 

Supplemental Information 

Supplemental Information includes 08 figures, 05 tables and can be found with 

this article online. 
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Figure legends: 

 
Figure 1: Experimental design for intermittent fasting and refeeding regimen. (a) 

Mice were raised to 3 months-old with ad libitum access to food before being 

randomly assigned and subjected to AL feeding, IF16 or EOD for a further 3 months. 

All mice had AL access to water, with AL mice having free access to food also. 

During the refeeding regimen, the three groups of mice were allowed AL access to 

both food and water for a further 2 months. A series of physiological tests was 

performed on the mice as depicted. (b) Cerebellar tissue was harvested, frozen and 

subjected to chromatin immunoprecipitation at H3K9me3 locus and eukaryotic mRNA 

extraction prior to sequencing via Illumina platforms. AL, ad libitum; IF16, intermittent 

fasting 16 hours; EOD, intermittent fasting 24 hours on alternate day or ‘every other 

day’; AL.R, AL and refeed; IF16.R, IF16 and refeed; EOD.R, EOD and refeed; 

H3K9me3, histone 3 lysine 9 trimethylation. 

 

 

Figure 2: Epigenomic analysis of IF and refeeding at the H3K9me3 locus in the 

cerebellum. (a) Three-dimensional principal component analysis (3D-PCA) plot of 

H3K9me3 ChIP dataset from expression profiles of IF groups. The three most 

significant principal components (PC1, PC2, and PC3) are displayed on the x-, y-, 

and z-axes, respectively. PCA discriminated AL, IF16, and EOD into three unique 

cluster regions relative to their input control. (b) Summary and heatmap plots 

displaying H3K9me3 ChIP-seq signal mapping to a 2 kb window around the TSS of 

genes revealed distinct expression patterns in AL, IF16, and EOD. ChIP-seq signals 

are sorted according to mean score and scale bar illustrate log2 ratio of ChIP signal 

vs control signal. (c) Venn diagram illustrates the number of differentially expressed 

peaks that are common and distinct in each IF regimen when compared to AL. (d) 

3D-PCA plot of H3K9me3 ChIP dataset obtained from expression profiles of 

refeeding groups. The three most significant principal components (PC1, PC2, & 

PC3) are displayed on the x-, y-, and z-axes, respectively. PCA discriminated AL.R, 

IF16.R, and EOD.R into three unique cluster regions relative to their input control. (e) 

Summary and heat map plots displaying H3K9me3 ChIP-seq signal mapping to a 2 

kb window around the TSS of genes revealed distinct expression patterns in AL.R, 

IF16.R and EOD.R. ChIP-seq signal over the body of genes are sorted according to 
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mean score and scale bar illustrate log2 ratio of ChIP signal vs control signal. (f) 

Venn diagram illustrates the number of differentially expressed peaks that are 

common and distinct in each refeeding regimen when compared to AL.R. (g-h) Top 

20 differentially expressed peaks-associated gene ontologies of IF and refeeding 

compared to control plotted against statistical significance (represented as (-log10 p-

value). Number of differentially expressed peaks belonging to a single gene ontology 

term is shown in brackets beside the term. TSS, transcriptional start sites; GO, gene 

ontologies; DEGs, differentially expressed genes. 

 

Figure 3: Transcriptomic analysis of IF and refeeding in the cerebellum. (a) Partial 

least square-discriminant analysis (PLS-DA) plot of IF transcriptomic expression 

profiles. Axis values are the explained variation of each variate. PLS-DA 

categorized AL, IF16, and EOD transcriptomic datasets into three unique cluster 

regions represented by the respective ellipse and background color. (b) Heatmap 

of transcriptomic expression data showing IF differentially expressed genes. 

Unsupervised hierarchical clustering segregated AL, IF16, and EOD transcriptome 

distinctly. Gene expression is shown in log10(FPKM+1) and differentially 

expressed genes were selected based on p-value<0.05. (c) Volcano plot of 

statistical significance (-log10 q-value) against enrichment (log2 fold change) of 

differentially expressed genes in IF16 and EOD against AL. Total number of 

differentially expressed genes shown in brackets. Upregulated genes are shown in 

orange and downregulated genes are shown in blue. Non-significant differentially 

expressed genes are shown in black. (d) Top 20 differentially expressed gene 

ontologies of IF compared to control plotted against statistical significance 

(represented as (-log10 p-value). Number of differentially expressed genes belonging 

to a single gene ontology term is shown in brackets beside the term. (e) PLS-DA plot 

of refeeding transcriptomic expression profiles. Axis values show the explained 

difference between each variate. PLS-DA categorized AL.R, IF16.R, and EOD.R 

transcriptomic datasets into three unique cluster regions represented by the 

respective ellipse and background color. (f) Heatmap of transcriptomic 

expression data showing refeeding differentially expressed genes. Unsupervised 

hierarchical clustering distinctly segregated AL.R, IF16.R and EOD.R transcriptomes. 

Gene expression is shown in log10(FPKM+1) and differentially expressed genes 

were selected based on p-value<0.05. (g) Volcano plot of statistical significance (-
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log10 q-value) against enrichment (log2 fold change) of differentially expressed genes 

in IF16.R and EOD.R against AL.R. Total number of differentially expressed genes 

shown in brackets. Upregulated genes are presented in red and downregulated 

genes are presented in blue. Non-significant differentially expressed genes are 

shown in black. (h) Top 20 differentially expressed gene ontologies of refeeding 

compared to control plotted against statistical significance (represented as (-log10 p-

value). Number of differentially expressed genes belonging to a single gene ontology 

term is shown in brackets beside the term. FPKM, fragments per kilobase of 

transcript per million mapped reads. 

 

Figure 4: Integrative epigenomic analysis at the H3K9me3 locus in the cerebellum, 

on IF and refeeding. (a) 3D-PCA plot of normalized H3K9me3 ChIP dataset shown 

by expression profiles of IF and refeeding groups. The three most significant 

principal components (PC1, PC2, and PC3) are displayed on the x-, y- and z-axes, 

respectively. PCA categorized all biological groups through unique cluster 

occupancy relative to their input control. (b) Normalized strand cross correlation 

(SCC) plot for ChIP-seq samples of IF and refeeding. The ChIP-seq SCC curves 

show local maxima in the fragment sizes. (c) Fingerprint plots assess the relative 

focal signal strength and specificity of ChIP signal vs input signal of both IF and 

refeeding dataset. Both input and biological group datasets demonstrate good 

coverage of reads across the genome. (d) Summary and heatmap plots displaying 

normalized H3K9me3 ChIP-seq signal mapping to a 2 kb window around the TSS of 

genes revealed distinct expression pattern in biological samples of IF and refeeding 

groups. Normalised ChIP-seq signal over the body of genes are sorted according to 

mean score and scale bar illustrate log2 ratio of ChIP signal vs control signal. (e-f) 

Venn diagram illustrates the number of differentially expressed peaks at the 

H3K9me3 locus that are common and distinct between IF and refeeding regimen. (g) 

Dot plot for age-associated changes on differentially-expressed peaks ontologies. 

Gene ontologies semantic is shown on the left axis whereas Gene ratio is show on 

the x-axis. Dot size is proportional to the number of genes, and colour is presented 

as p-value.   
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Figure 5: Integrative transcriptomic analysis of IF and refeeding in the cerebellum.  

(a) PLS-DA plot of normalised IF and refeeding transcriptomic expression profiles. 

Axis values are the explained differences in each variate. PLS-DA categorized AL, 

IF16, and EOD datasets, distinctly represented by the respective ellipse and 

background color; yet AL.R, IF16.R, and EOD.R transcriptomic dataset 

demonstrates little segregation. (b) Heatmap of normalized IF and refeeding 

transcriptomic expression data showing differentially expressed genes across 

biological groups. Gene expression is shown in log10(FPKM+1) and differentially 

expressed genes were selected based on p-value<0.05. (c-d) Venn diagram 

illustrates the number of differentially expressed genes that are common and distinct 

between IF and refeeding regimens. (e) Dot plot for age-associated changes on 

differentially-expressed gene ontologies. Gene ontologies semantic is shown on the 

left axis whereas Gene ratio is shown on the x-axis. Dot size is proportional to the 

number of genes, and colour is presented as p-value.   

 

 

Figure 6: Integrative epigenomic and transcriptomic analysis of IF16 and IF16.R at 

the H3K9me3 locus in the cerebellum. (a) Euler’s diagram illustrates the number of 

differentially expressed genes governed by H3K9me3 modulation during IF16 

compared to control. (b) Bar chart categorising H3K9me3-governed differentially 

expressed genes during IF16 vs AL into three categories of metabolic gene 

ontologies; namely carbohydrate, lipid and protein metabolic processes. Gene 

ontology subsets of each category are shown at the bottom of each bar chart. 

Statistical significance is plotted as -log10(adj p-value) on the y-axis whereas z-score 

is used in the form of a colorbar to illustrate whether a particular semantic term is 

more likely to increase or decrease. Red represents an increasing z-score whereas 

blue represents a decreasing z-score. (c) Chord diagram showing the most enriched 

carbohydrate, lipid and protein related metabolic processes with H3K9me3-governed 

differentially expressed genes during IF16 vs AL. In each chord, enriched gene 

ontologies are presented on the right, whereas differentially expressed genes 

contributing to this enrichment are presented on the left. Each differentially 

expressed gene is represented by a rectangle in which the color is correlated to the 

expression level determined by log(fold-change), in which red represents 

upregulation and blue represents downregulation. Chords connect these differentially 
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expressed genes with gene ontology terms, with each term being represented by 

one coloured line. (d) Euler’s diagram illustrates the number of differentially 

expressed genes governed by H3K9me3 modulation during IF16.R compared to 

control. (e) 3D-pie chart to illustrate H3K9me3-governed differentially expressed 

genes during IF16.R vs AL.R. Gene ontologies are presented at the bottom of the 

pie chart, whereas gene symbols belonging to each semantic gene ontology are 

shown at each category of the pie chart. (f) Venn diagram illustrates the number of 

differentially expressed genes that are governed by H3K9me3 modulation that are 

maintained between IF16 and IF16.R compared to that in control.  

 

Figure 7: Integrative epigenomic and transcriptomic analysis of EOD and EOD.R at 

the H3K9me3 locus in the cerebellum. (a) Euler’s diagram illustrates the number of 

differentially expressed genes governed by H3K9me3 modulation during EOD 

compared to control. (b) Bar chart categorising H3K9me3-governed differentially 

expressed genes during EOD vs AL into three categories of metabolic gene 

ontologies; namely carbohydrate, lipid and protein metabolic processes. Gene 

ontologies subset of each category are shown at the bottom of each bar chart. 

Statistical significance is plotted as -log10(adj p-value) on the y-axis whereas z-score 

is used in the form of a colorbar to illustrate whether a particular semantic term is 

more likely to increase or decrease. Purple represents increasing z-score whereas 

cyan represents a decreasing z-score. (c) Chord diagram showing the most enriched 

carbohydrate, lipid, and protein-related metabolic processes with H3K9me3-

governed differentially expressed genes during EOD vs AL. In each chord, enriched 

gene ontologies are presented on the right, whereas differentially expressed genes 

contributing to this enrichment are presented on the left. Each differentially 

expressed gene is represented by a rectangle whose color is correlated to the 

expression level determined by log(fold-change), in which red represents 

upregulation whereas blue represent downregulation. Chords connect these 

differentially expressed genes with gene ontology terms, with each term being 

represented by one coloured line. (d) Euler’s diagram illustrates the number of 

differentially expressed genes governed by H3K9me3 modulation during EOD and 

EOD.R compared to control. (e) 3D-pie chart to illustrate H3K9me3-governed 

differentially expressed genes during EOD.R vs AL.R. Gene ontologies are 

presented at the bottom of the pie chart, whereas gene symbols belonging to each 
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semantic gene ontology are shown at each category of the pie chart. (f) Venn 

diagram illustrates the number of differentially expressed genes that are governed by 

H3K9me3 modulation that are maintained between EOD and EOD.R compared to 

that in control. 

 

Figure 8: Integrative Genome Visualisation (IGV) tracks illustrating H3K9me3 

binding sites at selected gene locus following IF. (a-b) IGV track displaying 

H3K9me3 binding sites at Aldob and Gbe1 gene locus following IF16 and EOD 

respectively. (c-d) IGV track displaying H3K9me3 binding sites at Elovl2 and 

Fads2 gene locus following both IF16 and EOD. Blue background show 

H3K9me3-dependent regulation of chromatin accessibility at the selected sites. 

Location of selected gene locus is shown on the top.  
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