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Abstract: 

CD45 isoforms play a major role in characterizing T cell function, phenotype, and development. 

However, there is lacking comprehensive interrogation about the relationship between CD45 isoforms 

and T lymphocytes from cancer patients at the single-cell level yet. Here, we investigated the CD45 

isoforms component of published 5,063 T cells of hepatocellular carcinoma (HCC), which has been 

assigned functional states. We found that the distribution of CD45 isoforms in T lymphocytes cells 

depended on tissue resource, cell type, and functional state. Further, we demonstrated that CD45RO 

and CD45RA dominate in characterizing the phenotype and function of T cell though multiple CD45 

isoforms coexist in T cells, through a novel alternative splicing pattern analysis. We identified a novel 

development trajectory of tumor-infiltrating T cells from Tcm to Temra (effector memory T cells 

re-expresses CD45RA) after detecting two subpopulations in state of transition, Tcm (central memory 

T) and Tem (effector memory T). Temra, capable of high cytotoxic characteristics, was discovered to 

be associated with the stage of HCC and may be a target of immunotherapy. Our study presents a 

comprehension of the connection between CD45 isoforms and the function, states, sources of T 

lymphocytes cells in HCC patients at the single-cell level, providing novel insight for the effect of 

CD45 isoforms on T cell heterogeneity. 
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1.Introduction 

CD45, a canonical marker for immune cell, presents various of isoforms arising from alternative 

splicing of the exons 4, 5 and 6 (corresponding to A, B, C) on all differentiated hematopoietic cells 

which showed cell-type and differentiation-stage specific expression(Hermiston, Xu, & Weiss, 2003; 

Holmes, 2006)(Hermiston et al. 2003; Holmes 2006) (Fig. 1A). For example, CD45RA and CD45RO 

are widely used to mark naïve T and memory T cells respectively. In addition, T cells can be divided 

into four types according to the expression of CD45RA and CCR7: Tnaive (naïve T cell, 

CD45RA+CCR7+), Tcm (central memory T, CD45RA-CCR7+), Tem (effector memory T, 

CD45RA-CCR7-) and Temra (effector memory T cells re-expresses CD45RA, 

CD45RA+CCR7-)(Sallusto, Lenig, Forster, Lipp, & Lanzavecchia, 1999). A relatively high number of 

Temra in peripheral blood was associated with good prognosis in NSCLC (non-small lung cancer) 

patients treated with nivolumab(Kunert et al., 2019). These indicate the vital importance of CD45 

isoforms in characterizing different types of T lymphocytes and prognosis in the cancer patients. 

However, almost all the previous studies about exploring the characterization and distribution of CD45 

isoforms in T cells was done at bulk level with potential cell heterogeneity, which may affect the 

accuracy of results. For example, bimodality in splicing resulting in isoforms heterogeneity was 

revealed in immune cell with scRNA-seq while bulk RNA-seq fails(Shalek et al., 2013). Therefore, 

analyzing the distribution of CD45 isoforms among T cells at single-cell level would deepen our 

understanding about the relationship between cell state and CD45 isoforms. 

scRNA-seq has revolutionized our understanding about the heterogeneity of tumor infiltrating 

lymphocytes (TIL), since systematic interrogation of tumor-infiltrating lymphocytes were fulfilled in 

liver(Zheng et al., 2017), lung(Guo et al., 2018), colon(Zhang et al., 2018), and breast cancers(Chung 

et al., 2017). The comprehension of heterogeneity makes a great contribution to the identification and 

characterization of various types of TIL functional clusters such as exhausted T cell, naïve T cell, 

effector T, regulated T and so on. Besides, full length scRNA-seq data is also capable of isoform 

expression quantification. Those make it possible to research CD45 isoforms distribution in high 

resolution.  

Here, we systemically investigated the CD45 isoforms component of published 5,063 T cells of 

hepatocellular carcinoma (HCC) from 6 patients. These T cells have been assigned cell types, 

functional states, and tissue resources. We discovered the distribution characterization of CD45 
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isoforms as well as the dominant isoforms, CD45RO and CD45RA in T cell phenotype identification at 

single-cell level. We identified a novel development trajectory of tumor-infiltrating T cell from Tcm to 

Temra. Meanwhile, we found Temra with high cytotoxic characteristic, was related to HCC staging and 

may be a target of immunotherapy. All the results promote our understanding about the influence of 

CD45 isoform on T cell heterogeneity. 

 

2. Materials and methods 

2.1 Data Sets 

RNA-seq data of Human T cells in Fastq format was downloaded from EGD database 

(EGAS00001002072) after the access of the dataset has been approved. Matrix of gene expression was 

downloaded from GEO database with accession numbers 

GSE98638(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98638). It comprised 5063 T 

cells of 12 clusters from peripheral blood, tumor and adjacent normal liver tissue. The detailed clinical 

information of patient and cluster information was given in Table 1 and Table 2. The data was the result 

of single cell RNA sequencing by Illumina HiSeq2500 or Illumina Hiseq 4000. Necessary metadata 

was provided by article of Zheng’s(Zheng et al., 2017).  

2.2 Preprocessing of RNA-Seq data 

Firstly, cleaned reads of each cell were aligned onto the UCSC hg38 human genome by STAR[10] with 

default parameters. Secondly, we obtained the read count of seven junctions of CD45 that involved in 

alternative splicing of CD45(Fig 1A) from the SJ.out.tab files of each cell. Thirdly, the read count of 

seven junctions was normalized by the uniquely mapped reads number of each cell. Finally, we 

obtained a junction-cell matrix with seven junctions as row and 5,036 cells as column. 

2.3 Cell filtering 

we used K-means to cluster cells with the normalized count and then filtered the cell clusters whose 

mean and standard deviation of normalized junction read count was less than 1 and 0.2 respectively. 

These filter cells could not reflect the real junction composition of CD45 because of the low 

sequencing depth and high dropout rate in single-cell RNA-seq. At last, 79 cells which satisfied the 

criteria were filtered. Sashimi plots of gene were generated using the software package MISO(Katz, 

Wang, Airoldi, & Burge, 2010) 

2.4 Junction expression pattern analysis of CD45 
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We first filtered cells in unknown clusters and then defined highly expressed junctions as log2 

(normalized read count + 1) > 2.5 for those seven junctions of CD45. Finally, a total of 3,524 cells were 

assigned into nine major patterns after filtering. The isoforms component of each pattern is visible in 

Table 3. 

2.5. Differential gene expression analysis 

We used Limmar R package(Ritchie et al., 2015) to perform differential gene expression analysis 

between two target clusters. Then differential expressed genes were identified as those met these 

criteria: 1) FDR adjusted p value of F test < 0.01; 2) the absolute value of log2(fold change) were 

larger than 2. 

2.6. Hierarchical clustering of the number and expression of DEGs among 9 patterns 

We figured out the specific number of differential genes between two clusters by differential expression 

analysis between each pair patterns. Then the resulting count matrix was clustered using Ward.D2 by 

pheatmap R packages(Kolde, 2012). Similar method was applied to research CD45 isoform pattern 

with the DEGs expression. 

2.7. Developmental trajectory inference 

We applied Monocle (version 2)(Trapnell et al., 2014) algorithm with the signature genes of different 

functional clusters and junctions representing CD45RO and CD45RA to order CD8+ T cells excluding 

MAIT cluster in pseudo time. We first converted TPM value into normalized mRNA counts by the 

“relative2abs” function in monocle and created an object with parameter “expressionFamily = 

negbinomial.size” according to the Monocle tutorial. Then the trajectory was determined by the default 

parameters of Monocle.  

2.8. TCR sharing analysis 

The TCR sequences of each single T cell were provided by Zheng et.al(Zheng et al., 2017). Each 

unique alpha-beta pair was defined as a clonotype. If one clonotype was present in at least two cells, 

cells harboring this clonotype would be considered as clonal. Then, the number of cells with such 

alpha-beta pair indicated the degree of clonality of the clonotype. The number of shared clonotypes 

across five types of T cell, including Tnaive, Tcm, Tem, Temra, Tem.ex (Tem in exhausted clusters) 

was calculated then plotted. 

 

3.Results 
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3.1. The distribution of CD45 isoforms of T cell in tumor microenvironment 

In order to identify the isoform composition of CD45 across T cells in different state accurately, we 

utilized the expression of seven junctions to represent CD45 isoforms (Fig. 1A). CD45RA+ mainly 

appeared in naïve and effector T cells, while not in exhausted T cells and Tregs (Fig. 1B and C). 

However, the expression of CD45RO isoforms showed the opposite pattern with CD45RA+ isoform 

(Fig. 1D). Meanwhile, Tregs showed the highest level of CD45RO expression followed by Thelp and 

cytotoxic T cells. The distribution of CD45RO isoform in peripheral blood appeared in a lower 

proportion than normal and tumor tissue across the five patients (Fig. 1E and F). Thus, the distribution 

of CD45 isoforms depend on tissue resource, cell type, and functional state. 

3.2. The functional difference of T cell with various CD45 isoforms. 

To clarify the influence of CD45 isoforms on T cell phenotype, we applied a new pattern analysis to 

seven junctions of CD45. Firstly, we performed pattern analysis to assign all cells into 9 new clusters 

with the biased expression of seven junctions (Fig. 2A). Surprisingly, eleven clusters identified by all 

the gene expression profile by Zheng et al(Zheng et al., 2017), possessed multiple patterns, indicating 

the high heterogeneity within clusters, regardless of tissue resource (Fig. 2B). We hierarchical clustered 

these 9 patterns both by the differential gene number and the expression of differential genes. Then,we 

found that T cell may be grouped into 3 populations: CD45ROhigh T cells (pattern 5,6), CD45Ahigh 

(from CD45RABC) T cells (pattern 2,3,1), and CD45RBhigh CD45ROlow T cells (pattern4,9,7,8)across 

all T cells (Fig. 2C and D). CD45ROhigh T cells highly expressed exhaustion markers PDCD1, CTLA4 

and lowly expressed naïve and effector markers GNLY, LEF1, CCR7, opposite with CD45RAhigh, while 

CD45RBhigh CD45ROlow T cells showed the intermediate state (Fig. 2D). In brief, although there are 

multiple CD45 isoform patterns in T cells, CD45RO and CD45RA plays the dominated role in T cell 

phenotype. 

3.3. The sub-clusters and novel developmental subsets connectivity determined by CD45 isoforms 

To explore the sub-clusters will promote our understanding about the heterogeneity in T cells. We used 

the widely accepted method which use the expression of CD45RA and CCR7 to separate CD8+ T cells 

into four types: Tnaive,Tcm,Tem, and Temra. (Fig. 3A). Cells in cluster C03, C04 and C05 clusters 

mainly were Tem, while cluster C01 and C02 showed relative high heterogeneity (Fig. 3B). Cells in 

Tnaive and Tcm showed high expression of naïve markers, such as LEF1 and SELL. But Tcm showed 

lower expression of these naïve markers than Tnaive, indicating Tcm was in the state of transition and 
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biased to resting state. Tem moderately expressed the effector and exhausted markers, such as GNLY, 

CX3CR1, CTLA4, and PDCD1, implying Tem was also in the transition state but biased to activation 

state. Temra were characterized by the highest expression of effector and cytotoxic genes such as 

NKG7 and GNLY. Tem in exhausted clusters (C04_CD8.LAYN, Tem.ex) highly expressed CTLA4 and 

PDCD1 (Fig. 3C). Pseudotime analysis indicated that there were two distinct developmental 

trajectories. Specifically, the first relative process began with Tnaive, followed by Tcm, Tem, and 

ended in Tem in exhausted state. The second process began with Tnaive, followed by Tcm, Tem, and 

ended in Temra (Fig. 3D). These two trajectories revealed the T cell state transition from activation to 

exhaustion and T cell state from memory to re-activation. What’s more, the clonal analysis based on 

those identical TCRs from common ancestors also proved this finding (Fig. 3E). In conclusion, we 

determined two subpopulations in state of transition, Tcm and Tem. In addition, we uncovered a novel 

development trajectory of tumor infiltrating T cell from Tcm to Temra. 

3.4. The potential clinical value of Temra. 

To make a clear relationship between the five types CD8+ T cells and clinical information, we 

analyzed their distribution features across different patients and tissue resource. Tnaive and Tcm were 

mainly present in peripheral blood, while Tem was mainly in tumor adjacent liver tissue. We also 

noticed a trend of decreased CD8+ Temra cells in HCC from late stage patients compared with early 

stages, while CD8+ Tem cells in exhausted state showed the opposite(Fig. 4A). At the meantime, the 

percentages of CD8+ Temra cells were decreased significantly in tumor tissue than in normal tissue 

(Fig. 4B). Thus, these results indicated that Temra in CD8 T cell were in effector and cytotoxic state 

and may be used for clinical diagnosis and cancer targets. 

 

4.Discussion 

Our study systematically evaluated the distribution characterization of CD45 isoforms across 

different functional T cells from six hepatocellular carcinoma patients at single-cell level. High level of 

CD45RO frequency was observed in exhausted T cells and tumor-infiltrating Treg while low in naïve 

and effector T cells. Increasing of exhausted T and tumor-infiltrating Treg were certainly related with 

worse prognosis(Jiang, Li, & Zhu, 2015; Piersma et al., 2007). However, previous studies have 

demonstrated that CD45RO+ memory T lymphocyte infiltration led to a favorable clinical outcome in 

solid tumors(Galon et al., 2006). We supposed it is the cell heterogeneity that contribute to this 
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contradictory phenomenon. That is to say, the wide distribution of CD45RO+ cells among various T 

function subpopulations led to the uncertain of the dominated cell type in bulk RNA-Seq. Thus, it is 

essential to make it clear how T cell heterogeneity affects the prognosis at isoform levels. 

The isoforms of CD45 displayed different distribution among different T cell populations. To 

further understand the relationship between isoform component and the state of clusters, we creatively 

adopt the pattern analysis of CD45 junction expression. Surprisingly, we found that various CD45 

isoforms coexist in most T cell from different clusters or tissue resource, which has not been described 

before. After differential expressed gene analysis between different patterns, we found all the cells are 

separated into three main groups, CD45ROhigh T cells, CD45RAhigh T cells and CD45RBhigh 

CD45ROlow T cells. Among the three groups, CD45ROhigh population showed the opposite gene 

expression profiles with CD45RAhigh population. CD45RBhigh CD45ROlow population was in the 

middle state and owned the minimum cell compared with CD45ROhigh and CD45RAhigh. In addition, 

the expression of CD45RO was negatively connected with CD45RA significantly. A plausible 

explanation is that the key isoforms of CD45 dominate the function and state of cells, no matter how 

many kinds of CD45 isoforms coexists in a cell. Specifically, it is CD45RO and CD45RA that may 

dominate the influence of CD45. The pattern analysis that we proposed inspires people the method 

development to research cell phenotype and alternative splicing at the single-cell level.  

It has widely known that the expression of CD45RA+ and CCR7 separate CD8+ T cells into four 

types: Tnavie, Tcm, Tem, and Temra. In our study, we succeed to obtain these four CD8+ 

subpopulations and expression profile of these clusters. The developmental trajectory of these clusters 

was discovered by the pseudo time analysis and confirmed by TCR analysis. We found a novel 

potential development direction from Tcm to Temra considering CD45RA expression, failing to be 

detected by the previous research that just applied the expression of genes to pseudo time. We also 

noticed two cell subsets in state of transition, Tcm and Tem out of exhausted state, that was not 

identified by Zheng.et al(Zheng et al., 2017). Thus, this emphasizes it is important to take advantage of 

the expression of isoforms to detect novel cell subsets and novel development direction. 

Temra was in the terminal period of developmental trajectory and showed the highest expression 

of effector and cytotoxic genes, including NKG7, GNLY, and CX3CR1. This performance was in 

accordance with the previous result based scRNA-seq(Szabo et al., 2019). Meanwhile, the ratio of 

Temra in tumor was inversely proportional to tumor stage, implying the potential clinical application of 
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Temra. However, this outcome needs more samples to verify due to limited samples in this study. In 

summary, systematical analysis of CD45 isoforms promotes our understanding about T cell 

heterogeneity at the level of alternative splicing. These results inspire more researches on the role of 

alternative splicing in T cell function heterogeneity and cancer immunotherapies. 
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Table 1 

The information of patients. 

Patient Age Sex Stage Tissue 

P1202 26 Female I P/N/T 

P0407 63 Male I P/N/T 

P0205 53 Male I P/N/T 

P0508 28 Male II P/N/T/J 

P0322 64 Male IVB P/N/T 

P1116 52 Female IVB P/N/T 

Note: P: Peripheral blood, N: Normal Tissue, T: Tumor Tissue, J: adjacent normal tissues 
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Table2  

Annotation about cell clusters 

Cluster Cell number Function annotation Type 

C01_CD8.LEF1 161 Naïve T cell CD8+ T cell 

C02_CD8.CX3CR1 288 Effector T cell CD8+ T cell 

C03_CD8.SLC4A10 363 MAIT CD8+ T cell 

C04_CD8.LAYN 300 Exhausted T cell CD8+ T cell 

C05_CD8.GZMK 467 T cell in mediate state CD8+ T cell 

C06_CD4.CCR7 646 Naïve T cell CD4+ T cell 

C07_CD4.FOXP3 261 Peripheral Treg CD4+ T cell 

C08_CD4.CTLA4 582 Tumor Treg CD4+ T cell 

C09_CD4.GZMA 689 T cell in mediate state CD4+ T cell 

C10_CD4.CXCL13 146 Exhausted T cell CD4+ T cell 

C11_CD4.GNLY 167 Effector T cell CD4+ T cell 

Unknown 993 NA NA 
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Table 3 

CD45 Isoform component of each pattern 

Pattern J1 J2 J3 J4 J5 J6 J7 component 

Pattern1 - - - + + + + RABC 

Pattern2 - + + + + + + unclarity 

Pattern3 - + - + + + + RABC+RBC 

Pattern4 - + + - - - - RB 

Pattern5 + + + - - - - RO+RB 

Pattern6 + - - - - - - RO 

Pattern7 - + + + + - - RB+RAB 

Pattern8 - + + - - + + RBC+RB 

Pattern9 + + + - - + + RO+RBC+RB 

Unclarity means this pattern may include various possible combination of component excluding RO, here it can be 

RABC + other, or a combination of RB, RAB, RBC. 
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Figure 1. The distribution of CD45 isoforms of T cell in TME. (A) The carton shows the junction 

composition of five CD45 isoforms universally expressing in T cells. (B) The expression heat map of 

junctions related with five CD45 isoforms (see Fig. 5A). Information of pattern with different clusters 

are colored for each cell. (C) Sashimi plots illustrating the read distribution of PTPRC in CD8+ T cells 

from P0508 patient. Exhausted T cells (C04_CD8.LAYN) merely express CD45RA. (D) The 

expression of CD45RA and CD45RO across all T cells. (E) The percentages of cells expressing 

CD45RO (the normalized count of CD45RO > 1) in adjacent normal tissues, tumor tissues and blood. 

*p < 0.05, **p < 0.01, ***p < 0.001, N.S., not significant, Student’s t test. (F)  The percentages of 

cells expressing CD45RO in cytotoxicity T cells, helper T cells and Tregs. *p < 0.05, **p < 0.01, ***p 

< 0.001, N.S., not significant, Student’s t test. Note: PTC, NTC, and TTC: CD8+ cytotoxic T cells from 

peripheral blood, adjacent normal, and tumor tissues; PTH, NTH, and TTH: T helpers cell from 

peripheral blood, adjacent normal, and tumor tissues; PTR, NTR, and TTR: Treg from peripheral blood, 

adjacent normal, and tumor tissues. 

Figure 2. The functional difference of T cells with various CD45 isoforms. (A) The expression 

heatmap of junctions related with five CD45 isoforms (see FigureS5 A). Information of patterns with 

different CD45 isoforms composition is colored for each cell. (B) The fractions of nine patterns defined 

in T cells in each cluster across different tissue resources, including blood, normal tissue and tumor 

tissue. C, Upper, The heat map of DEGs number between pairwise patterns across T cells, CD8+ T 

cells, and CD4+ T cells. Lower: z-score normalized mean expression of all DEGs in each pattern across 

T cells, CD8+ T cells and CD4+ T cells. (D) Violin plots show the expression difference in 

CD45RAhigh, CD45ROhigh and CD45RBhigh subpopulation. 

Figure 3. The sub-clusters and novel developmental subset connectivity determined by CD45 isoforms. 

(A) The expression of CD45RA and CCR7 across CD8+ T cells. Four types of T cells (Tnaive, Tem, 

Tcm, and Temra) are defined by the expression of CD45RA and CCR7. The thresholds of CD45RA and 

CCR7 were determined by the normalized count distribution. (B) The fractions of four types defined in 

CD8+ T cells in each cluster. (C) Z-score normalized mean expression of all DEGs in five types (Tem 

in C04_CD8.LAYN defined as Tem.ex). (D) CD8+ T cells (excluding MAIT cells) were ordered along 

pseudo time in a two-dimensional state-space defined by Monocle2. each point with different colors 

corresponds to individual cells in different types. (E) Cell state transition of CD8+ T cell types inferred 

by shared TCRs. Lines connecting different clusters are based on the degree to TCR sharing, with the 
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thickness of lines representing the number of shared TCRs.   

Figure 4. The potential clinical value of Temra. (A) The fractions of five types defined in CD8+ T cells 

in each patient across peripheral blood, adjacent normal, and tumor tissues. (B) The percentages of 

Temra in adjacent normal tissues, tumor tissues. 
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