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Predicting the behaviors of complex biological systems, underpinning processes such as cellular differentiation, requires taking into account
many molecular and genetic elements for which limited information is available past a global knowledge of their pairwise interactions. Logical
modeling, notably with Boolean Networks (BNs), is a well-established approach which enables reasoning on the qualitative dynamics of
networks accounting for many species. Several dynamical approaches have been proposed to interpret the logic of the regulations encoded
by the BNs. The synchronous and (fully) asynchronous ones are the most prominent, where the value of either all or only one component
can change at each step. Here we prove that, besides being costly to analyze, these usual interpretations are not adequate to represent
quantitative systems, being able to both predict spurious behaviors and miss others. We introduce a new paradigm, the Most Permissive
Boolean Networks (MPBNs), which offer the formal guarantee not to miss any behavior achievable by a quantitative model following the same
logic. Moreover, MPBNs significantly reduce the complexity of dynamical analysis, enabling to model genome-scale networks.
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Models in systems biology typically integrate knowledge
and hypotheses on molecular interactions, manually or

semi-automatically, gathered from experimental data found
in databases and the literature. These models are often quali-
fied as “mechanistic,” in opposition to those solely based on
biophysical laws.

Since their introduction in the late ’60s (1, 2), logical mod-
els, such as Boolean Networks, have been widely adopted for
reasoning about signaling and gene networks (3–11) as they
require few parameters and can easily integrate information
from omics datasets and genetic screens. These models rep-
resent processes with a high degree of generalization and can
offer coarse-grained but robust predictions. That makes them
particularly suitable for large biological networks, for which
ample global knowledge exists about potential interactions
with little precise data on actual molecules abundances and
reaction kinetics.

The validation of computational models is necessary to
trust their subsequent predictions. In systems biology, vali-
dation primarily involves in silico reproduction of observed
behaviors by executing the computational model. Such obser-
vations may be measurements of the activity, over time, or
at steady-state, of some of the interacting molecules under
different experimental conditions. Therefore, if no executions
of a BN reproduce an experimentally observed behavior (e.g.,
the activation of a particular gene), the model, and the asso-
ciated interactions, is considered as invalid. This procedure
also enables general studies on interaction motifs that are
necessary or sufficient for achieving fundamental behaviors
such as cellular differentiation or homeostasis (12–15).

Boolean Networks are often created from scratch and
rather than derived from a detailed mechanistic (partially-
parameterized) model. Consequently, there is no guarantee
that their analysis can be relevant for a more precise model,
and thus for the actual biological system.

Fig. 1 illustrates this issue with the incoherent feed-forward
loop of type 3, I3-FFL(16). An input node 1 directly inhibits
the output 3, but indirectly activates it via node 2. Theoreti-
cal studies (? ? ) and experimental data from synthetically
designed circuits (? ) show that a monotonic activation of the
input can lead to a transient activity of the output. However,
it is impossible to reproduce this behavior with usual interpre-
tations of BNs, including synchronous and asynchronous: if 1
is not active, neither 2 nor 3 can be activated. If 1 is active, 2
is active, but any transient activation of 3 is prevented (Fig.
1(d)).

Additional model features, such as intermediate levels for
the nodes, or delays in interactions, would allow a transient
activation for the I3-FFL output. However, such features come
with additional parameters and higher computational cost,
which limits their general application to large scale networks.

This simple example seems to show that setting binary
activities for nodes can both generate spurious behaviors (as
expected with qualitative models), and also preclude the dis-
covery of existing behaviors. Therefore, the validity of a model
cannot be assessed by the usual interpretations of BNs. This
limitation largely impedes the inference of dynamical network
models and the identification of necessary interaction network
motifs since the Boolean interpretation can strongly distort
the landscape of candidate models.

However, we found that this issue is actually due to the
usual interpretations of BNs and not to their intrinsic Boolean
nature. We introduce a new simulation approach, the Most
Permissive Boolean Networks (MPBNs), which presents the
formal guarantee to capture all behaviors achievable with-
out the need for additional parameters. If MPBNs cannot
reproduce a given observation, no quantitative refinement of
the Boolean model can do it, and the model can safely be
considered as incoherent with the observations. While predict-
ing more behaviors than the usual interpretations of Boolean
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Fig. 1. Incoherent feed-forward loop of type 3 (a) and its associated Boolean logic for
nodes activities (b); f1,2,3(x) are the Boolean functions used to compute the next
value of each node from a given configuration x of the network, which is here a binary
vector specifying the current value of each node, xi referring to the Boolean value
of node i. Whereas theoretical and experimental studies show a possible activation
of the output when the signal is active (c), usual BNs analysis cannot predict this
transient behavior: (d) shows the corresponding complete dynamics of f , where
configurations are represented by piles of 3 squares, where the top square represents
the state of the first component, and so forth. A white square represents the inactive
(0) state; a blue square represents the active (1) state; a dashed line indicates that no
further evolution is possible. Arrows indicate possible transitions. The node 3 is never
predicted to be active.

Networks, MPBNs still capture essential dynamical features
of biological models.

Moreover, we demonstrated that the analysis of MPBNs
avoids the state space explosion problem, a strong limiting
factor for the usual interpretations of BNs. The drastically
reduced computational cost enables the precise qualitative
analysis of dynamics of genome-scale networks.

Modeling with Boolean Networks

Computational modeling of dynamical systems relies on two
fundamental ingredients: a language to specify the model, and
an execution semantics. The language provides symbols and
syntax rules to write a model, while the execution semantics
mathematically defines how to interpret it. The semantics
formalizes the notion of network configurations (or states)
and how to compute their evolution over time. It provides
an exhaustive assessment of model capabilities by enabling
dynamical analyzes such as simulations as well as formal veri-
fication by invariant analysis and model-checking.

A BN is specified by a mathematical function mapping any
binary vector of dimension n to another binary vector of the
same dimension:

f : Bn → Bn [1]

where B = {0, 1} represent the Boolean values. Each ele-
ment of a binary vector models the state (inactive/active,
absent/present) of the associated network node, and fi is the
function which specifies the state towards which the i-th ele-
ment evolves. Fig. 2(b) gives an example of a BN modeling a
switch system.

BNs semantics computes the possible temporal evolutions
of the component states using different methods. With syn-
chronous executions of BNs (introduced by S. Kauffman (1)),
we update all the components of the network at the same
time, and a configuration x ∈ Bn can only evolve to one con-
figuration f(x). With fully asynchronous executions of BNs

(introduced by R. Thomas and usually referred to more simply
as asynchronous in the computational systems biology litera-
ture), we update only one component at a given time, and a
configuration x ∈ Bn can evolve to any configuration which
differs only by a single component i where fi(x) 6= xi. This
introduces potential non-determinism in the model trajectory
since there can be different executions of the same BN from a
given initial configuration. The (fully) asynchronous seman-
tics is often described as more realistic for modeling biological
networks, accounting for different kinetics of interactions.

Many more variants of executions of BNs have been studied
in the literature, some imposing a precise order in the updating
of the components, others allowing subsets of components to
be updated simultaneously, etc. Most, if not all, generate a
subset of the executions achievable with the (generalized) asyn-
chronous semantics of BNs where any number of components
can be updated at a time: a configuration can evolve to any
other configuration that complies with the logical functions
for the components that differ between both. Formally, for
any x, y ∈ Bn,

x
f−→
a
y ⇐⇒ ∀i ∈ ∆(x, y), yi = fi(x) [2]

where ∆(x, y) is the list of components which state differs
between x and y, i.e., ∆(x, y) = {i ∈ {1, . . . , n} | xi 6= yi}.

A configuration y ∈ Bn is reachable from x ∈ Bn if either
x = y, or there exists a sequence of transitions from x to y:

ρf
a (x) = {y ∈ Bn | x f−→

a
∗ y} . [3]

Notice that if y /∈ ρf
a (x), then it is impossible to evolve from x

to y according to any of the semantics defined above, including
the synchronous and (fully) asynchronous ones.

Fig. 2(c) shows all possible asynchronous evolutions of the
example BN from the configuration where all the components
are inactive, i.e. ρf

a (000) = {000, 110, 010, 011, 100}.
Reachability is a fundamental property to assess the com-

patibility of BN models with time series data: if none of the
configurations matching an observation at a given time is
reachable from any configuration matching an experimental
observation at an earlier time, the BN cannot predict the
observed behaviors.

Another prominent dynamical property studied with BNs,
strongly linked to reachability, are attractors. Attractors
represent the long-term behaviors of the model and are often
used to represent cell phenotypes. Formally, an attractor is
a smallest non-empty set of configurations from which it is
impossible to escape: A ⊆ Bn is an attractor if and only each
of its configuration z ∈ A verifies ρf

a (z) = A. An attractor is
said to be a fixed point whenever it is a single configuration
z ∈ Bn (whenever f(z) = z with the asynchronous semantics),
and complex if it is an ensemble of configurations, such as
cyclic attractors, modeling potential sustained oscillations.

Refinements of Boolean Networks

Boolean Networks impose a drastic coarse-graining on compo-
nent activity. Several modeling frameworks introduced a finer
granularity in logical models (17). Examples include Multival-
ued Networks (MN) (18), where components can take more
than two logical values (0, 1, 2, . . . , m), fuzzy logic (19), which
extends logical models with continuous domains, stochastic
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Fig. 2. Example of qualitative models for the interactions between three components. (a) Influence graph denoting the activation and inhibition relationships. (b) Example of a
compatible BN, which defines the activation conditions of each component. (c) Exhaustive list of transitions obtained from the initial configuration where all three components
are inactive. (d) Example of a multivalued network refining the BN (b) with components able to exist under three states (0, 1, 2). (e) Example of asynchronous execution of the
multivalued network from the configuration 000. Half and fully blue squares represent the states 1 and 2.

extensions of fully asynchronous Boolean Networks (20), and
Ordinary Differential Equations (ODEs) (21, 22), where values
of components are non-negative reals and vary along contin-
uous time. Their specifications require, however, much more
information about the biological system, such as thresholds
of interactions for MNs and precise kinetics for ODEs. These
parameters are often unknown, and their automatic inference
would require a significant amount of data collected in similar
experimental settings.

One could use any of these frameworks to model the same
biological system at different abstraction levels. Which raises
the question of the relationship between models from different
frameworks: is an MN model F a refinement of a BN model f?
In other words, does F specify a system with more quantitative
information than f , but follows the same (Boolean) logic for
the interactions.

We consider here a simple mathematical criterion for refine-
ments: the value of a component can decrease (resp. increase)
only if the component can be set to 0 (resp. 1) in the BN with
a possible binarization of the state. A formal definition will
be given in the next section.

Incompleteness of (a)synchronous Boolean networks. We
can define a multivalued network F of dimension n by a
discrete function, which maps, for each component, states to
the tendency of value change (decrease, steady, increase). To
ease notations, and without loss of generality, we assume that
all the components can take an integer value between 0 and
the same fixed m:

F : Mn → {−1, 0, 1}n [4]

where M = {0, 1, . . . ,m}. The successors of a configuration
x ∈ Mn are then computed by adding the value of F (x) to (a
subset of) components, provided they stay non-negative and
do not exceed their maximum value m.

In Fig. 2 we present a simple example of BN for which asyn-
chronous executions miss possible behaviors of the network

when considering a multivalued refinement of it. The MN in
Fig. 2(d) is a refinement of the BN in Fig. 2(b). In addition
to the higher granularity for the activity levels of all three
components, it brings additional information on the activation
of component 3. An intermediate value of 2 is sufficient to
activate 3 provided that the value of its inhibitor 1 is not high.
One of its asynchronous execution shown in Fig. 2(e) predicts
that the three components can get activated simultaneously,
which was never predicted by any of the asynchronous execu-
tions of the BN. Assuming the validation of the model were
subject to the reachability of a configuration with all the three
components active from a configuration with all the compo-
nents inactive, this BN model would be deemed insufficient for
achieving the observed behavior, with an erroneous conclusion
that its underlying influence graph is wrong.

A new execution paradigm for Boolean networks

The critical reason usual BN interpretations miss behaviors is
that the binary coarse-graining coupled with the instantaneous
state changes preempt interactions occurring during the course
of (de)activations. In the counterexample of Fig. 2, Boolean
interpretations exclude the activation of component 3 during
the activation of components 1 and 2, whereas, in a possible
refinement, 3 can indeed increase before 2 reaches its fully
active state and before 1 is sufficiently expressed to inhibit it.

The Most Permissive semantics. We devised a new dynamical
interpretation of BNs, called Most Permissive semantics, in
which we consider that a component can exist in 4 states:
inactive (0), increasing (↗), decreasing (↘), or active (1).
While a component is in an dynamic state (increasing or
decreasing), it can be read non-deterministically as either
0 or 1. These ambiguous states account for the absence of
information on actual influence thresholds: a component in
a dynamic state can be above the influence threshold for
one component while being below the influence threshold for
another one.
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Fig. 3. Conditions for the changes of component states i ∈ {1, . . . , n} in Most
Permissive Boolean Networks from a most-permissive configuration x ∈ Pn with
P = {0,↗,↘, 1}. The increasing state ↗ is represented by a top-left white and
bottom-right blue square, the decreasing state ↘ by a bottom-left blue and top-right
white square. The function γ gives the admissible Boolean interpretations of x ∈ Pn:
γ(x) = {z ∈ Bn | ∀i ∈ {1, . . . , n}, xi ∈ B ⇒ zi = xi}, i.e., all the
components in Boolean states are fixed, and the others are free.
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Fig. 4. One of the possible executions using the Most Permissive semantics on
the Boolean network in Fig. 2(b) starting from the configuration where all genes are
inactive. Note that it correctly recovers the (transient) reachability of the configuration
where the three components are active.

Fig. 3 illustrates the changes of component states possible
with the Most Permissive semantics. A component i can
change to the increasing (resp. decreasing) state whenever
it can interpret the value of its regulators in a way which
makes its logical function fi true (resp. false) – if one of its
regulators is in a dynamic state, both Boolean interpretations
can be considered. Once in increasing (resp. decreasing) state,
it can reach 1 (resp. 0) at any time. Each component evolves
independently of all others. The complete formal definition is
given in SI.2.

Fig. 4 shows an example of execution using the Most Per-
missive semantics on the BN of Fig. 2. Contrary to the
(a)synchronous interpretations, the Most Permissive semantics
correctly captures the possible (transient) reachability of the
configuration where the three genes are active. While compo-
nent 1 is “increasing” and component 2 is active, gene 3 can
indeed change to “increasing”, thus leading to the activation
of all three components. This configuration is not in an at-
tractor, and both single-point attractors identified in Fig. 2(c)
are reachable via different Most Permissive executions. We
provide the application of MPBNs to the BN presented in
Fig. 1 in in Fig. S1.

Formal guarantees for model refinements. Using the simple
examples in Fig. 1 and Fig. 2, we have shown that BN refine-
ments can introduce behaviors that cannot be captured with
classical semantics.

Most Permissive Boolean Networks bring the formal guar-
antee of being able to reproduce all the behaviors achievable
in any refinements, being a multivalued network or an ODE
system (Theorem 1 and Corollary 1 in SI.2). In other words, if

the Most Permissive semantics concludes that it is impossible
to observe a given state change for some components, then
no qualitative or quantitative model verifying the refinement
criteria can predict these state changes.

The refinement criterion relies on a binarization of the mul-
tivalued configuration. An appropriate binarization necessarily
quantifies 0 as Boolean 0 and m as 1, and is free for the other
intermediate values. Let us denote by β(x) the set of possible
binarization of configuration x ∈ Mn:

β(x) = {x′ ∈ Bn | ∀i ∈ {1, . . . , n}, xi = 0⇒ x′i = 0
and xi = m⇒ x′i = 1} .

[5]

For example with m = 2, β(012) = {001, 011}.
Then, we say a MN F is a refinement of a BN f of the same

dimension n if and only if for every configuration x ∈ Mn, and
for every component i ∈ {1, . . . , n}, Fi(x) < 0 there exists
x′ ∈ β(x) such that fi(x′) = 0, and Fi(x) > 0 implies there
exists x′ ∈ β(x) such that fi(x′) = 1.

This characterization of BN refinement to MN can be di-
rectly extended to ODEs. Indeed, ODEs specify the (real)
derivative of the (positive real) value of each component:

F : Rn
≥0 → Rn . [6]

Only the binarization β should be adapted in Eq. (5) to
reflect that there is no (a priori) upper bounded value m for
components.

The completeness property states the following. Consider a
multivalued refinement F of a BN f with which there exists an
asynchronous trajectory from a multivalued configuration x to
y. Let us write x̂ any most-permissive configuration compatible
with x: if xi = 0, then x̂i = 0, if xi is the maximum value of i,
then x̂i = 1, and in the other cases x̂i can be either ↗ or ↘.
Then, there exists a most-permissive trajectory leading to any
of these x̂ to a most-permissive configuration ŷ compatible
with y and which is consistent with the the changes between
x and y: ŷi = ↗ if yi > xi and yi < m, ŷi = ↘ if yi < xi and
yi > 0, and ŷi = x̂i if yi = xi. As the proof relies solely on
the sign of the derivative of the refinement of f , the property
extends to ODE refinements, which can be seen as multivalued
networks with m to infinity.

Allowing any state change without restriction would also
provide the above guarantee. It appears that if there is a
most-permissive trajectory between two binary configurations,
then there is a multilevel refinement of the BN showing an
asynchronous trajectory between matching multilevel config-
urations (Theorem 2 in SI.2). Therefore, the completeness
property can be achieved only by predicting at least the behav-
iors of MPBNs. In other words, the Most Permissive semantics
is the tightest Boolean abstraction of multivalued refinements
regarding reachability properties.

Simpler computational complexity. Most computational ana-
lyzes of BNs focus on two elementary dynamical properties:
the reachability, which is the existence of a trajectory between
two given configurations, and the existence of attractors. Here,
we study these properties in term of algorithmic complexity
classes. These theoretical results have very concrete implica-
tions for the analysis of MPBNs, making the approach scalable
to genome-scale networks.

We first recall the bases of computational complexity
classes (23): the P class contains algorithms running in time
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polynomial with the size of its inputs; the NP class contains
algorithms running in polynomial time with non-deterministic
choices; the PSPACE class contains algorithms running in
polynomial space. We know that P ⊆ NP ⊆ PSPACE, where
“⊆” can be understood as “simpler”. A problem is complete
for a given complexity class if it belongs to and is among the
hardest problems of this class. The famous “SAT” problem
of determining if a formula expressed in propositional logic
(essentially Boolean variables and logic connectors) has a sat-
isfying solution is NP-complete. We do not know if NP =
PSPACE, but in practice, NP-complete problems are much
more tractable than PSPACE-complete ones by several orders
of magnitude. Hereafter, we also refer to the coNP class, which
consists of problems for which finding a counter-example be-
longs to NP, and to the PNP and coNPcoNP classes, ordered
as follows: coNP ⊆ PNP ⊆ coNPcoNP ⊆ PSPACE.

With asynchronous BNs, it is challenging to determine if
a trajectory exists between two configurations since, in the
worst case, it requires exploring all the possible configurations.
With MPBNs, this problem is much simpler thanks to an
intriguing property: if there exists a trajectory between two
configurations, then there is such a trajectory visiting at most
3n configurations. Intuitively, this shortcut corresponds to
a particular sequence of state changes: in a first phase, only
transitions changing a state from 0 or 1 to ↗ or ↘ take place;
In a second phase, only transitions changing states within ↗
and ↘; in a final phase, only transitions changing states from
↗ or ↘ to 1 or 0. Each phase comprises at most n transitions,
one for each component.

Moreover, finding this shortcut requires exploring at most
a quadratic number of transitions in the general case, and
only 3n whenever the target configuration is in an attractor.
The exploration consists of performing as many transitions as
possible of the first phase, putting the largest possible number
of components in a dynamic state. For each component whose
state does not change between the starting and target config-
uration, it is then necessary to switch the dynamic state back
(second phase). If this is not possible, then the exploration
is repeated from the beginning while preventing this specific
component from changing to a dynamic state (as it would still
be impossible to go back to the initial binary state, and the
target configuration would not be part of an attractor). Over-
all, the exploration is thus repeated at most n times. Finally,
all the transitions of the third phase are applied, which should
lead to the target configuration if and only if it is reachable.

On the other hand, determining the possibility of a most-
permissive transition is NP-complete in the general case: in-
deed, the condition “∃z ∈ γ(x) : fi(z) = 1” in Fig. 3 is the
SAT problem. For biological networks, it is usual to assume
that components cannot have both positive (activator) and
negative (inhibitor) direct influences. The resulting BNs are
called locally monotonic: each local function fi is monotonic
for every component it depends on: increasing the number
of activators (resp. inhibitors) of i in state 1 can only in-
crease (resp. decrease) the value of fi. Thus, determining the
existence of a Boolean interpretation z of a most-permissive
configuration x so that fi(z) = 1 comes down to considering
activators in dynamic state as 1 and inhibitors in dynamic
state as 0, and conversely for fi(z) = 0. Therefore, determin-
ing the possibility of a most-permissive transition can be done
in linear time with locally-monotonic BNs.

The reachability problem in MPBNs can thus be solved
in polynomial time whenever f is locally monotonic (Theo-
rem 3 in SI.2), a considerable drop in complexity compared
to synchronous or asynchronous BNs where the problem is
PSPACE-complete. With non-locally monotonic BNs, the
reachability problem is in PNP.

While the attractors of asynchronous BNs can be complex
objects, the attractors of MPBNs are particular mathematical
objects called minimal trap spaces. A trap space is a hypercube
which is closed by f : for any vertex x, f(x) is also a vertex. A
trap space is minimal whenever it does not include a different
trap space. Attractors in MPBNs have this regular structure
because whenever two configurations lying on any diagonal of
an hypercube are reachable from each other, they can reach
the adjacent configurations as well.

Determining if a configuration x ∈ Bn belongs to an attrac-
tor of f is a key problem to identify attractors of a BNs. It
is again a PSPACE-complete problem for synchronous and
asynchronous BNs. In the case of MPBNs, it boils down to
verifying if the trap space containing x is minimal, which is at
most of complexity coNP for locally monotonic BNs, and at
most coNPcoNP for non-locally monotonic BNs (Theorem 4 in
SI.2). The computation of minimal trap spaces of a BN can
be performed efficiently with SAT solvers and related logic
programming frameworks (24). On a regular 3.3GHz proces-
sor, our implementation of MPBNs can compute reachable
attractors of randomly generated scale-free networks (25) with
1,000 components in a fraction of a second, less than 2 seconds
with 10,000 components, and less than 50 seconds with 100,000
components (SI.3.C, Fig. S4).

Validation of MPBNs on actual biological models. An essential
feature of logical models is their ability to conclude on the
absence of certain behaviors. For instance, differentiation
processes are modeled using separate attractors representing
the final phenotypes and trajectories where configurations are
committed to reaching a particular attractor with no possibility
to rejoin other differentiation branches. A model allowing any
configuration to reach any attractor would indeed be useless
without quantitative aspects. We will show that, although
enabling more behaviors than (a)synchronous BNs, MPBNs
are still constraining and able to capture differentiation and
cell fate decisions.

As we have said above, attractors of MPBNs correspond
to the minimal trap spaces of the Boolean function. Prior
work has shown that these trap spaces match well with the
complex attractors of fully asynchronous BNs in many real-
world models of biological networks (24). To further assess
how MPBNs perform in practice, we reproduced studies on
logical models of differentiation using MPBNs instead of fully
asynchronous BNs (SI.3).

In the case of a tumor invasion model (8), MPBNs cor-
rectly predicted the loss of reachability of apoptotic attrac-
tors upon the mutations of p53 and NICD presented in the
study (Fig. S2). In the case of T-cell differentiation (9),
MPBNs recovered the same reprogramming graph between
T-cell types (Fig. S3). After booleanization (26), MPBNs
efficiently handled the original large multivalued model of
100 species, whereas the original study had to perform ap-
proximations through model reduction. Therefore, the Most
Permissive interpretation of BNs is still stringent enough to
capture processes that control reachable attractors.
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In conclusion, MPBNs are formally guaranteed never to
ignore behaviors hidden by artifacts of usual Boolean model-
ing while still being specific enough to predict differentiation
processes, and doing so at a much lower computational cost.

Discussion

The choice of the dynamical interpretation of BNs has drastic
effects on their predictions. Whereas the (fully) asynchronous
BN interpretation is often advised for practical applications, it
overlooks behaviors emerging from different timescales for the
interactions, leading to biases when selecting plausible models.
Such misses are due to artifacts of configurations updates.
On the contrary, MPBNs offer a framework for reasoning on
the qualitative dynamics without making any strong a priori
hypothesis about the timescale and thresholds of interactions,
and without additional parameter.

The state-space explosion triggered by the usual interpre-
tations of BNs is another significant bottleneck for their ap-
plication in systems biology (3, 27). MPBNs offer drastic
gains in computational complexity when analyzing possible
trajectories and attractors, both elementary and essential
properties, underpining the potential of a model. In practice,
the verification of these properties with asynchronous BNs is
typically limited to networks with 50 to 100 nodes. On the
contrary, deciding the reachability and attractor properties in
MPBNs relies on scalable algorithms and does not suffer from
the state-space explosion. For the case of locally-monotonic
BNs, which is a classical hypothesis for biological networks,
the complexity allows addressing very large scale networks,
as illustrated in SI.3, with experiments on BNs with up to
100,000 components. Our software tool mpbn is available at
https://github.com/pauleve/mpbn and integrated in the CoLo-
MoTo notebook environment (28).

The prediction of attractors reachable from specific initial
conditions, and possibly under various mutant conditions, is at
the core of many studies using logical models. While MPBNs
can identify the complete set of reachable attractors several
orders of magnitude faster than asynchronous BNs, the quan-
tification of the propensities of each attractor, e.g., performed
by sampling the trajectories (20, 29), is yet to be explored. In
addition to the validation of and the control of predictions from
genome-scale models, the complexity breakthrough brought
by MPBNs together with their ability to overcome artifacts
of Boolean modeling paves the way towards the inference and
learning of large-scale logical models from experimental data.
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