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Abstract: 

Hippocampal cells are central to spatial and predictive representations, and experience replays by 

place cells are crucial for learning and memory. Nonetheless, how hippocampal replay patterns 

dynamically change during the learning process remains to be largely elucidated. We found that 

when rats updated their behavioral strategies in response to a novel salient location, place cells 15 

increased theta sequences and sharp wave ripple-associated synchronous spikes that 

preferentially replayed salient locations and reward-related contexts in reverse order. The 

directionality and contents of the replays progressively varied with learning, including an 

optimized path that had never been exploited by the animals. Realtime suppression of sharp 

wave ripples during learning inhibited the rapid stabilization of optimized behavior. Our results 20 

suggest that hippocampal replays prioritize salient experiences and support the reinforcement of 

new behavioral policies. 

One-Sentence Summary: Neuronal network mechanisms to internally rehearse learned 

information for updating behavioral strategy are revealed 

  25 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.002964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.002964


 

2 

 

Main text: 
To adapt to continuous changes in the external environment, animals need to encode 

new salient episodes and update their behavioral policy. To achieve flexible spatial navigation in 

particular, hippocampal place cells are thought to provide fundamental neural spatial coding and 

constitute a cognitive map (1). This view has been proposed to extend to a predictive map theory 5 

in which place cells potentially encode expectations about animal’s future states (2). In addition 

to map representations, place cells that encode animals’ past or future trajectories are 

sequentially activated during sharp wave ripples (SWRs) within a short time window (~100 ms) 

in a phenomenon known as place cell replays (3-5), which are potentially appropriate to induce 

plasticity in the hippocampal circuit. A growing amount of evidence demonstrates that the 10 

frequency of SWR-associated place cell replays (or reactivation) is increased during learning of 

new, unexpected experiences (online replays) (6) and during rest/sleep states after learning of 

new experiences (offline replays) (7). Moreover, selective disruption of waking SWRs during 

spatial learning has been demonstrated to reduce subsequent task performance (8) and impair the 

stabilization and refinement of place cell maps (9). Taken together, these results suggest an 15 

essential role of SWR-associated replays in novel spatial learning. 

Moreover, experience replays by place cells are suggested to be a key neuronal basis for 

a reinforcement learning framework (10, 11). When agents encounter a prediction error, such as 

a change in reward, experience replays may be an efficient mechanism for the evaluation of their 

experienced action-outcome associations by providing a solution to the temporal credit 20 

assignment problem, leading to updates of their behavioral policy to maximize future reward (12, 

13). In line with this idea, empirical observations have demonstrated that the receipt of reward or 

novel experiences leads to increased rates of SWRs and coordinated reactivation of place cells 

(6, 14), and increased reward leads to increased reverse replays (4, 15). 

Despite accumulating evidence and theory, the field still lacks key insights into how the 25 

contents of place cell replays progressively change to (re-)assign the values of salient locations 

as animals develop new navigation strategies in response to environmental changes. Theoretical 

works demonstrate that incorporating replay algorithms with prioritized memory access for 

learned salient locations (16), rather than random access from all stored memory, into a deep 

neural network—a strategy termed prioritized experience replays (17)—improves integrative 30 

learning in artificial agents. Whether living neuronal networks adopt the same computations to 

enhance learning capability remains an open question. 

 

To address this issue, we designed a new spatial task in which rats ran from a starting 

area to checkpoint C1 (path S-C1), where they received a small (20 l chocolate milk) reward, 35 

and then ran from C1 to a goal area (path C1-G), where they received a large (200 l chocolate 

milk) reward (Fig. 1A and Fig. S1A-D). On a recording day, after the animals were well trained 

on this task, the rats first performed the same task, termed the prelearning phase. After 11–14 

trials, the reward was replaced to a new checkpoint (C2) (Fig. 1A, right), requiring the rats to 

learn new trajectories through trial and error. After the replacement, the rats first persisted in 40 

traversing path S-C1-G; however, the reward was no longer presented. The rats then visited C2 

via path G-C2. The rats gradually spent less time on path S-C1-G and instead settled on the most 

efficient trajectory, path S-C2-G (Fig. 1B-E and fig. S2). For each rat, a learning point was 

determined based on a moving-average learning curve, and the periods before and after the 

learning point were termed the learning phase and the postlearning phase, respectively. The rats 45 

required 26 ± 9 trials (approximately 30 min) to progress from reward replacement to the 
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learning point. In total, paths S-C1, C1-G, G-C2, S-C2, and C2-G accounted for 93.9% of all 

animal trajectories (Fig. 1F and 1G). Compared with previous works, the concepts of this task 

were that (1) the consistency of task demands, irrespective of the locations of check points, 

enabled us to extract spatial and context-dependent neuronal codes (18, 19), and (2) an obvious 

learning point and the animals' learning-dependent trajectories enabled us to analyze detailed 5 

hippocampal replay patterns associated with the rats' internal evaluations of behavioral strategies. 

While the rats performed the task, the spike patterns of 355 neurons in the dorsal 

hippocampal CA1 region were recorded with independently movable tetrodes from the five rats 

(Fig. 1H and fig. S3). Some place cells had multiple place fields distributed throughout the 

environment (Fig. 1I-L and fig. S3E and 4F). Learning-induced changes in the place field 10 

locations were visualized by joint plots (Fig. 1K and 1 L and fig. S4A-C). The majority of place 

fields were stable irrespective of learning (green regions in Fig. 1K and 1 L); however, a subset 

of new fields emerged or disappeared in subsequent phases (fig. S4B). Notably, high density 

plots were detected for path S-C1 versus S-C2, path G-C2 versus S-C2, path S-C1 versus G-C2 

(approaching check points), and path C1-G versus C2-G (approaching the goal area) (yellow 15 

regions). The same tendencies were confirmed by population vector correlation matrices (Fig. 

1M and fig. S3B-D). The place fields that commonly emerged during an identical behavioral 

step, termed context-dependent fields (Fig. 1J), indicate the formation of generalized memory 

maps within the hippocampal circuit. The context-dependent codes observed here might consist  

partially of common mechanisms described by previous studies as goal-directed (20) or reward-20 

predictive encoding (21). The proportions of place cells with stable and context-dependent place 

fields were 47.3% (112/237) and 48.9% (116/237), respectively (Fig. 1N and fig. S4E). Even 

when all these cell types were included, Bayesian decoding could still accurately reconstruct the 

rat’s actual positions from the position tuning curves of the cells (Fig. 1O and 1P; p < 0.05, 

Mann-Whitney U test versus shuffled data, U = 7317960132.5). Within a theta cycle, spatial 25 

firing of the place cells was organized in sequences (Fig. 1Q), the so-called theta sequences (22), 

which are considered a neuronal substrate that encodes immediate future and past locations and 

induces synaptic plasticity for memory acquisition during novel experiences (23). The quadrant 

scores, which represent the strength of the theta sequences, in path S-C1-G and the return path 

during the learning phase were significantly higher than those during the prelearning phase (Fig. 30 

1R and fig. S5; p < 0.05, Tukey’s test). In the postlearning phase, the quadrant scores in path S-

C2 remained significantly higher than those in the learning phase (p < 0.05, Tukey’s test). The 

stronger theta sequences possibly reflect increased cholinergic signals, which may lead to 

effective synaptic plasticity by coordinating with subsequent reward-related dopaminergic 

signals (24). 35 

We next analyzed how new spatial learning is related to SWR-associated synchronous 

spikes of neuronal populations within a short (~100 ms) time window during stop periods, 

termed synchronous events (Fig. 2A and fig. S6). In the prelearning phase, synchronous events 

were temporally sparse, with frequencies below 0.4 Hz (Fig. 2B and fig. S7A-I). The frequencies 

of synchronous events and SWRs in the learning and postlearning phases became noticeably 40 

higher in the open field and goal area compared with the prelearning phase (Fig. 2B-D and fig. 

S7I; the distributions computed by the hierarchical Bayesian modeling with Markov chain Monte 

Carlo (MCMC) methods exhibited overlaps of less than 5%). On the next day (day 2) after 

learning, such SWR increases were no longer observed, and the frequencies were comparable to 

those in the prelearning phase (fig. S8), suggesting the necessity of novel learning to enrich 45 

synchronous events. 
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To examine the changes in neuronal ensemble patterns involved in synchronous events, 

correlation coefficients of vectorized population spikes were computed between synchronous 

events (fig. S9A). Event-to-event and trial-to-trial correlations changed substantially from 

learning and particularly increased around the learning points (fig. S9B-F), demonstrating that 

learning recruited new cell ensembles in synchronous events and that the stochasticity of such 5 

recruitment was reduced approximately when learning was established. To analyze the detailed 

episodes represented by synchronous events, Bayesian decoding was applied to estimate the 

animal trajectories (Fig. 2E and Supplementary Movie 1), and the representation rates (reprates) 

for the individual paths were computed as their posterior probabilities (Fig. 2F, fig. S10 and 

Supplementary Movie 2). For each synchronous event, a represented path was defined as the 10 

path with the highest reprate. In the prelearning phase, the majority of the represented paths 

were paths S-C1, C1-G, and the return path, corresponding with the actual animal trajectories. 

During the learning phase, paths G-C2 and C2-G became the majority of represented paths (Fig. 

2G and fig. S10C), corresponding to the animal’s trial-and-error behavior along path G-C2-G 

(Fig. 1E-G). Notably, during the last 1/3 of the learning phase—before the rats finally settled on 15 

path S-C2-G—the largest fraction of synchronous events changed to represent path S-C2 (Fig. 2G 

and 2H; overlaps of the distributions computed by the hierarchical Bayesian modeling with 

MCMC methods were less than 5%), and such dynamic changes in representation patterns were 

more apparent in the open field than in the start and goal areas (Fig. 2I). These results 

demonstrate that future efficient behavioral episodes were already represented by synchronous 20 

events even before the animals changed their behavioral strategy. Another notable observation 

was that synchronous events more preferentially represented paths G-C2 and S-C2, where a 

reward (20 l) newly emerged at the destination (C2), than path C2-G, where the a reward (200 

l) was continuously presented at the well-known destination (Goal area), which indicates that 

novel reward-related action policy, rather than the amount of reward, determines the priorities of 25 

episodes to be represented by hippocampal synchronous events (14, 15). Taken together, these 

results suggest that hippocampal synchronous events prioritize representations of salient episodes 

in reference to internal prediction errors and that such representation patterns undergo dynamic 

changes as learning proceeds. 

To examine whether the learning-associated synchronous events corresponded with the 30 

replay events, the directionality and sequence strength of the spike trains for each synchronous 

event were assessed by computing a weighted correlation (r) and sequence score (rZ), 

respectively: synchronous events where |𝑟| ≥ 0.5 were considered sequential events (Fig. 3A 

and fig. S12A-C). The participation rates of place cells with stable and context-dependent place 

fields in synchronous events were significantly higher than those of the other cells (Fig. 3B and 35 

fig. S11A-C; p < 0.05, Tukey’s test). In addition, these cell types contributed significantly to 

sequential events, as revealed by their significantly higher per-cell contributions (PCCs) (Fig. 3C 

and fig. S11D; t104 = 11.4, t107 = 9.8, t68 = 8.8, t145 = 9.1, p < 0.05, one-sample t-test versus 0). 

These results suggest that such stable and context-dependent representations may cooperatively 

contribute to creating learning-dependent synchronous events by utilizing a learned model for 40 

solving the task. In total, 345/2,586 (13.3%) and 390/2,586 (15.1%) synchronous events were 

classified as forward and reverse replay events, respectively (fig. S12A). Sequential events in the 

open field were biased toward forward rather than reverse directions in the prelearning phase, 

suggesting that forward representations primarily emerge in well-learned situations (Fig. 3D and 

fig. S12E; the overlaps between 0.5 and the distribution computed by the hierarchical Bayesian 45 

modeling with MCMC methods were less than 5%). Interestingly, this tendency was reversed 
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after new learning was initiated; the reverse replays occupied significantly increased fractions in 

the latter learning phase, while the directionality of the replay events at the start and goal areas 

remained almost unchanged by learning. Overall, the sequential and trajectory events showed 

learning-dependent changes in the proportions of represented paths similar to those in Fig. 2G 

(Fig. 3E and 3F and fig. S12D and 13D), confirming that experience replays for the paths 5 

utilized in the new situation specifically developed with animal experience (Fig. 3G). Such 

learning-dependent changes in hippocampal replay patterns may be crucial for neuronal circuits 

to precisely reinforce new experiences that should be prioritized for learning. 

In order to test the causal role of SWR-associated synchronous events in learning 

performance, realtime disruption of SWRs was implemented by additionally implanting 10 

stimulation into the ventral hippocampal commissure (vHC); then, closed-loop feedback 

electrical stimulation with a single pulse (140–180 μA, 100 s) was delivered upon the detection 

of hippocampal SWRs (Fig. 4A and 4B). As reported in earlier studies (8, 9), this manipulation 

can transiently eliminate SWR-associated neuronal events (Fig. 4C). Online disruption of 

ongoing SWRs after the replacement resulted in unstable animal trajectories across trials (fig. 15 

S14B and 14C), as demonstrated by a larger trajectory-to-trajectory distance (Fig. 4D and 4E) 

and significant increases in the probability of behavioral changes across two successive trials 

after the animals first took the most efficient path (i.e., start-S-C2) (Fig. 4F; p < 0.05, Tukey’s 

test). In contrast, stimulation delivered with a 250-ms delay relative to SWRs (delayed control) 

and feedback stimulation in a nonlearning control group did not evoke such behavioral changes 20 

(Fig. 4E and 4F; p > 0.05, Tukey’s test). The SWR disruption-induced behavior deficit implies 

that learning-dependent SWRs and replay events are necessary to support efficient learning and 

reinforce specific learned behavior. 

 

Our finding of context-dependent encoding by certain hippocampal cell ensembles is 25 

consistent with the theory of a predictive map (2) and suggests that hippocampal neurons may 

even represent generalized behavioral procedures (e.g., moving toward a checkpoint) and process 

abstract factorized codes (19). The potential ideas could extend a predictive map that has been 

primarily considered a tool for spatial information processing (2, 16) to a predictive model that 

can process more abstract and contextual information, which could further enrich predictive 30 

computations of task state values and support model-based behavior based on past episodes (25). 

Moreover, we demonstrated that, as the animals learned and developed new trajectory patterns in 

response to reward replacement, hippocampal cell ensembles prominently increased theta 

sequences and SWR-associated replay events, both of which have been considered 

neurophysiological mechanisms to induce circuit plasticity (3, 9, 23, 24). These observations 35 

suggest that the hippocampal predictive map can be flexibly reorganized to properly represent 

varying task states when animals learn new behavioral policies in reference to their past episodes 

(2, 16, 26, 27). Moreover, we demonstrated that increased hippocampal replay events after 

reward replacement preferentially represented the most salient (C2-related) experiences and 

strategy that needed to be learned and exploited by the animals. Such prioritized replays of 40 

salient experiences may be effective to amplify and consolidate neuronal ensembles that encoded 

newly learned experiences onto the hippocampal circuit. Concordantly, recent studies of artificial 

intelligence have demonstrated that incorporating “prioritized experience replays” and episodic 

meta-learning into deep neural networks could improve the efficiency of reinforcement learning 

in artificial agents (11, 14, 17, 26, 28). Taken together, the evidence suggests that forming an 45 

effective predictive map and rehearsing salient external interactions by prioritized replays in the 
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internal neuronal network are common beneficial mechanisms for both living brains and artificial 

agents to learn and reinforce specific behavioral strategies. 
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Fig. 1 Behavioral performance and hippocampal place cell activity in the spatial learning 

task. (A) Overview of the task. The rat first took a trajectory from the start to the goal area via C1, 

where a reward was placed (path S-C1-G; prelearning phase). The areas were separated by 

automatic doors. The reward point was then changed to C2, and the rat learned to take a new 5 

trajectory via C2 (learning phase). (B) Representative trajectories observed from a single rat (all 

trajectories are shown in fig. S2A). The black and red vertical lines indicate reward replacement 

and a learning point defined based on a learning curve, respectively. Trial numbers are indicated 

below the images. (C) Changes in running distance, duration, and string length for the rat. (D) Five 

paths analyzed. (E) Changes in string length for the rat. The black and red horizontal lines indicate 10 
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the replacement and learning points, respectively. (F) Proportions of paths taken by all five rats. 

(G) Changes in the number of paths per trial. The colors correspond to the paths in D. The thin 

shaded regions indicate the SEM. (H) (top to bottom) Original local field potential (LFP), ripple 

band (150–250 Hz)-filtered LFP, raster plots showing the spike patterns of 114 neurons, 

arrowheads indicating synchronous events in the raster plot, and animal running speed in a trial 5 

during the postlearning phase. Place cells were ordered by their place-field locations. (I) Spatial 

firing of a place cell with both stable and context-dependent properties. Spike positions are 

represented as red dots superimposed on the trajectories (gray). This cell showed stable spatial 

representations on path S-C1 and specifically fired when the rat approached C1 or C2. (J) Definition 

of context-dependent firing. The trajectories shown on the left and right are common as the rats 10 

move toward the check point (C1 or C2) and the goal, G, respectively. (K) Spatial firing rate 

distributions and the locations of place fields (shown as red *) of the place cell in I in the 

prelearning and learning phases are presented in the bottom and left panels, respectively. Joint 

place-field locations are plotted by black asterisks, representing the locations of all place-field 

pairs in different phases (green, stable; yellow, context-dependent). (L) All joint plots from all 15 

place cells. (M) Spatial correlation matrix of the population vector pairs at all location bins. (N) 

Summary of firing properties from all recorded cells (on, yellow; off, violet). (O) Bayesian 

decoding of rat trajectories from place cell spikes. Posterior probabilities of position estimates 

represented by a hot scale; position estimates overlaid with actual animal positions (cyan lines). 

(P) Errors of animal location estimates computed from datasets within each phase (cyan) or those 20 

averaged over all phases (magenta) by leave-one-out cross-validation: *p < 0.05, Mann-Whitney 

U test followed by Bonferroni correction. (Q) Average posterior probabilities of rat positions while 

running on a path as described above: the x-axis shows the phases of two theta cycles (white lines), 

and the y-axis shows the positions relative to the current animal's location. (R) Comparison of 

quadrant scores of theta sequences across paths and phases: *p < 0.05, Tukey test.  25 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.002964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.002964


 

10 

 

Fig. 2 Prioritized representation of new episodes by learning-dependent synchronous events. 

(A) An SWR-associated synchronous event. (B) Pseudocolor maps of the frequencies of 

synchronous events. The synchronous event locations are indicated by superimposed white dots. 

(C) Distributions of the percentage of changes in synchronous events during the learning and 

postlearning phases compared to the prelearning phase. A pound sign (#) indicates that 0 is not in 5 

the 95% credible interval computed from the posterior probability distribution by MCMC. (D) 

Same as C, but separately plotted for the individual areas. (E) Bayesian decoding of animal 

trajectories from single synchronous events. Paths with the highest z-scored representation rates 

(repZ) are indicated above. (F) Color-coded matrices of representation rates for each path by rat. 

The black and red vertical lines indicate the reward replacement and learning points, respectively. 10 

(G) Learning-related changes in the proportions of represented paths by synchronous events. The 

learning phase was evenly divided into three phases (1st, 2nd, and 3rd learning phases). The thick 

and thin shaded areas indicate the 50% and 95% credible intervals, respectively. (H) The data in 

G were specifically analyzed for the last 1/3 of the learning and postlearning phases. A dollar sign 

($) indicates an overlap of less than 5% with any other distribution. (I) Same as G, but for 15 

separately plotted individual areas.  
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Fig. 3 Representations by learning-dependent replay events. (A) Magnified views of the 

synchronous events shown in Fig. 2E and corresponding raster plots of the place cell spikes. The 

spikes are labeled based on cell type. (B) Participation rates of individual cells in synchronous 

events (n = 112, 116, 74, 154, and 47 cells). The gray dots represent each cell, and the colored lines 

represent the average: *p < 0.05, Tukey’s test. (C) Per-cell contribution of individual cells to replay 5 

events: $p < 0.05, one-sample t-test versus 0. (D) The directionalities of replay events in individual 

areas. The thick and thin shaded areas indicate the 50% and 95% credible intervals, respectively. 

A pound sign (#) indicates that 0.5 is not in the 95% credible interval. (E, F) Learning-related 

changes in the proportions of the represented paths by replay events with sequential and trajectory 

events. (G) The proportion of synchronous events assigned as trajectory events for each path. The 10 

thick- and thin -shaded areas indicate the 50% and 95% credible intervals, respectively.   
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Fig. 4 Impairment of learning by inhibition of SWRs. (A) Electrodes were bilaterally implanted 

in the vHC, and real-time closed-loop electrical stimulation was applied to disrupt hippocampal 

SWRs. (B) Schematic of the experiments. Timed or 250-ms delayed stimulation was applied upon 

SWR detection after reward relocation (disrupted or delayed control). In the nonlearning control 

group, the reward point was not relocated, but feedback stimulation was applied. (C) Original LFP 5 

traces, ripple power, and multiunit firing rates aligned to the time of stimulation in the unstimulated, 

disrupted, and delayed control groups. The red lines denote the time of stimulation. (D) 

Representative trajectories in a rat with disrupted SWRs. Trajectory-to-trajectory distances were 

computed between all pairs of successive trials. (E) Pseudocolor maps of the trajectory-to-

trajectory distance for all individual rats after the animals first took the path start-S-C2. (F) The 10 

probability of trials with an observed distance ≥ 2 after the animals first took the path start-S-C2: 

*p < 0.05, Tukey test. 
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Materials and Methods 

Approvals 

All the experiments were performed with the approval of the experimental animal ethics 

committee at the University of Tokyo (approval number: P29-7) and conducted according to the 

NIH guidelines for the care and use of animals. 5 

 

Subjects 

A total of 17 male Long Evans rats (3–6 months old) with preoperative weights of 400–500 

g were used in this study. The animals were housed individually and maintained on a 12-h 

light/12-h dark schedule with lights off at 7:00 AM. All the animal subjects were purchased from 10 

SLC (Shizuoka, Japan). Following at least 1 week of laboratory adaptation, the rats were reduced 

to 85% of their ad libitum weight by limiting daily feeding. Water was readily available. 

 

Behavioral apparatus for a spatial learning task 

The overall size of the platform used for the spatial learning task was 1.2 m × 1.4 m, 15 

elevated 70 cm from the floor, with a wall height of 30 cm. This platform contained a square (1 

m per side) open field, a 20 cm × 40 cm start area, a 20 cm × 30 cm goal area, and an L-shaped 

outer peripheral alleyway connecting the start and goal areas (return path) with a width of 20 cm 

(Fig. 1A and Supplementary Fig. 1B). The open field was evenly divided into 5 × 5 grids, and a 

black pole with a height of 10 cm and a diameter of 2 cm was placed at each grid point. The 20 

borders between the start area and the open field, the open field and the goal area, the goal area 

and the peripheral alleyway, and the peripheral alleyway and the goal were partitioned by 

automatic doors, termed door 1, door 2, door 3, and door 4, respectively (Fig. 1A and 

Supplementary Fig. 1B). All the doors were semiautomatically controlled. The other areas were 

partitioned by walls with a height of 22.5 cm. The floor, doors, and walls were all made of ABS 25 

resin. In the start area, a nose-poke reward port (3 cm in diameter) was attached to one side of 

the wall, and a white LED (5 × 5 mm) was attached 12 cm above the port. A speaker for sound 

presentation was placed outside the platform. In the goal area, an automatic reward-feeding port 

(7 × 6 cm) was attached to one side of the wall. 

 30 

Trainings before surgery 

All the behavioral experiments occurred in the dark phase with a light intensity of 1 lux. 

Training consisted of several steps (Supplementary Fig. 1C). On the first 2 days, each rat was 

habituated to the open field by allowing it to freely forage for randomly scattered chocolate milk 

for 10 min (Supplementary Fig. 1C, termed habituation). 35 

After the habituation period, each rat was trained to perform voluntary nose poking in the 

start area for 2 days (Supplementary Fig. 1C, termed "nose-poke training"). Continuous nose 

poking for 1 s triggered 5-kHz sounds at 10 Hz for 0.3 s and a subsequent 10-kHz sound for 0.7 

s. During the sound presentation period, the rat could obtain 25 l of 30% sucrose eight times 

dispensed from the port by a syringe pump. Lighting of the white LED indicated that a reward 40 

was available at the port, and the LED was turned off when the rat could perform valid nose 

poking. After reward consumption, the rat had to leave the port for at least 2 s to initiate the next 

nose poking. When the intertrial intervals terminated after the rat left the port, the LED was 

again turned on to initiate the next trial. 

Next, each rat was trained to run in the field (Supplementary Fig. 1C, termed "running 45 

training"). Similar to the nose-poke training, a rat initiated a trial by nose poking in the start area 
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and obtained sucrose water during cue-sound presentation. Ten seconds after the onset of the 

sound presentation, the door between the start area and open field (door 1) was automatically 

opened, allowing the rat to enter the field. At the same time, 20 l of chocolate milk reward was 

placed in the first lattice after the start area (S). When the rat entered lattice S, 5-kHz cue sounds 

at 10 Hz for 0.3 s followed by continuous 10-kHz cue sounds were presented until the rat 5 

reached the goal area. When the rat reached the last lattice before the goal area (lattice G), the 

door between the field and goal area (door 2) was opened so that the rat could enter the goal area. 

In the goal area, the rat received 200 l of chocolate milk reward dispensed from the port by a 

syringe pump. Twenty seconds after the onset of entry into the goal area, the doors between the 

goal area and the peripheral alleyway (door 3) and between the peripheral alleyway and the start 10 

area (door 4) were opened, allowing the rat return to the start area through the alleyway to 

complete the trial (Supplementary Fig. 1D). During this running training, rats could follow any 

trajectory through the field from the start area to the goal area. On average, it took well-trained 

rats approximately 1 min to complete one trial. If a rat stayed in the field for more than 2 min 

without opening door 2, door 2 was opened, irrespective of the rat’s trajectory, so that the rat 15 

could enter the goal area. This training was repeated daily until the rat was able to complete more 

than 7 trials from the start to the goal area within 10 min. To achieve this performance criterion 

required between 5 and 7 days. After each rat met this criterion, it underwent surgery for 

electrode implantation. 

To detect nose poking and reward consumption, infrared photoreflectors ware attached to 20 

the start and goal areas. To monitor the rat’s moment-to-moment position, three red LEDs with a 

diameter of 5 mm were attached to the rat's back with a harness, and the positions of the LED 

signal were automatically tracked in real time at 24.5 Hz using a video camera attached to the 

ceiling. Depending on the instantaneous rat positions and sensor inputs, door openings and 

reward feedings were automatically regulated; these were digitized and timestamped by a laptop 25 

computer. Because all the apparatuses were controlled by a computer, it was not necessary for an 

experimenter to handle the rat after a task began. 

 

Training for a spatial learning task after surgery 

After recovery from surgery, the rats again underwent running training for 1–2 days 30 

(Supplementary Fig. 1C). After confirming that the rats had again reached the criterion for 

performance, as in the presurgery period, the rats were trained in the C1 condition for 2–3 days 

(Supplementary Fig. 1C). Similar to the running training, a rat initiated a trial by nose poking 

and obtained sucrose water during cue-sound presentation. Ten seconds after the onset of the 

sound presentation, the door between the start area and open field (door 1) was opened 35 

automatically, allowing the rat to enter the field. At the same time, 20 l of chocolate milk 

reward was placed in the lattice fourth from left and second from bottom, termed check point 1 

(C1). The rat was trained to run from the first lattice after the start area (S) to C1 (path S-C1), 

obtain the reward at C1 and then run from C1 to the last lattice before the goal area (G) (path C1-

G). When the rat entered C1, 5-kHz cue sounds were presented at 10 Hz for 0.3 s followed by 40 

continuous 10-kHz cue sounds until the rat reached the goal area. This sound cue helped a rat 

recognize that its current state was correct for obtaining chocolate milk in the goal area. When 

the rat reached G after passing through C1, the door between the field and the goal area (door 2) 

was opened so that the rat could enter the goal area. In the goal area, the rat obtained 200 l of 

chocolate milk reward. Twenty seconds after the onset of reward dispensation, the doors between 45 

the goal area and peripheral alleyway (door 3) and the between the peripheral alleyway and start 
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area (door 4) were opened, allowing the rat to return to the start area through the alleyway to 

complete the trial. The next trial started when the rat again poked the reward port in the start 

area. At that point, all the doors were closed to initiate the next trial. In some cases, this training 

was performed with a recording headset and cable attached so that the animals became familiar 

with the recording condition. 5 

To monitor the rat’s moment-to-moment position, three red LEDs were attached to the 

electrode assembly, and the position of the LED signal was automatically tracked in real time at 

24.5 Hz using a video camera attached to the ceiling. On all training and recording days, the rats 

were kept in a rest box (33 × 33 cm) outside the field for tens of minutes before and after 

performing the task. 10 

 

A spatial learning task on a recording day 

On a recording day, the rats first performed the same task with a reward placed on C1, 

termed the prelearning phase. After several trials, the rewarded check point was moved from C1 

to the second lattice from the left and fourth from the bottom, termed check point 2 (C2). In this 15 

phase, when the rat visited C2, 5-kHz cue were played at 10 Hz for 0.3 s followed by continuous 

10-kHz cue sounds were presented until the rat reached the goal area. The chocolate milk reward 

volume and all the other task conditions were similar to those in the prelearning phase. In this 

situation, the most efficient behavioral strategy was to run directly from S to C2 (path S-C2), take 

the reward placed on C2, and then run from C2 to G (path C2-G). After the reward replacement, 20 

the rats first exhibited trial-and-error behavior for several attempts to find an efficient trajectory, 

but they gradually learned to take the most efficient trajectory: path S-C2-G. The detailed 

definition of a learning point is provided below. 

 

Surgical procedures 25 

Five and twelve rats underwent surgery to implant recording electrodes only and a 

combination of recording and stimulating electrodes, respectively. Briefly, the rats were 

anesthetized with isoflurane gas (0.5–2.5%), and a 2-cm midline incision was made from the 

area between the eyes to the cerebellum. For 5 rats, a craniotomy with a diameter of 0.9–1.6 mm 

was created above the right dorsal hippocampus (3.8 mm posterior and 2.8 mm lateral to 30 

bregma) using a high-speed drill, and the dura was surgically removed. Two stainless-steel 

screws were implanted in the bone above the prefrontal cortex to serve as ground electrodes. 

Using a 3D printer (Form 2, Formlabs) an electrode assembly consisting of 16 independently 

movable tetrodes was created and stereotaxically implanted above the craniotomy. The tips of 

the tetrode bundles were lowered to the cortical surface, and the electrodes were inserted 1.0 mm 35 

into the brain at the end of the surgery. The electrodes were constructed from 17-μm-wide 

polyimide-coated platinum-iridium (90/10%) wire (California Fine Wire California Fine Wire 

Co., Grover Beach, CA), and the electrode tips were plated with platinum to reduce their 

electrode impedances to 150–300 kΩ at 1 kHz. For 12 rats, an electrode assembly that consisted 

of 7 independently movable tetrodes was implanted using the same procedures as described 40 

above. In addition, the craniotomies (1.3 mm posterior and 1.7 mm lateral to the bregma) with a 

diameter of ~1 mm were created using a high-speed drill, and stainless bipolar electrodes were 

implanted at a depth of 3.7 mm at an angle of 6.9° into the right side or both sides of the ventral 

hippocampal commissure (vHC). 

All the recording devices were secured to the skull using stainless-steel screws and dental 45 

cement (Provinice, Shofu Inc., Kyoto, Japan). Following surgery, each rat was housed 
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individually in transparent Plexiglass with free access to water and food for at least 5 days and 

was then food-deprived until they reached 85% of their previous body weight. 

 

Adjusting electrode depth 

Each rat was connected to the recording equipment via a Cereplex M (Blackrock) digitally 5 

programmable amplifier, close to the rat’s head. The output of the headstage was connected via a 

lightweight multiwire tether and a commutator to a Cerebus recording system (Blackrock), a data 

acquisition system. Electrode turning was performed while the rat was resting in a pot placed on 

a pedestal. The electrode tips were slowly advanced by 25–100 μm per day for 11–24 days until 

spiking cells were encountered in the CA1 layer of the hippocampus, which was identified on the 10 

basis of local field potential (LFP) signals and single-unit spike patterns. After the tetrodes were 

adjacent to the cell layer, as indicated by the presence of multiunit activity, the tetrodes were 

settled into the cell layer for stable recordings. Subsequently, recordings were conducted over a 

period of several days as described below. 

 15 

Electrophysiological recording 

Electrophysiological data were sampled at 2 kHz and low-pass filtered at 500 Hz. Unit 

activity was amplified and high-pass filtered at 750 Hz. Spike waveforms above a trigger 

threshold (–50 μV) were timestamped and recorded at 30 kHz for 1.6 ms. 

 20 

Closed-loop electrical stimulation 

Upon the online detection of SWRs, closed-loop electrical stimulation was performed using 

extension code implemented on the Cerebus recording system (Blackrock) and custom-created C 

code. A tetrode implanted into the hippocampus was chosen, and the envelope of its bandpass 

(100–400 Hz)-filtered LFP signals at 30 kHz was estimated in real time as described previously 25 

(8). The smoothed estimate of the envelope (envest) of filtered LFP signals was computed as 

follows: 

𝑒𝑛𝑣𝑒𝑠𝑡(𝑡) =  𝑒𝑛𝑣𝑒𝑠𝑡(𝑡 − 1) +  𝑔𝑎𝑖𝑛(𝑡 − 1) ∗ (|𝑣𝑏𝑝| − 𝑒𝑛𝑣𝑒𝑠𝑡(𝑡 − 1)), 

where 

𝑔𝑎𝑖𝑛(𝑡) = {
 0.013,                                                                                                         if |vbp|  ≤ 𝑒𝑛𝑣𝑒𝑠𝑡(𝑡 − 1)

𝑚𝑒𝑎𝑛(𝑔𝑎𝑖𝑛(𝑡 − 600), 𝑔𝑎𝑖𝑛(𝑡 − 599), … , 𝑔𝑎𝑖𝑛(𝑡 − 1), 0.08),   if |vbp| >  𝑒𝑛𝑣𝑒𝑠𝑡(𝑡 − 1)
, and |vbp| 30 

denotes the absolute values of the filtered LFP signals. The length of the gain buffer was set to 600 (20 ms). 

Estimated values of smoothed mean (meanest) and standard deviation (stdest) were then computed as follows: 

𝑚𝑒𝑎𝑛𝑒𝑠𝑡(𝑡) = 𝑚𝑒𝑎𝑛𝑒𝑠𝑡(𝑡 − 1) × (𝑁𝑠𝑚𝑜𝑜𝑡ℎ − 1)/𝑁𝑠𝑚𝑜𝑜𝑡ℎ + |𝑣𝑏𝑝|/𝑁𝑠𝑚𝑜𝑜𝑡ℎ 

𝑠𝑡𝑑𝑒𝑠𝑡(𝑡) = (|𝑣𝑏𝑝| − 𝑚𝑒𝑎𝑛𝑒𝑠𝑡(𝑡 − 1)) /𝑁𝑠𝑚𝑜𝑜𝑡ℎ + 𝑠𝑡𝑑𝑒𝑠𝑡(𝑡 − 1), 

where Nsmooth was the number of samples for smoothing (typically, set to be 150,000 in 500 ms). SWRs were 35 

detected online when the animal’s running speed was below 5 cm/s and when the envelope exceeded the detection 

threshold of 3–4 standard deviations above the estimated mean computed from LFP signals during periods in the rest 

box. At the time of SWR detection, an electrical pulse with a duration of 100 s and an amplitude of 140–180 μA 

was applied to the vHC; the stimulation rate was limited to a maximum of 4 Hz. For delayed control stimulation, 

stimulation was applied with a latency of 250 ms after the onset of ripple detection so that the stimulation occurred 40 

outside the detected SWRs. 

 

Histological analysis to confirm tetrode locations 

After the experiments, the rats received an overdose of urethane and were intracardially 

perfused with 4% paraformaldehyde in PBS and decapitated. To aid in the reconstruction of the 45 

electrode tracks, the electrodes were not withdrawn from the brains until more than 3–4 hours 
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after perfusion. After dissection, the brains were fixed overnight in 4% paraformaldehyde (PFA) 

and then equilibrated with a sequence of 20% sucrose and 30% sucrose in PBS. Frozen coronal 

slices (50 μm) were cut using a microtome (Sliding Microtome, SM2010 R, Leica Biosystems, 

Wetzlar, Germany), and serial sections were mounted and processed for cresyl violet staining. To 

perform cresyl violet staining, the slices were rinsed in water, counterstained with cresyl violet, 5 

and coverslipped with hydrophobic mounting medium (PARAmount-D, Falma, Tokyo, Japan). 

The positions of all the tetrodes were confirmed by identifying the corresponding electrode 

tracks in histological tissue with an optical microscope (All-in-One Fluorescence Microscope 

BZ-X710, Keyence Corporation, Osaka, Japan). 

 10 

Spike sorting of hippocampal neurons 

Spike sorting was performed offline using the graphical cluster-cutting software MClust 

(29). Rest recordings before and after the behavioral paradigms were included in the analysis to 

assure recording stability throughout the experiment and to identify hippocampal cells that were 

silent during the running behavior. Clustering was performed manually in two-dimensional 15 

projections of the multidimensional parameter space (i.e., comparisons between waveform 

amplitudes, the peak-to-trough amplitude differences, waveform energies, and the principal 

components of waveforms, each measured on the four channels of each tetrode). Autocorrelation 

and cross-correlation functions were used as additional separation criteria. Refractory periods of 

spikes were considered to increase confidence in the successful isolation of cells. Clustering 20 

quality was measured by computing the Lratio and isolation distance (30). A cluster was 

considered to be a cell when the Lratio was less than 0.40. Overall, 114, 72, 68, 79, and 22 cells 

were recorded from rat 1, 2, 3, 4, and 5, respectively. 

 

 25 

Analysis of animal trajectories and definition of a learning point 

To analyze animal trajectory patterns, the open field was evenly divided into a 5 × 5 lattice 

and each grid cell was labeled with character strings “a-y” (Supplementary Fig. 1E). Five paths 

connecting specific pairs of four lattices (u (S), e (G), s (C1), and g (C2)), S-C1, C1-G, G-C2, C2-

G, and S-C2, were analyzed. The minimum string length of all these paths was 5. An animal’s 30 

trajectory was divided into trajectory segments connecting two of the four specific lattices, and 

each trajectory segment was classified into one of the five paths if the length of the trajectory 

segment was less than 8 (an example shown in Supplementary Fig. 1G; red, S-C1; blue, C1-G; 

green G-C2; cyan, C2-G; orange, S-C2). Trajectory segments that did not meet this criterion were 

classified as “other”. The majority of trajectory segments were classified into paths S-C1, C1-G, 35 

G-C2, S-C2, and C2-G (for more detail, see Fig. 1E and 1F). In all the following analyses, these 

five paths were selectively analyzed unless otherwise specified. For the process of linearizing the 

rat trajectories on individual paths, see Supplementary Fig. 1I. 

For each rat, a learning point (between the learning and postlearning phases) was computed 

by depicting a learning curve with a moving average window of 5 trials (Supplementary Fig. 2B 40 

and 2D). In the learning phase, the optimized trajectory was defined as path S-C2-G with a total 

string length less than 12. In a learning curve, a learning point was defined as one trial before the 

point where the optimized trajectory percentage first exceeded 50%. If that trial did not include 

the optimized trajectory, the learning point was defined as the next trial. 

 45 

Place field characteristics 
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For each cell, an average spatial firing-rate distribution at an animal’s running speed of 

more than 5 cm/s was computed along the linearized trajectories (Supplementary Fig. 1I) with a 

bin size of 2 cm; these data were then smoothed by a Gaussian filter (σ = 5 cm). For each 

distribution, a null distribution was constructed using an identical procedure, in which the spike 

locations were randomized while the total number of spikes was preserved. For one original 5 

distribution, 1,000 null distributions were created. The null distributions were created separately 

for the open field and the return path. The candidate position bins for the place fields were 

detected where the original firing rates exceeded the 99th percentile of those in the 1,000 null 

distributions. Place fields were defined as candidate position bins when more than five candidate 

position bins with firing rates greater than 1 Hz were detected consecutively as described 10 

previously (31). For each place field, the place field center was defined as the position with the 

maximum spiking rate. The place field detection was performed separately for each area and 

path (start area, S-C1, C1-G, G-C2, S-C2, C2-G, goal area, and return). Neurons with at least one 

place field in the open field or return path in at least one of the three phases were classified as 

“place cells”. 15 

The characteristics of each place cell's place fields on the five paths (S-C1, C1-G, G-C2, S-

C2, and C2-G) were defined by depicting joint plots of place field locations between all phase 

pairs: prelearning versus learning phases, learning versus postlearning phases, and prelearning 

versus postlearning phases (an example cell is shown in Fig. 1K, 1 L and all cells are shown in 

Supplementary Fig. 4). Place fields that emerged or disappeared in a later phase were classified 20 

as “appearing” or “disappearing”, respectively. A place field that emerged at the same location 

with an interfield interval of less than 20 cm across two phases was classified as “stable”. Place 

fields that commonly emerged when an animal approached or left specific lattices (S, C1/C2, and 

G) were classified as “context-dependent”. A place field that emerged at the same location 

irrespective of the running direction on paths C2-G and G-C2 was classified as “bidirectional”. 25 

Place cells with these place field characteristics are summarized in Fig. 1N and Supplementary 

Fig. 4D. 

 

Spatial correlation of place-cell population vectors 

In each place cell, a spatial firing-rate distribution in each phase was normalized so that the 30 

maximum firing rate was 1, as shown in Supplementary Fig. 3A. In each phase, a population 

vector with a location bin size of approximately 2 cm was constructed from the normalized 

firing-rate distributions of all the recorded place cells. Correlation coefficients for all pairs of 

population vectors were computed to construct a population vector correlation matrix 

(Supplementary Fig. 3B and 3C) as follows: 35 

Correlation =
𝑷𝑽𝟏 ∙𝑷𝑽𝟐

|𝑷𝑽𝟏||𝑷𝑽𝟐|
, 

where PV is a population vector in each phase. 

 

Bayesian decoding of animal locations 

To reduce memory requirements, uniform prior Bayesian decoding was applied to estimate 40 

the animals' positions from the spike trains. The spatial firing-rate distributions of individual 

place cells were used as position-tuning curves. As described previously (5), assuming Poisson 

firing statistics and a uniform prior over position, the posterior probability of the animal’s 

location (loc) in a time window (𝜏) including neuronal spike patterns (s) was computed as 

follows: 45 
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𝑃𝑟(𝑙𝑜𝑐|𝑠) =  ∪
∑ ∪𝐿

𝑗=1
⁄  

where 

∪  = (∏ 𝑓𝑖(𝑙𝑜𝑐)𝑛𝑖𝑁
𝑖=1 )exp (−𝜏 ∑ 𝑓𝑖(𝑙𝑜𝑐)𝑁

𝑖=1 ), 

𝑓𝑖(𝑙𝑜𝑐) is the position tuning curve of the i-th neuron, and N and L are the total numbers of 

neurons and total location bins, respectively. The time window 𝜏 was set to 490 ms (12 video 5 

frames), 20 ms, and 21 ms (1/6 theta cycles) to estimate the animal’s positions at timescales of 

behavior (Fig. 1), synchronous events (Fig. 2E and 3A), and theta cycles (Fig. 1Q), respectively. 

For visualization purposes and trajectory event detection, decoding for synchronous events was 

conducted with a 10-ms sliding window (Fig. 2E). 

Fig. 1P shows a decoding accuracy comparison between the original position tuning curves 10 

and those from the surrogate position tuning curves in which the spatial selectivity of place cells 

was randomized. To create the surrogate position tuning curves, individual firing rates in the 

spatial firing-rate distributions were randomly shifted across all location bins for each cell before 

applying the Gaussian filter; then, the shuffled spatial firing-rate distributions were smoothed 

with a Gaussian filter (σ = 5 cm). 15 

 

Theta sequence 

LFP signals at a running speed of more than 5 cm/s were bandpass-filtered at the theta (6–

10 Hz) band, and the peak and trough in each theta cycle were detected. Each theta cycle was 

evenly divided into 6 bins with a time window of ~21 ms, and Bayesian decoding of the animal’s 20 

positions relative to the current locations was performed in this time window as described above. 

The data obtained when the animals were located within 15 cm of the start and end points in each 

path were excluded from this analysis. The decoded probabilities (80 cm around the animal’s 

location and 2⁄3 of the theta cycle around the center of theta cycles) were divided into four 

quadrants, and a quadrant score was computed as the difference in the average decoded 25 

probabilities between the second and fourth quadrants and the first and third quadrants (Fig. 1R), 

as described previously (32). 

 

Detection of synchronous event 

For each rat, the instantaneous spike rates (bin = 1 ms) were averaged over all the recorded 30 

neurons and smoothed with a Gaussian filter (σ = 15 ms). In addition, the mean and standard 

deviation (SD) of instantaneous spike rates during stop periods with a running speed of less than 

5 cm/s were computed from all the recorded neurons, termed the meanbase rate and SDbase rate, 

respectively (Supplementary Fig. 9C, left). Using these baseline variables, the instantaneous 

spike rates were z-scored as shown in the bottom trace in Supplementary Fig. 9A and 35 

Supplementary Fig. 9C. Candidate synchronous events were detected when the z-scored spike 

rates exceeded 2 and the number of active neurons exceeded 4. The onset and offset of candidate 

synchronous events were marked at the time points when the z-scored spike rates first exceeded 

and fell below 0, respectively. Candidate synchronous events in which the duration was less than 

50 ms or more than 2000 ms were excluded from further analyses. 40 

Next, the overall ripple power during candidate synchronous events was computed. In each 

tetrode, the LFP signals were bandpass filtered at 150–250 Hz, and the envelope of the filtered 

LFP traces was computed via the Hilbert transformation. Then, the envelope was smoothed with 

a Gaussian filter (σ = 4 ms). In addition, baseline mean and SD vectors of the smoothed 

envelopes during the stop periods were computed in each tetrode, termed meanbase power and 45 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.002964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.002964


 

20 

 

SDbase power, respectively. Based on these variables, the Mahalanobis distance was computed at 

each time point, termed overall ripple power. 

Using the Gaussian mixture model (GMM), the distributions of the z-scored spike rate and 

z-scored overall ripple power in all candidate synchronous events were each divided into two 

distributions, as shown in Supplementary Fig. 9E. Synchronous events were detected when time 5 

points were included in the larger distributions of z-scored spike rate or z-scored overall ripple 

power (colored in magenta in Supplementary Fig. 9E). 

 

Detection of SWRs 

In a tetrode, LFP signals were bandpass filtered at 150–250 Hz, and the envelope of the 10 

filtered LFP traces was computed via the Hilbert transformation. The envelope was then 

smoothed with a Gaussian filter (σ = 4 ms), termed ripple power. In addition, the mean and SD 

of ripple power during stop periods with a running speed of less than 5 cm in the task periods 

were computed in each tetrode, termed meanbase power and SDbase power, respectively. SWR events 

were detected when the envelope exceeded (meanbase power + 3 × SDbase power). The onset and offset 15 

of SWR events were marked at the time points when the ripple power first exceeded and fell 

below meanbase power, respectively. SWR events with a duration less than 50 ms or more than 500 

ms were excluded. 

 

Similarity of synchronous events 20 

To quantify the similarity of the synchronous events, each synchronous event was converted 

to an N-dimensional vector containing entries of the spike counts of individual neurons during 

the event, where N denotes the total number of neurons. Correlation coefficients between all 

possible vector pairs were calculated to construct an event-to-event correlation matrix 

(Supplementary Fig. 9A). A trial-to-trial correlation matrix was then constructed from the event-25 

to-event matrix by calculating the average of all the correlation coefficients included in each trial 

pair except for the values on the diagonal line. Trials with fewer than 2 synchronous events were 

not analyzed. To evaluate the significance of the correlation coefficients in the trial-to-trial 

correlation matrix, the same analysis was applied to randomized data, in which the temporal 

order of the actual synchronous events in the original data was shuffled while preserving the total 30 

numbers of synchronous events in the individual trials. This randomization process was repeated 

1,000 times. At each point, a z-scored correlation coefficient of the real data was computed from 

the distribution of the 1,000 surrogate correlation coefficients (Supplementary Fig. 9B, bottom). 

A z-scored phase-to-phase correlation matrix was computed, similar to trial-to-trial correlations 

(Supplementary Fig. 9E and 9F). 35 

 

Changes in the frequency of synchronous events and SWRs 

Similar to the work of (15), hierarchical Bayesian modeling was applied to estimate the 

posterior probability of the number of synchronous events with the parameters estimated by 

Markov chain Monte Carlo (MCMC) methods. We assumed that synchronous events emerge 40 

according to Poisson firing statistics and varied across individual animals, as follows: 

𝜆 = exp(𝛽0 + 𝛽1 × 𝑙𝑒𝑎𝑟𝑛 + 𝛽2 × 𝑝𝑜𝑠𝑡 + 𝑟𝑟𝑎𝑡 + log (𝑠𝑡𝑎𝑦)) 

𝑟𝑟𝑎𝑡~ Normal(0,  𝑠𝑟𝑎𝑡) 

𝑠𝑟𝑎𝑡~ Uniform(0,  104), 
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where 𝜆 is the expected value of the number of synchronous events, 𝑠𝑡𝑎𝑦 is the duration (s) 

with a running speed of less than 5 cm, 𝑙𝑒𝑎𝑟𝑛 and 𝑝𝑜𝑠𝑡 are dummy variables for the learning and 

postlearning phases, respectively. Here, 𝑟𝑟𝑎𝑡 reflects individual rat differences. Based on the 

estimated coefficients, the percentage of changes in the frequency of synchronous events for 

each trial in the learning and postlearning phases relative to those in the prelearning phase were 5 

computed as 100 × [exp(β𝑖) − 1], where i = 1 or 2, representing the learning or postlearning 

phases, respectively (Fig. 2C and 2D). Similarly, in Supplementary Fig. 7C, the percentage of 

changes in the number of synchronous events in each trial was computed with log(stay) = 0. 

Similar to the synchronous events, the changes in SWR frequencies were quantified in 

Supplementary Fig. 7G, 7I, 8E, and 8G. 10 

 

Representation rate 

For each synchronous event, the posterior probability of the animal’s location was 

computed by Bayesian decoding as described above (examples shown in Fig. 2E). The posterior 

probabilities within individual paths were averaged over the all location bins and summed over 15 

all the time bins. The summed posterior probabilities for the individual paths were then 

normalized so that the sum of the probabilities over all paths was 1, termed “representation 

rates”. To depict the color-coded matrix in Fig. 2F, the representation rates of individual paths 

were averaged over each trial. For each synchronous event, a z-scored representation rate (repZ) 

was computed for the path segment with the highest representation rate as follows: 20 

𝑟𝑒𝑝𝑍 =
𝑟𝑒𝑝𝑟𝑎𝑡𝑒−mean(𝑟𝑒𝑝𝑟𝑎𝑡𝑒𝑛𝑢𝑙𝑙)

s.d.(𝑟𝑒𝑝𝑟𝑎𝑡𝑒𝑛𝑢𝑙𝑙)
 , 

where reprate denotes a representation rate for the path segment and repratenull denotes the 

representation rates obtained from the decoding of the 1,000 surrogate synchronous events where 

the randomized position-tuning curves were created using the procedure described above. 

 25 

Synchronous events representing individual path segments 

Specifically, paths S-C1, C1-G, G-C2, C2-G, S-C2, and the return path were analyzed. For 

each synchronous event, the representative paths were defined as the paths with the highest 

reprate. Hierarchical Bayesian modeling was applied to estimate the posterior probability of the 

proportions of represented paths with the parameters estimated by Markov chain Monte Carlo 30 

(MCMC) methods. We assumed that replays for the individual paths in each trial emerged 

according to a multinomial distribution as follows: 

𝚯 ~ Dirichlet(𝚯|𝛂) 

𝐝𝐚𝐭𝐚 ~ Multi(𝐍, 𝚯), 

where data was a 𝑇 × 𝑈-dimensional vector matrix whose entries were the number of 35 

represented paths in each trial, T and U were the number of trials and paths (U = 6), respectively, 

N was a 𝑇 × 1-dimensional vector containing the total number of represented paths in each trial, 

and the parameters 𝚯 and 𝛂 were 𝑈 × 1-dimensional vectors for multinomial distribution and 

Dirichlet distribution, respectively. The initial vector 𝛂 was set to [1,1,1,1,1,1,1]. The parameter 

𝚯 for the events where repZ ≥ 2 was plotted as the proportions of represented paths in Fig. 2G, 40 

2H, and 2I. The proportions of represented paths for all events are shown in Supplementary Fig. 

10C and 10D. 

 

Sequence scores of sequential events 
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Sequence scores were defined for individual synchronous events as described previously 

(31). For sequential events and trajectory events, the data from rat 1, 2, 3, and 4 were analyzed 

(with 68-114 cells). The path with the highest representation rate was analyzed. Replays for the 

start and goal areas were excluded from the analysis. For the represented path segments, 

𝑃𝑟(𝑙𝑜𝑐|𝑠) constructed from a synchronous event was smoothed over time bins with a Gaussian 5 

filter (σ = 10 ms). In the filtered 𝑃𝑟(𝑙𝑜𝑐|𝑠), a maximum a posteriori probability (MAP) was 

computed as the largest posterior probability across all positions per time bin(33), and the time 

bins with MAPs greater than (5 × 1/nloc bin) were included for the analysis, where ntime bin and nloc 

bin were the numbers of time and location bins in the synchronous event, respectively. If the 

number of time bins in which MAP exceeded the threshold was less than 3, all the time bins 10 

were analyzed. 𝑃𝑟(𝑙𝑜𝑐|𝑠) was normalized within the represented paths as follows: 

𝑛𝑜𝑟𝑚𝑃𝑟(𝑙𝑜𝑐|𝑠) =
𝑃𝑟(𝑙𝑜𝑐|𝑠)

∑ 𝑃𝑟 (𝑙𝑜𝑐𝑖|𝑠)
𝑛𝑙𝑜𝑐 𝑏𝑖𝑛
𝑖=1

. 

A sequence score r(loc, time; normPr) representing the weighted correlation between time and 

location was computed as follows: 

𝑟(𝑙𝑜𝑐, 𝑡𝑖𝑚𝑒, 𝑛𝑜𝑟𝑚𝑃𝑟) =  
𝑐𝑜𝑣(𝑙𝑜𝑐,𝑡𝑖𝑚𝑒;𝑛𝑜𝑟𝑚𝑃𝑟)

√𝑐𝑜𝑣(𝑙𝑜𝑐,𝑙𝑜𝑐;𝑛𝑜𝑟𝑚𝑃𝑟)𝑐𝑜𝑣(𝑡𝑖𝑚𝑒,𝑡𝑖𝑚𝑒;𝑛𝑜𝑟𝑚𝑃𝑟)
, 15 

where 

 𝑚(𝑙𝑜𝑐; 𝑛𝑜𝑟𝑚𝑃𝑟) =  
∑ ∑ 𝑛𝑜𝑟𝑚𝑃𝑟𝑖𝑗𝑙𝑜𝑐𝑗

𝑛𝑙𝑜𝑐 𝑏𝑖𝑛
𝑗=1

𝑛𝑡𝑖𝑚𝑒 𝑏𝑖𝑛
𝑖=1

∑ ∑ 𝑛𝑜𝑟𝑚𝑃𝑟𝑖𝑗  
𝑛𝑙𝑜𝑐 𝑏𝑖𝑛
𝑗=1

𝑛𝑡𝑖𝑚𝑒 𝑏𝑖𝑛
𝑖=1

 

𝑐𝑜𝑣(𝑙𝑜𝑐; 𝑡𝑖𝑚𝑒; 𝑛𝑜𝑟𝑚𝑃𝑟) =  
∑ ∑ 𝑛𝑜𝑟𝑚𝑃𝑟𝑖𝑗

𝑛𝑙𝑜𝑐 𝑏𝑖𝑛
𝑗=1

𝑛𝑡𝑖𝑚𝑒 𝑏𝑖𝑛
𝑖=1

(𝑙𝑜𝑐𝑗−𝑚(𝑙𝑜𝑐;𝑛𝑜𝑟𝑚𝑃𝑟))(𝑡𝑖𝑚𝑒𝑖−𝑚(𝑡𝑖𝑚𝑒;𝑛𝑜𝑟𝑚𝑃𝑟)

∑ ∑ 𝑛𝑜𝑟𝑚𝑃𝑟𝑖𝑗 
𝑛𝑙𝑜𝑐 𝑏𝑖𝑛
𝑗=1

𝑛𝑡𝑖𝑚𝑒 𝑏𝑖𝑛
𝑖=1

. 

For each sequence score r, a z-scored sequence score (rZ) was computed as follows: 

𝑟𝑍 =  
|𝑟|−mean(|𝑟𝑛𝑢𝑙𝑙|)

s.d.(|𝑟𝑛𝑢𝑙𝑙|)
, 20 

where rnull is the sequence score obtained from 1,000 surrogate synchronous events with 

randomized position tuning curves, which were randomly shifted within the represented path for 

each cell. Distributions of r and rZ values are presented in Supplementary Fig. 12A. 

Synchronous events with an |r| ≥ 0.5 were considered sequential events, and the replay 

directions were determined by the signs of the correlations r, where positive and negative 25 

correlations of r represent forward and backward replay directions, respectively. 

 

Per cell contribution (PCC) 

To quantify the contribution of each cell type (stable, context-dependent, and other place 

cells) to the sequence scores of synchronous events, PCCs were computed as described 30 

previously (31). For each cell, 500 surrogate position-tuning curves were prepared by randomly 

shifting the position-tuning curve within the represented paths. The PCC of cell i to event e was 

computed as follows: 

𝑃𝐶𝐶𝑒,𝑖 =  {𝑟𝑍𝑒 − 𝑟𝑍𝑒,𝑖(𝑠ℎ𝑢𝑓𝑓𝑙𝑒)} × 𝑁𝑐𝑒𝑙𝑙𝑒 , 

where rZe,i(shuffle) is the averaged rZe obtained from the shuffled tuning curves of cell i, and 35 

Ncelle is the number of activated place cells that encode the represented path in the event. For 

each cell, the PCCs were averaged over all events (Fig. 3C) or within each path (Supplementary 

Fig. 11). 

 

The proportions of forward and reverse replays 40 

Replay events for the start and goal areas were excluded from this analysis. Hierarchical 

Bayesian modeling was applied to estimate the posterior probability of the proportions of 
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forward replays with the parameters estimated by Markov chain Monte Carlo (MCMC) methods. 

We assumed that the forward and backward replays in each trial emerged according to the 

binomial distribution as follows: 

𝑝 ~ Beta(𝑝|𝛼, 𝛽) 

𝒅𝒂𝒕𝒂 ~ Binominal(𝑵, 𝑝) 5 

where data is a 𝑇 × 1-dimensional vector containing the number of forward replays in each trial, 

N is a 𝑇 × 1-dimensional vector containing the total number of replay events in each trial, the 

parameter p represents the binomial distribution, and the parameters α and β control the beta 

distribution and have initial values of 1. The parameter 𝑝 was plotted as the proportion of 

forward replays in Fig. 3D and Supplementary Fig. 12E. 10 

 

Trajectory events 

A trajectory event was defined from a synchronous event, as previously described (5, 34). 

For each synchronous event, the posterior probability of the animal’s location Pr(loc|s) was 

computed by Bayesian decoding in which a 20-ms sliding window was moved every 10 ms as 15 

described above (loc: location, s: spikes). In the Pr(loc|s), the maximum a posteriori probability 

(MAP) was computed for each path per time bin. Bins with MAPs greater than (5 × 1/nloc bin) 

were included in the following analyses, where nloc bin is the total number of all location bins. 

A candidate trajectory sequence was detected when the distances between all pairs of 

neighboring locations giving the MAP (allowing a 1-gap time bin) were less than 40 cm within 20 

the represented paths. The candidate trajectory sequences were then extended to the neighboring 

paths using the same criteria, and the sequence with the maximum length was adopted as a 

trajectory sequence. Trajectory sequences covering more than 4 time bins (60 ms) and a 

cumulative distance of more than 20 cm were included in the further analyses. 

To assess the significance of a trajectory sequence, p-values were computed to represent the 25 

probability of detecting trajectory events from the 1,000 surrogate synchronous events with 

randomized position tuning curves. These surrogate synchronous events were created using the 

same procedure as described above in the analysis for repZ. Trajectory events were defined from 

the trajectory sequences where p < 0.05. 

 30 

Proportion of trajectory events 

Hierarchical Bayesian modeling was applied to estimate the posterior probability of the 

proportion of trajectory events per synchronous event with the parameters estimated by Markov 

chain Monte Carlo (MCMC) methods. We assumed that the trajectory events in each trial 

emerged according to a binomial distribution as follows: 35 

𝑝 ~ Beta(𝑝|𝛼, 𝛽) 

𝒅𝒂𝒕𝒂 ~ Binominal(𝑵, 𝑝), 

where data is a 𝑇 × 1-dimensional vector containing the number of trajectory events in each 

trial, N is a 𝑇 × 1-dimensional vector whose entries are the total number of synchronous events 

in each trial, the parameter p represents the binomial distribution, and the parameters α and β 40 

control the Beta distribution and have initial values of 1. The parameter 𝑝 was plotted as the 

proportion of trajectory events in Fig. 3G and Supplementary Fig. 13B and 13C. 

 

Trajectory-to-trajectory distance 
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The convergence of behavioral trajectories across trials in the presence of closed-loop 

stimulation was quantified in Fig. 4. Specifically, we analyzed the trajectories after the rat first 

took path start-S-C2 during the learning phase. A trajectory in the open field in each trial was 

converted to a character string (examples are shown in Supplementary Fig. 1F). A trajectory-to-

trajectory distance was computed between two character strings in neighboring trials as a 5 

modified Levenshtein distance, with cost values considered as follows. A cost value for a string 

substitution was set to be (distance/1.13), where distance is the distance between the centers of 

two lattices involved in the substitution, and 1.13 is the distance (m) between lattices ‘a’ and ‘y’ 

representing the maximum lattice-to-lattice distance in the field (Supplementary Fig. 1E). The 

cost value for a deletion or insertion was 0.40/2, where 0.40 is the median of the normalized 10 

distance between all pairs of lattices. 

When the trajectory-to-trajectory distance exceeded 2, the trial was considered to be a trial 

representing behavioral change. The percentage of trials with behavioral changes was computed 

for each rat, (Fig. 4F). 

 15 

Statistical analysis 

All the data were analyzed using MATLAB and Python. The data are presented as the mean 

± standard error of the mean (SEM), dot plots with mean values, or box plots. Posterior 

probability distributions derived from the hierarchical Bayesian models with Markov chain 

Monte Carlo (MCMC) methods (35) are presented as violin plots or as lines showing the median 20 

values with 50% and 95% credible intervals. 

Comparisons of one-sample data were analyzed using a one-sample t-test versus a constant 

value. Multiple group comparisons were performed by Tukey’s tests (Fig. 1R, 3B, and 4F) or by 

Mann-Whitney U tests followed by Bonferroni corrections (Fig. 1P). The null hypothesis was 

rejected at the p < 0.05 level. Posterior probability distributions of the estimated parameters with 25 

hierarchical Bayesian modeling were considered to be significantly different when their 

probability of overlap was less than 0.05 (Fig. 2H and 3F). 

 

Data and software availability 

The MClust software is available from A.D. Redish at 30 

http://redishlab.neuroscience.umn.edu/MClust/MClust.html. Reasonable requests for data and 

software will be fulfilled by the corresponding authors. 
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Fig. S1. Behavioral apparatus for the spatial learning task and analysis of animal 

trajectories. (A) An overview of the area for the spatial learning task. "Nose poking" into the 

reward port in the start area for 1 s triggered the sound presentation and the dispensation of 25 × 

8 𝛍l of 30% sucrose from the port. Next, door 1 was opened so that the rat could enter the open 

field and visit a checkpoint (C1 or C2) to obtain a 20 𝛍l chocolate milk reward (at one of the 5 

points C1 or C2). After reaching G, door 2 was opened so that the rat could enter the goal area. 

The reward port in the goal area then dispensed 200 𝛍l of chocolate milk reward. Finally, door 3 

and door 4 were opened so that the rat could return to the start area via the return path. (B) A 

picture of the apparatus, viewed from the start area. (C) Timeline of training for the spatial 

learning task. (D) Time course of a single trial. (E) To analyze the trajectory patterns, the field 10 

was evenly divided into 5 × 5 lattices labeled with the letters “a–y”. The lattices u, e, s, and g 

correspond to S (after start), G (before goal), C1, and C2, respectively. (F) Three examples 

showing how the animals' trajectories were analyzed. A trajectory in the field was converted into 

a character string (target string, left), and the total number of characters in of each string was 

counted as the string length. (G) The paths connecting the pairs of four specific lattices (u(S), 15 

e(G), s(C1), and g(C2)) were analyzed. The majority of segments were classified into S-C1, C1-G, 

G-C2, S-C2, and C2-G, which have a string length of 5. (H) Four representative rat trajectories are 

shown. A trajectory was divided into trajectory segments between the specific lattices, and each 
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trajectory segment was classified into a path if the length of the segment was less than three plus 

the length of the path. Path segments that did not meet this criterion were classified as “other”. In 

the representative trajectories, each trajectory segment was colored based on the path (red, S-C1; 

blue, C1-G; green G-C2; orange, G-C2; cyan, C2-G). (I) For each trajectory segment, a straight 

line connecting the centers of the two lattices at both ends of the path type (blue line) was 5 

depicted for projection. The blue line was aligned so that its start point was set as the origin and 

moved onto the x-axis by an affine transformation (bottom panels). Individual rat trajectory 

segments (gray traces) were projected onto the same axis. All the trajectories were divided into 

2-cm bins on the line, and an averaged trajectory (red traces) was computed on the line. 

  10 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.002964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.002964


 

27 

 

Fig. S2. Behavioral results of all rats. (A) All the trajectories from a single rat (rat 1), 

corresponding with Fig. 1B. The black and red vertical lines indicate the reward replacement 

from C1 to C2 and the learning point, respectively. (B) A moving averaged learning curve, 

corresponding with A. (C) Changes in string length for each trial for the other four rats (rats 2–

5). Data were plotted in the same way as in Fig. 1E. The black and red horizontal lines indicate 5 

the replacement and learning points, respectively. (D) Same as B but for the rats corresponding 

with C. 
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Fig. S3. Spatial firing patterns of all recorded hippocampal cells. (A) Normalized spatial 

firing-rate distributions of 355 recorded hippocampal neurons from 5 rats, ordered by the 

locations of their place field center computed from all sessions. Locations not visited by the rat 

did not visit are shown in gray. The data are separately shown for the prelearning, learning, 

postlearning phases, and all phases combined. (B) Spatial correlation matrices of population 5 

vector pairs at all location bins. The locations not visited by the rat are shown in gray. (C) To 

assess the changes in spatial firing patterns associated with learning a new rewarded location, 

spatial cross-correlation matrices were constructed from population vector pairs at all the 

location bins. Overall, the spatial correlations at similar locations were higher than the spatial 

correlations at different locations, demonstrating stable spatial representation by place-cell 10 

ensembles. Higher density correlations were detected at the comparison path C2-G versus path 

G-C2 in the learning phase, implying the presence of place fields independent of running 

directions, termed "bidirectional fields". Higher density correlations were also detected at S-C1 

versus S-C2 and at C1-G versus C2-G, implying the presence of context-dependent fields relative 

to check points. (D) The cumulative distributions of correlation coefficients in specific regions 15 

(green, stable; yellow, context-dependent; purple, bidirectional) in the correlation matrices. The 

right bottom inset shows a schema depicting stable, context-dependent, and reverse fields 

(labeled by colors). (E) (Four left panels) Place-field locations of all recorded cells in individual 

phases (on, yellow; off, violet). The rightmost panel shows the hierarchical clustering of all 

recorded neurons based on their place-field locations.  20 
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Fig. S4. Learning-dependent changes in spatial maps. (A) This image is the same as the joint 

spatial map in Fig. 1K. Place fields (shown in red *) from a single place cell were defined based 

on spatial firing-rate distributions, and the locations of these place fields were plotted on the X- 

and Y-axes as black asterisks on a two-dimensional plain. (B) This image is the same as the joint 5 
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spatial map in Fig. 1L but analyzed separately for all phase pairs. All the place fields from all 

cells were superimposed. The plots in the thin blue and red regions before the start area represent 

place fields that were not observed in one phase but emerged in the other phase. (C) Density 

plots of z-scores, constructed from B. In each bin, the density of the dots in B was z-scored based 

on the average and standard deviation of 1,000 surrogate datasets in which the locations of place 5 

fields at the latter phase were randomly shuffled without changing the total number of fields. 

Higher densities are visible, as shown in Supplementary Fig. 3B and 3C. (D) (top) Hierarchical 

clustering of all recorded neurons based on their field properties. (bottom) Summary of the field 

properties of all cells (on, yellow; off, violet). (E) Venn diagram showing the numbers of cells 

with individual field properties. (F) Comparisons of the number of place fields per place cell 10 

across cell types. Each gray dot represents a cell, and the colored lines represent the averages: *p 

< 0.05, Mann-Whitney U test followed by Bonferroni correction.  
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Fig. S5. Learning-dependent and cell-type specific theta sequence. (A) Average posterior 

probabilities of animals' positions while running on the path indicated above; the x-axis shows 

the phases of two theta cycles (white line) and the y-axis shows the positions relative to the 

current animal’s location. (B) The bar graphs shown in Fig. 1R are presented as boxplots: *p < 

0.05, Tukey’s test. (C) Theta power and running speed. Each dot represents a trial, and the black 5 

lines represent the averages: *p < 0.05, Tukey’s test. (D) Cells were classified into stable, 

context-dependent, both stable and context-dependent, and other cells, based on Fig. 1L. The 

spike probabilities of individual pyramidal cells were plotted against the phase of theta 

oscillations. Each gray line represents one cell, and the colored lines represent the averages. (E) 

Superimposition of the average spike probabilities in each cell type corresponding with D. 10 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.002964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.002964


 

33 

 

Fig. S6. Detection of SWRs and synchronous events. (A) From top to bottom are the time 

changes in z-scored ripple power simultaneously recorded by thirteen tetrodes (upper gray 

traces), the corresponding Mahalanobis distance computed from the thirteen 150–250 Hz 

bandpass-filtered LFP traces as overall ripple power (green trace), and the z-scored spike rates of 

all recorded hippocampal cells (bin = 1 ms; sigma = 15 ms for Gaussian filter). Ripple power 5 

traces were computed from the 150–250 Hz bandpass-filtered LFP traces by the Hilbert 

transform (sigma = 4 ms for Gaussian filter), and the times at which ripples were detected in 

individual electrodes are colored in black. (B, C) The frequency distributions of the Mahalanobis 

distance (B) and the average spike rates of hippocampal cells: (C, left) (bin = 1 ms). The average 

spike rates are z-scored in the rightmost panel. (D) Relationship between the Mahalanobis 10 

distance and z-scored spike rates. Synchronous events were defined when the dots were included 

in the magenta cluster. 
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Fig. S7. Learning-dependent changes in the numbers of synchronous events and SWRs. (A) 

From top to bottom are the original LFP, ripple band-filtered (150–250 Hz) LFP traces, a raster 

plot of the spike patterns of 114 neurons where the bottom arrowheads indicate synchronous 

events, and rat running speed during a single trial of each phase. Compared with the learning and 5 

postlearning phases, smaller numbers of synchronous events and SWRs are visible in the 

prelearning phase. (B) Pseudocolor maps of the average number of synchronous events during 

stop periods in each trial. The locations of synchronous events are indicated by superimposed 

white dots. (C) Same as Fig. 2C and 2D but analyzed for the absolute number of synchronous 

events relative to those in the prelearning phase. A pound sign (#) indicates no overlap between 0 10 

and the 95% credible intervals computed from the posterior probability distribution by MCMC. 

(D) Pseudocolor maps of the average stop duration (moving speed less than 5 cm/s) in each trial. 

(E) Comparisons of stop duration among the prelearning, learning, and postlearning phases. *p < 

0.05, Mann-Whitney U test followed by Bonferroni correction. (F, G) Same as B and C but 

analyzed for the number of SWRs. (H, I) Same as B and C but analyzed for the frequency of 15 

SWRs. (J) Cumulative distributions of SWR duration. No significant differences were found 

across the phases: p > 0.05, Mann-Whitney U test followed by Bonferroni correction. 
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Fig. S8. No increases in SWRs were observed under any learning conditions. (A) On the 

next day after the rat fully learned a checkpoint (C2), the same recording commenced without a 

change to the reward point (day 2), meaning that no further learning was induced. In this figure, 

all the analyses were performed from the data collected on day 2 unless otherwise specified. (B) 

A pseudocolor map of the average stop duration (moving speed less than 5 cm/s) in each trial on 5 
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day 2. (C) From top to bottom are the original LFP, ripple band-filtered (150–250 Hz) LFP 

traces, a raster plot of spike patterns where the bottom arrowheads indicate synchronous events, 

and rat running speed from in a representative trial on day 2. Note that there are fewer 

synchronous events and SWRs compared with those in Fig. 1H. (D, F) Pseudocolor maps 

showing the number (D) and frequency (F) of SWRs per trial using the same color scales as in in 5 

Supplementary Fig. 7F and 7H. The locations of synchronous events are indicated by 

superimposed white dots. (E, G) The percentage of changes in the number and frequency of 

SWRs during the learning and postlearning phases on day 2 compared to the prelearning phase. 

Data from the prelearning, learning and postlearning phases are similar to those shown in 

Supplementary Fig. 7G and 7I for comparison. On day 2, no significant increases in SWRs were 10 

observed compared with the prelearning phase. A pound sign (#) indicates no overlap between 0 

and the 95% credible intervals computed from posterior probability distribution by MCMC (n = 

4–5 rats). (H) (top) An event-to-event correlation matrix of synchronous events on day 2. 

Detailed explanations are provided in Supplementary Fig. 9. (bottom) A trial-to-trial correlation 

matrix constructed from the event-to-event matrix in which the correlation coefficients are 15 

shown as z-scores computed from 1,000 surrogate datasets, showing no prominent changes in 

coefficients throughout the experiment, compared with those in Supplementary Fig. 9B-D. (I) 

Similar to H but separately analyzed for the individual areas. Trials with fewer than 3 

synchronous events were not analyzed and are shown in white.  

  20 
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Fig. S9. Correlation of spike patterns in synchronous events. (A) A population vector was 

constructed from the spike counts of all cells for each synchronous event. Correlation 

coefficients were computed from all pairs of population vectors and used to construct an event-

to-event correlation matrix. (B) (top) An event-to-event correlation matrix of all synchronous 

events observed at all areas for one rat (rat 1). The black and red lines indicate the reward 5 

replacement from C1 to C2 and the learning point, respectively. (bottom) A trial-to-trial 

correlation matrix constructed from the event-to-event matrix by calculating the average of all 

the correlation coefficients included in each trial pair. Correlation coefficients are shown as z-

scores based on 1,000 surrogate datasets. (C) Similar to B but separately analyzed for the 

individual areas. Trials with fewer than 3 synchronous events were not analyzed and are shown 10 

in white. Higher correlations are visible within each learning and postlearning phase compared 

with those within the prelearning phase. (D) Trial-to-trial correlation matrices in the other 

individual rats (rats 2–5). (E, F) Similar to the trial-to-trial correlation matrix, a phase-to-phase z-

scored correlation matrix was constructed from the event-to-event matrix. A z-scored event-to-

event matrix was first normalized so that the minimum and maximum values were 0 and 1, 15 

respectively, in each rat; then, the normalized matrices were averaged across all rats.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.002964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.002964


 

39 

 

Fig. S10. Represented paths by synchronous events. (A) Color-coded matrices showing 

changes in representation rates for each path by synchronous events, separately analyzed for 

individual areas (the same rat shown in Fig. 2F). The black and red lines indicate the reward 

replacement from C1 to C2 and the learning point, respectively. (B) Same as Fig. 2F but for the 

other individual rats (rats 2–5). (C) Same as Fig. 2G but for learning-related changes in the 5 

percentage of all synchronous events, irrespective of their repZ, representing individual 

paths. The thick and thin shaded areas indicate the 50% and 95% credible intervals, 

respectively. Similarly, pronounced increases in S-C2 are visible in the latter learning phases. 
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(D) Same as C but separately plotted for the individual areas. (E, F) To analyze how the 

representation rates (reprates) of each synchronous event were biased for particular paths, 

z-scored representation rates (repZ) for all paths were computed for each synchronous event, 

and these reprates were ranked from highest (1st) to lowest (8th). For each rank, cumulative 

distributions were depicted from the reprates of all synchronous events (E) and synchronous 5 

events with repZ ≥ 2. (G, H) The probability of detecting synchronous events with the 1st and 

2nd reprate at paths (or areas) indicated by the y-axis and x-axis, respectively. In H, a higher 

probability is visible in the comparison of neighboring paths (i.e., S-C1 versus C1-G and Start 

versus Return), implying the presence of joint replays of multiple episodes that are close in 

time and space. (I) The distribution of the 1st repZ of all synchronous events. Synchronous 10 

events whose repZ ≥  2 were considered to represent specific paths. (J) The number of 

represented paths identified from single synchronous events. 
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Fig. S11. Cell participation in synchronous events and per cell contribution to replay 

events. (A) Schematic illustration of computing the odds ratios for a cell type. This 

illustration includes a total of 10 place cells with 3 stable cells (green boxes) and 7 other cells 

(white boxes). An example synchronous event includes 3 and 4 active cells. For this 

synchronous event, the odds were computed as the ratio of the percentage of active stable 5 

cells to total active cells (3/7) to the percentage of active other cells to total active cells (4/7). 

The odds at a chance level were computed as the ratio of the percentage of total stable cells 

to total cells (3/10) to the percentage of total other cells to total cells (7/10). To compute a 

chance level for each path, the active place cells in the path were analyzed. Finally, the odds 

ratio was computed as a ratio of the two odds as shown below. (B) Comparison of odds ratios 10 

across cell types: #p < 0.05, one-sample t-test versus 0; *p < 0.05, Tukey’s test. (C) Same as B 

but separately analyzed for the individual paths. (D) Per cell contribution of individual cells 

to replay events, separately analyzed for the individual represented paths: #p < 0.05, one-

sample t-test versus 0; *p < 0.05, Tukey’s test. 
  15 
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Fig. S12. Sequential events representing individual paths. (A) Distributions of the 

weighted correlations (r) of synchronous events. The positive and negative r values represent 

forward and reverse directions, respectively. Each event is labeled in color depending on its 

sequence score (rZ). Synchronous events with an |r| above 0.5 were considered to be 
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sequential events. (B) Cumulative distributions of the z-scored sequence scores (rZ) of 

synchronous events, separately analyzed for the individual represented paths. (C) The same 

data shown in B were averaged: #p < 0.05, one-sample t-test versus 0; *p < 0.05, Tukey’s test. 

(D) Same as Fig. 3F but separately analyzed for replay events in the individual areas. The 

thick and thin shaded areas indicate the 50% and 95% credible intervals, respectively. (E) 5 

The directionality of replay events separately analyzed for individual paths. The thick and 

thin shaded areas indicate the 50% and 95% credible intervals, respectively. A dollar ($) 

symbol indicates that the overlap in the distribution probability between 0.5 and the 

posterior probability distribution was less than 5%. Remarkably, the results showed that (1) 

replay events representing the return path observed at the start and goal areas were biased 10 

toward the reverse and forward directions, respectively, and (2) replay events representing 

paths G-C2 and C2-G observed in the open field (the majority of which emerged at C2 as shown 

in Fig. 2B) were biased toward the reverse and forward directions, respectively. These results 

demonstrate that forward and reverse replays preferentially emerge when their represented 

paths correspond with an animal’s behavioral episodes in the immediate future and past, 15 

respectively. Together with the results showing that reverse replays were more dominant 

than were forward replays in the open field (the majority of which emerged at C2) during the 

learning phase (Fig. 3D), path G-C2 is a main episode that is preferentially represented by 

reverse replays during the learning. 
  20 
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Fig. S13. Representation by trajectory events. (A) Superimposition of the decoded 

trajectories from all trajectory events. The forward and reverse trajectory events are shown 

as blue and red lines, respectively. (B) The percentage of synchronous events to be assigned 

as trajectory events. The thick and thin shaded areas indicate the 50% and 95% credible 

intervals, respectively. (C) The same data shown in B were superimposed for comparison 5 

across paths. (D) The percentage of represented paths by trajectory events, separately 

analyzed for the individual areas. The thick and thin shaded areas indicate the 50% and 95% 

credible intervals, respectively. 
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Fig. S14. Effects of SWR inhibition on behavioral performance. (A) Pseudocolor maps of 

the average stop duration (moving speed less than 5 cm/s) and the number and frequency 

of feedback electrical stimulation applied per trial. Stimuli locations are indicated by 

superimposed white dots. (B) Representative running trajectories observed in a single rat 

with disrupted SWRs. The black vertical line indicates reward replacement. (C) Changes in 5 

string lengths for the other individual rats in the disrupted SWR, delayed control, and 

nonlearning control groups. The black and red horizontal lines indicate the reward 

replacement and the learning point, respectively. The data are colored depending on the 

paths taken by the rats. (D) The number of trials to reach the learning point in each group. 

Each dot represents a rat, and the black lines represent the averages. (E) The number of trials 10 
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until the rats first took the path start-S-C2. (F) The number of trials from when rats first took 

the path start-S-C2 to the learning point. 
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Fig. S15. Schematic illustrations suggested from this study. (A) Context-dependent codes 
on a predictive map. Context-dependent cells, which encode task contexts (e.g. toward check 
points), are shared across learning phases and are preferentially recruited by hippocampal 
replays. The  brain circuits form an effective predictive map with both spatial and context 
components, which may support memory processes and prioritized replays. (B) Prioritized 5 

replays on a predictive map. Hippocampal circuits preferentially replay salient episodes 
based on agent’s internal evaluations in a model in the brain. Such prioritized replays likely 
contribute to efficient learning. 
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