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The Presence of Periodontal Pathogens in Gastric Cancer
Marcel A. de Leeuw & Manuel X. Duval, GeneCreek

Background. The microbiome is thought to play a role in the development of gastric cancer (GC). Several
studies have put forward putatively carcinogenic species in addition to Helicobacter pylori, but are not in
perfect alignment, possibly due to variable parameters in the experiments, including downstream process-
ing.
Methods. Here, we analysed gastric mucosa samples from nine public data sets, including GC samples. Us-
ing both unsupervised and supervised learning, we defined fine grain bacterial networks of gastric mucosa
and identified species associated with tumor status of samples.
Results. We found anatomic location and cohort region among the possible factors leading to the observa-
tion of study specific gastric microbiomes. Despite this variability, the periodontal species Fusobacterium
nucleatum, Parvimonas micra and Peptostreptococcus stomatis were found in association with tumor status
in several datasets. The three species were found in interaction by ecological network analysis and also
formed the intersection of tumor associated species between four GC data sets and five colorectal cancer
(CRC) data sets we reanalyzed.
Implications. The overlapping pathogen spectrum between two gastrointestinal tumor types, GC and CRC,
has implications for etiology, treatment and prevention. Current H. pylori eradication treatment should be
efficient against the GC pathogen spectrum, yet the existence of an upstream periodontal reservoir is of
concern. We formulated a probiotic composition suited for long-term treatment, which putatively competes
with the individual species in this spectrum.

Introduction
Gastric cancer (GC) is the sixth most common cancer in
the world, with more than 70% of cases occurring in the
developing world. GC is the third leading cause of can-
cer death worldwide (source: WHO, 2018). More than
50% of cases occur in Eastern Asia. In Asia, GC is the
third most common cancer after breast and lung and is
the second most common cause of cancer death after
lung cancer [Rahman et al. 2014].

The seroprevalence of Helicobacter pylori is closely
related to the incidence of GC [Kato et al. 2004, Ferrec-
cio et al. 2007, Shiota et al. 2013]. In recent years, other
bacteria have been proposed as risk factors for GC, in-
cluding Propionibacterium acnes and Prevotella copri [Gu-
nathilake et al. 2019], Fusobacterium nucleatum [Yama-
mura et al. 2017, Hsieh et al. 2018] and Leptotrichia
wadei [Yang et al. 2016]. Prevotellamelaninogenica, Strep-
tococcus anginosus and P. acnes have been reported in-
creased in the tumoral microhabitat [Liu et al. 2019].
The centrality of Peptostreptococcus stomatis, S. angi-
nosus, Parvimonas micra, Slackia exigua and Dialister
pneumosintes in GC tissue has been reported [Coker
et al. 2018]. P. acnes has also been associated with lym-
phocytic gastritis [Montalban-Arques et al. 2016].

The availability of a number of these studies in the
form of rawmicrobiome sequence reads offers the pos-
sibility to revisit theGCmicrobiomeusing a uniformand
cutting edge bioinformatics approach and obtain a con-
sensus of additional species possibly involved in GC.

Materials & Methods
We identified a total of nine eligible datasets from lit-
erature and the NCBI BioProject repository. Exclusion

criteria comprised the use of non-standard primers, ab-
sence of quality data in the submission and the ab-
sence or mismatch of paired end sequences as submit-
ted. Most eligible data sets are from China, Table 1.
Scientific publication has been issued for the following
projects: PRJEB21497 [Yap et al. 2016], PRJEB21104 [Par-
sons et al. 2017], PRJEB22107 [Klymiuk et al. 2017], PR-
JNA428883 [Liu et al. 2019] and PRJNA495436 [He et al.
2019]. For the purpose of comparison, we also revisited
five published colorectal cancer (CRC) data sets, Table 2.

Table 1: Gastric mucosa data sets used in this study. n: number of
samples used, 16S: variable regions covered.

BioProject SRA n 16S region
PRJEB21104 ERP023334 121 V1-V2 U.K.
PRJEB21497 ERP023753 34 V4 Malaysia
PRJEB22107 ERP024440 32 V1-V2 Austria
PRJNA313391 SRP070925 119 V3-V4 China, Qingdao
PRJNA428883 SRP128749 669 V3-V4 China, Zhejiang
PRJNA481413 SRP154244 397 V4 China, Nanchang
PRJNA495436 SRP165213 32 V3-V4 China, Nanchang
PRJNA508819 SRP172818 173 V3-V4 China, Zhejiang
PRJNA545207 SRP200169 63 V3-V4 China, Nanchang
total 1,544

Table 2: Colorectal cancer biopsy samples used in this study. n: num-
ber of samples used, 16S: variable regions covered.

BioProject SRA n 16S region
PRJEB6070 ERP005534 96 V4 Germany
PRJNA298957 SRP064975 98 V3-V4 China, Shanghai
PRJNA325650 SRP076561 50 V3-V4 Malaysia
PRJNA404030 SRP117763 29 V3-V4 New Zealand
PRJNA445346 SRP137015 211 V3-V5 U.S.A.
total 484
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data analysis
Amplicon Sequence Variants (ASVs) were generated
with the R Bioconductor package dada2, version 1.12.1
with recommended parameters [McMurdie, Paul J et al.
2016], involving quality trimming, discarding of se-
quences with N’s, assembly of forward and reverse se-
quences and contamination and chimera removal. The
top 50,000 ASVs per data set were retained for fur-
ther analysis, involving multiple alignment with mafft,
version 6.603b [Katoh et al. 2009] and approximately-
maximum-likelihood phylogenetic tree generation with
FastTreeMP, version 2.1.11 [Price, Morgan N et al.
2010], both with default settings.

Taxonomic classification of ASVs were performed
by cur|sor version 1.00, an in-house Python and R
program using random forest (RF) based supervised
learning on RDP release 11.5. Resulting classifications
are available from the github repository https://github.
com/GeneCreek/GC-manuscript in the form of R data
objects.

UniFrac distances were computed using the R Bio-
conductor package phyloseq, version 1.28.0 [McMur-
die and Holmes 2013] on raw ASVs. Further analy-
sis used counts and relative abundances summarized
at the species level, using the cur|sor provided taxo-
nomic classifications.

Dirichlet Multinomial Mixtures (DMMs) were
computed with the R bioconductor package
DirichletMultinomial, version 1.26.0 [Holmes et al.
2012], using default parameters.

Downstream classification was performed using the
R caret package, version 6.0.84, provided rf model.
Variable (taxa) importance was estimated using the
meandecrease in node impurity. Multiclass area-under-
the-curve (AUC) [Hand and Till 2001] was computed by
the R package pROC, version 1.15.3.

Ecological networks were computed using inverse
covariance with SPIEC-EASI [Kurtz et al. 2015] as incor-
porated in the R Bioconductor package SpiecEasi, ver-
sion 1.0.7, using default parameters.

For the nitrosating status of species, we required
that at least one non-redundant genome for the species
carries aUniProt annotated nitrate reductase alpha unit
gene (narG) [Calmels et al. 1988].

Co-exclusion and co-occurrence between species for
probiotics compositionwere computed using χ2 testing
on detectable presence of species in samples.

Results
Pathogens in gastric mucosa
Among the species with highest prevalence in gastric
mucosa of healthy individuals (n=85), we found a sub-
stantial number of opportunistic pathogens, with the
majority being known as periodontal pathogens. Fig-
ure 1 depicts the distribution of prevalence and rela-
tive abundances of the top 20 periodontal and other
pathogens. Whereas the position of H. pylori is obvi-
ously not a surprise, the 60% prevalence of the skin
pathogen P. acnes (recently renamed to Cutibacterium
acnes) is unexpected. The position of F. nucleatum
among the top four pathogens is also remarkable.

Gastric mucosa community types
We applied unsupervised clustering to investigate mi-
crobial gastric mucosa community structure, irrespec-
tive of sample disease status. In brief, using Dirichlet
Multinomial Mixtures, we obtained an optimal good-
ness of fit at k=5 communities according to the Laplace
evaluation, supplemental Fig. S1. Assigning per sam-
ple community types accordingly, we then retrieved the
top 100 most important species. We assigned species
to community types by maximum contribution. Inter-

Haemophilus influenzae
Treponema denticola

Parvimonas micra
Prevotella intermedia
Gemella morbillorum

Filifactor alocis
Veillonella parvula

Tannerella forsythia
Streptococcus mitis

Campylobacter curvus
Porphyromonas endodontalis

Actinomyces odontolyticus
Prevotella melaninogenica

Streptococcus parasanguinis
Peptostreptococcus stomatis

Campylobacter concisus
Fusobacterium nucleatum

Fusobacterium periodonticum
Helicobacter pylori

Propionibacterium acnes

0.1 0.2 0.3 0.5 0.8

prevalence
0.0001 0.001 0.01 0.1 1

relative abundance
Figure 1: Distribution of prevalence and relative abundance of pathogens in healthy individuals.
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actions between these species were retrieved from the
SPIEC-EASI ecological network constructor, which oper-
ated independently from the community structure on
all 1,544 samples. Figure 2 depicts the correspondence
between community types and the interaction network.

dmm 1 dmm 2 dmm 3 dmm 4 dmm 5

Figure 2: Interaction network between species relevant for commu-
nity types. The top 100 species relevant for distinction between
the five community types are displayed. Periodontal and other
pathogens are labelled.

Table 3: Distribution of periodontal and other pathogens and ni-
trosating bacteria over community types.

comm. type periodontal other nitrosating
dmm 1 3 2
dmm 2 1
dmm 3 3 9
dmm 4 20 5 8
dmm 5 2 1

The first two community types are dominated by a
few species mostly without interaction. The majority
of healthy donor samples was located in community
type one, together with tumor samples. For commu-
nity types one and two the dominating species was He-
licobacter pylori, with levels exceeding 50%, Fig. S12.
Community type two had the lowest phylogenetic diver-
sity of all community types, Fig. S2. The remaining three
community types are subject to significant interaction
between species, mostly within the corresponding com-
munity type. Community type four received the major-
ity of periodontal pathogens, whereas community types
three and four harbor the most abundant nitrosating
species, Table 3.

Of note, community types three and five received
contributions from a single study each, Table 4. Hence,

although we find multinomial mixtures and inverse co-
variance networks were in good agreement for over-
all gastric microbiota composition, we observed poten-
tially only a subset of regionally or otherwise deter-
mined gastric microbiota. Among the top 100 differenti-
ating species we found 62 distinct genera, further high-
lighting the diversity. Table S1 lists the 18 genera with
more than one species.

Table 4: Distribution of community types across studies. The five
community types are in columns.

study dmm 1 dmm 2 dmm 3 dmm 4 dmm 5
ERP023334 10 30 81
ERP023753 16 5 13
ERP024440 1 13 18
SRP070925 2 117
SRP128749 635 34
SRP154244 83 179 39
SRP165213 23 9
SRP172818 155 17 1
SRP200169 42 21

Anatomical locations
Data set SRP154244 presents samples from different
anatomical gastric locations in patients with gastritis, in-
testinal metaplasia and gastric cancer. We investigated
if microbial signatures cluster by gastric location using
random forest (RF) models and ecological networks, Ta-
ble S3 and Fig. S3. Although we observed segregation
between interacting antral curvature species on the one
hand and corpus/antrum species on the other hand, it
does not seem we can explain the distribution of data
sets over the community types by difference in anatom-
ical location alone.

Disease progress
Data set SRP070925 contains gastric mucosa samples
(n=119) from patients with gastritis, intestinal metapla-
sia, early gastric cancer and advanced gastric cancer.
We combined this data set with data set SRP200169,
containing gastric mucosa samples (n=63) from healthy
subjects. Both are from Chinese cohorts and have
been analysed using the 16S variable regions V3-V4
combined on the Illumina MiSeq. Performing multi-
dimensional scaling on unweighted UniFrac distances,
we found the disease stages are well separated, Fig. S5.

We performed supervised learning of disease
progress status with random forests on two thirds
of the combined data set, with evaluation on the re-
maining third. Relative abundances summarized at the
species level were used as the analysis substrate. Table
5 provides the classification results. Metaplasia were
confounded with gastritis and early cancer, whereas
advanced cancer samples were in part classified as
early cancer. Healthy, gastritis and early cancer sam-
ples were well classified, resulting in an overall multi-
class AUC of 0.936.
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Table 5: Classification results on the disease stage evaluation sub-
set, data set SRP070925. Predictions are in columns. Multiclass
AUC:0.936.

stage healthy gastritis meta-
plasia

early
cancer

adv.
cancer

healthy 22
gastritis 10
metaplasia 4 2 3
early
cancer

7 1

advanced
cancer

5 7

Sample disease location
Data set SRP128749 contains gastric mucosa samples
(n=669) from GC patients and comprises triplet tumor,
peripherical and normal samples. We added biop-
sies from healthy subjects to this cohort, again using
data set SRP200169, to challenge the idea that GC nor-
mal reflects entirely healthy tissue. Performing multi-
dimensional scaling on unweighted UniFrac distances,
we found the disease locations show interesting sepa-
ration, Fig. S4. We performed two supervised learning
experiments on the combined data set, one with a two-
thirds training, one-third evaluation setup and a second
using one additional data set SRP172818 (n=173) also
containing triplets as the cross-validation set. All three
data sets are from Chinese cohorts and have been anal-

ysed using the 16S variable regions V3-V4 combined on
the Illumina MiSeq.

Table 6 provides the classification results on the
combined SRP128749 and SRP200169 data set. The
model performs with a multi-class AUC of 0.842. Just
one healthy sample is confounded as a normal sam-
ple. The model performance increased to an AUC of
0.906 when trained on the whole combined data set
and cross-validated on the SRP172818 data set, Table
7. None of the GC normal samples were confounded
with samples from healthy donors.

Table 6: Combined SRP128749 and SRP200169 evaluation results.
Predictions are in columns. Multiclass AUC:0.842

status healthy normal peripherical tumor
healthy 22 2 4
normal 1 37 20 11
peripherical 3 10 35 20
tumor 11 23 46

Table 7: SRP172818 cross-validation results. Predictions are in
columns. Multiclass AUC:0.906

status healthy normal peripherical tumor
healthy
normal 45 8 4
peripherical 7 41 9
tumor 4 7 48
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Fs. nucleatum
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Figure 3: Disease status discriminating species. Data sets a) SRP172818 and b) SRP128749. Only species with interactions are displayed.
Location associations are based on maximum mean relative abundance. Co-exclusion is indicated in red.

4/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.23.003426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003426
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript under review

Species relevant in GC
We disposed of four data sets allowing for the associa-
tion of species with tumor status, whether from a dis-
ease progress or disease location standpoint. In brief,
we processed data sets individually and retrieved the
top 50 differentiating species from the random forest
models, trained on the data set as a whole. We gener-
ates ecological networks using these top species, retain-
ing only connected nodes for display.

Figure 3 provides the interaction network of the
disease location data sets SRP172818 and SRP128749,
showing reproducible tumor association of, and inter-
action between, the oral species F. nucleatum, P. micra,
P. stomatis and Catonella morbi. Correlation indicates
the interaction is cooperative.

Supplemental Fig. S7 and Fig. S8 provide the same
analysis for the disease progress data sets SRP070925
and ERP023334, respectively, in the first of which we
found P. melaninogenica associated with advanced can-
cer status and in the second F. nucleatum with cancer
status.

Prevalence differences
An alternative take on the species differentiating be-
tween disease states, using χ2 testing of difference in
prevalence, is presented in Tables S4-S7. P. acnes is
reproducibly found at over 61% in GC tumor samples,
whereas P. stomatis is found at over 54%, P. micra over
37% and F. nucleatum over 35% in GC tumor samples.
The presence of all four roughly doubled over their
baseline prevalence in normal samples, Tables S4 and
S5.

Comparison with colorectal cancer
We tested five colorectal cancer (CRC) data sets for
presence and interactions of F. nucleatum, P. micra
and P. stomatis. All five data sets SRP117763 (n=34,
tumor-only) [Purcell et al. 2017], SRP137015 (n=211,
tumor/peripherical/normal) [Hale et al. 2018b;a],

SRP076561 (n=50, tumor/normal) [Drewes et al. 2017],
ERP005534 (n=96, tumor/normal) [Zeller et al. 2014]
and SRP064975 (n=98, tumor/peripherical/normal) [Lu
et al. 2016] have been subject to publication. We found
F. nucleatum in interactionwith P. stomatis in SRP137015
and P. micra in interaction with P. stomatis in data sets
SRP117763 and SRP076561, Fig. S10. Prevalence of F.
nucleatum was found at 70% or more in tumor samples
in SRP117763, Table S8, at 48% in tumor samples in
SRP137015, Table S9 and at 73% in tumor samples in
SRP076561, Table S10.

Listing themost abundant cancer associated species
in GC and CRC, the intersection between the two cancer
types was formed by F. nucleatum, P. micra and P. stom-
atis, Table 8.

Table 8: Correspondence between GC- and CRC-associated species.
Numbers reflect the number of datasets in which the species is found
associated, out of four possible. Species found in more than one
dataset and with relative abundance > 0.5% in cancer are listed.

species GC CRC
Bacteroides fragilis 2
Bacteroides ovatus 3
Brevundimonas vesicularis 2
Escherichia coli 2
Fusobacterium nucleatum 3 3
Gemella morbillorum 3
Parvimonas micra 2 3
Peptostreptococcus stomatis 2 2
Prevotella intermedia 2
Propionibacterium acnes 2

Eradication therapy
Data set SRP165213 provides mucosa samples, pre-
and post bismuth quadruple H. pylori eradication ther-
apy. Using χ2 testing of difference in prevalence, we
found several bacteria, including the expected H. pylori,
exhibit an important drop in prevalence, Table 9. P.
stomatis, P. micra and F. nucleatum on the other hand
showed a moderately significant prevalence increase.

Table 9: prevalence differences between before and after Hp eradication, SRP165213.

species association pvalue before after count
Helicobacter pylori before 3.8e-06 *** 17/17 (100.0%) 2/15 (13.3%) 19
Brevundimonas diminuta before 1.7e-05 *** 17/17 (100.0%) 3/15 (20.0%) 20
Sphingobium yanoikuyae before 1.3e-03 ** 13/17 (76.5%) 2/15 (13.3%) 15
Sphingomonas yabuuchiae before 4.6e-03 ** 13/17 (76.5%) 3/15 (20.0%) 16
Sphingobium xenophagum before 9.5e-03 ** 11/17 (64.7%) 2/15 (13.3%) 13
Propionibacterium acnes before 1.0e+00 14/17 (82.4%) 12/15 (80.0%) 26
Bifidobacterium adolescentis after 1.0e-04 *** 2/17 (11.8%) 13/15 (86.7%) 15
Ruminococcus bromii after 3.0e-04 *** 4/17 (23.5%) 14/15 (93.3%) 18
Dorea longicatena after 3.6e-04 *** 1/17 (5.9%) 11/15 (73.3%) 12
Leptotrichia wadei after 5.8e-03 ** 0/17 (0.0%) 7/15 (46.7%) 7
Peptostreptococcus stomatis after 3.4e-02 * 5/17 (29.4%) 11/15 (73.3%) 16
Parvimonas micra after 8.2e-02 0/17 (0.0%) 4/15 (26.7%) 4
Fusobacterium nucleatum after 5.2e-01 5/17 (29.4%) 7/15 (46.7%) 12
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Modulation of the gastric mucosa microbiome
Using prevalence data from 17,800 gut samples, in-
cluding the samples used in this study, we probed for
qualified presumption of safety (QPS) species found in
co-exclusion with the species of interest panel identi-
fied above. Figure 4 shows the result. Bifidobacterium
longum appears as the most promising QPS species,
followed by Streptococcus salivarius both of which are
being used in probiotic products and are actually de-
tectable in gastric mucosa samples, see Fig. 3b for B.
longum.
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Br. vesicularis
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H
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Lctb. animalis
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Figure 4: Co-exclusion by and co-occurrence with QPS species of GC
associated species. Putative inhibition is in shades of red, potential
synergy in shades of green. White reflect neutrality or too little com-
bined prevalence to make a call. Genera are abbreviated as follows:
Bcl.: Bacillus, Bf.: Bifidobacterium, Gb.: Geobacillus, Lcn.: Leuconostic,
Lctb.: Lactobacillus, Lctc.: Lactococcus, Pd.: Pediococcus, S.: Strepto-
coccus.

Discussion
In this above, we revisited public gastric mucosa and
colorectal cancer data sets, taking into account recent
advances in processing of amplicon metagenomic se-
quences [Callahan et al. 2017], establishing species level
taxonomic classification.

Limitations. Use of a healthy cohort analyzed as a sepa-
rate batch and fromadifferent regional cohort does not
allow to control for batch- or regional effects in super-
vised learning. Regional clustering of GCmicrobiota has
been reported previously [Yu et al. 2017]. So our case
that samples from healthy donors are distinct from GC
normal samples in GC patients is a delicate case. For
confirmation of this hypothesis, healthy donors need
to be recruited from the same population as the GC pa-
tients.

P. acnes has been proposed as a possible contami-
nant of many experiments [Mollerup et al. 2016]. That
does not mean we need to discard the bacterium alto-
gether, notably not if it shows significant increase in tu-
mor sample locations as in data sets SRP172818 and
SRP128749, but it could mean its baseline presence is
overestimated and hence its status as a gastric mucosa
commensal [Delgado et al. 2011]. Its position as a preva-
lent but low abundant species in healthy subjects gives
credit to the contamination thesis.

Four subspecies are known for F. nucleatum. Our tax-
onomic classifier does not resolve down to the level of
subspecies, so all counts and relative abundances for F.
nucleatummay conceal different subspecies, moreover
so since in CRC, multiple subspecies have been isolated
from biopsies [Brennan and Garrett 2019].

Helicobacter pylori. In all data sets, we found gastricmu-
cosa samples completely exempt of H. pylori, including
in normal and peripherical samples, which opens the
possibility that other pathogens play a role in GC. We
did not find H. pylori in significant interaction, which
is unexpected and discrepant to findings on the same
data set SRP128749 reported [Liu et al. 2019]. We at-
tribute this discrepancy to the use of a more stringent
ecological network inference [Kurtz et al. 2015]. On the
other hand, report has been made that H. pylori pres-
ence did not affect microbial community composition
[Bik et al. 2006]. So it seems that although H. pylorimay
create oncogenic conditions through host interaction,
there does not seem to be a direct benefit or detriment
of such conditions for other bacteria.

Cohort specific species. Our results show species found
in gastric mucosa have a strong cohort specific com-
pound. Within cohort prediction of sample disease sta-
tus or location status based on the microbiome compo-
sition is performing well with AUCs over 0.8, so despite
its diversity, there is a clear sample status signature in
the microbiome composition.
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Nitrosating species. Nitrosating bacteria convert nitro-
gen compounds in gastric fluid to potentially carcino-
genic N-nitroso compounds (NOCs), which contribute to
gastric cancer [Mowat et al. 2000]. We found nitrosating
bacteria were not uniformly distributed over gastricmu-
cosa community types. Community type four combines
nitrosating species with periodontal pathogens and can
be considered as the highest GC risk community type.

Periodontal and CRC pathogens. It has been reported
that among patients with periodontal disease, high lev-
els of colonization of periodontal pathogens are associ-
ated with an increased risk of gastric precancerous le-
sions [Salazar et al. 2013]. We found the periodontal
pathogens F. nucleatum, P. micra and P. stomatis to be
commensal but also associated with tumor status and
in direct interaction in several data sets. These three
species were also found in association with tumor sta-
tus in CRCdata sets revisited and correspondwith a CRC
subtype with strong immune signature [Purcell et al.
2017]. Revisiting the CRC data sets, we found in part the
same interactions as in GC. Two recentmeta-analysis of
CRC case-control studies placed F. nucleatum, P. micra
and P. stomatis among the top five carcinoma enriched
species [Drewes et al. 2017,Wirbel et al. 2019]. F. nuclea-
tum and P. stomatis have also been proposed among a
panel of species for early detection of CRC [Zeller et al.
2014].

Virulence. The gram negative bacterium F. nucleatum
promotes tumor development by inducing inflamma-
tion and host immune response in the CRC micro-
environment. Its adhesion to the intestinal epithelium
can cause the host to produce inflammatory factors
and recruit inflammatory cells, creating an environment
which favors tumor growth. Treatment of mice bearing
a colon cancer xenograft with the antibiotic metronida-
zole reduced Fusobacterium load, cancer cell prolifera-
tion, and overall tumor growth [Bullman et al. 2017]. F.
nucleatum can induce immune suppression in gut mu-
cosa, contributing to the progression of CRC [Wu et al.
2019]. In CRC, F. nucleatum is predicted to produce
hydrogen sulfide (H2S) [Hale et al. 2018b], which is a
metabolite with a dual role, both carcinogenic and anti-
inflammatory. Epithelial cells react to F. nucleatum by
activation of multiple cell signaling pathways that lead
to production of collagenase 3, increased cell migration,
formation of lysosome-related structures, and cell sur-
vival [Uitto et al. 2005].

Furthermore, it is predicted F. nucleatum infection
regulates multiple signaling cascades which could lead
to up-regulation of proinflammatory responses, onco-
genes,modulation of host immunedefensemechanism
and suppression of DNA repair system [Kumar et al.
2016]. There does not seem to be a reason why F.
nucleatum would not be pathogenic in gastric tissue
whereas it is in periodontal, respiratory tract, tonsils, ap-
pendix, colonic and other tissues [Han 2015].

The gram positive anaerobe P. stomatis has been

isolated from a variety of periodontal and endodon-
tic infections, as well as infections in other bodyparts
[Downes and Wade 2006]. The species has been found
associated with oral squamous cell carcinoma (OSCC)
[Pushalkar et al. 2012]. At present, little is known about
the specifics of its pathogenicity. The type strain (DSM
17678) genome harbors a gene (mprF, phosphatidyl-
glycerol lysyltransferase) producing lysylphosphatidyl-
glycerol (LPG), a major component of the bacterial
membrane with a positive net charge. LPG synthesis
contributes to bacterial virulence as it is involved in
the resistance mechanism against cationic antimicro-
bial peptides produced by the host’s immune system
and by competing microorganisms. Contrary to other
Peptostreptococci, P. stomatis does not produce intesti-
nal barrier enforcing indole-3-propionic acid (IPA) or in-
doleacrylic acid (IA) [Wlodarska et al. 2017].

P. micra, previously known as (Pepto)streptococcus
micros, is a gram positive anaerobe which is known to
be involved in periodontal infections. It has also been
isolated fromOSCC [Hooper et al. 2007]. It is a producer
of collagenase and of limited elastolytic and hemolytic
activity [Ota-Tsuzuki and AlvesMayer 2010]. In amouse
CRC model, P. micra elicited increased Th2 and Th17
cells, decreased Th1 cells and increased inflammation
[Yu et al. 2019].

The oral cavity as reservoir. It has been shown that in
a number of cases (6/14, 43%) identical F. nucleatum
strains could be recovered from CRC and saliva of the
same patients [Komiya et al. 2019]. Furthermore, the
oral microbiome composition is to a certain extent pre-
dictive for CRC disease progress status [Flemer et al.
2018]. It is tempting to speculate that a similar relation-
ship could be explored for disease progress in GC.

Biofilm formation. F. nucleatum is regarded as a central
organism for dental biofilm maturation due to its wide
ability to aggregate with other microorganisms, such as
Porphyromonas gingivalis [Tavares et al. 2018]. It is con-
sidered as a bridge bacterium between early and late
colonizers in dental plaque [He et al. 2016]. The eventu-
ality of H. pylori- and non H. pylory biofilm formation in
the gastric environment has been raised [Rizzato et al.
2019]. Our ecologic interaction networks suggests F. nu-
cleatum and other bacteria, but not H. pylori, could in-
deed engage in gastric mucosa biofilms and more par-
ticularly in GC biofilms.

Antibiotherapy. Helicobacter pylori eradication therapy
has been shown to have a prophylactic effect against
GC [Kwok et al. 2008]. The first-line therapy con-
sists of a proton pump inhibitor (PPI) or ranitidine bis-
muth citrate, with any two antibiotics among amoxi-
cillin, clarithromycin and metronidazole. Peptostrepto-
coccus stomatis is sensitive to amoxicillin and metron-
idazole [Könönen et al. 2007]. F. nucleatum is sensi-
tive to amoxicillin or amoxicillin/clavulanate combina-
tion therapy [Jacinto et al. 2008] and to metronidazole
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[Shilnikova and Dmitrieva 2015, Bullman et al. 2017].
Parvimonas micra is sensitive to amoxicillin/clavulanate
and metronidazole [Veloo et al. 2011]. However, with
the oral cavity as a reservoir, periodontal pathogens
could recolonize the gastric environment and take ad-
vantage of the space cleared by H. pylori, which is what
our data suggests.

Probiotics use. We predicted in silico that several QPS
species could be effective against the spectrum of H. py-
lori and the periodontal pathogens discussed above. A
long term maintenance formula using probiotics after
an antibiotics eradication course can be of interest as
a treatment option. A variety of Bifidobacterium longum
strains are used in several probiotic preparations com-
mercially available and Streptococcis salivarius strain K12
[Burton et al. 2006] is also commercially available.

Conclusion. In conclusion, we found disease progress
and sample disease status is not reflected in the over-
all bacterial community type of mucosa. Rather, com-
munity types are populated by potentially regionally
distinct species. Despite this diversity, we found peri-
odontal pathogens as a common denomicator. These
pathogens were also identified in CRC, establishing pos-
sible microbial similarities between subtypes of GC and
CRC, with implications for etiology, treatment and pre-
vention. Interaction networks suggest these species, as
in dental plaque and in CRC, engage in biofilm forma-
tion in gastric mucosa. Probiotics should be considered
as a treatment option, after H. pylori eradication ther-
apy, to avoid recolonization by periodontal pathogens.
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