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Abstract 

Protein quantification via label-free mass spectrometry (MS) has become an increasingly popular 

method for determining genome-wide absolute protein abundances. A known caveat of this 

approach is the poor technical reproducibility, i.e. how consistent the estimations are when the 

same sample is measured repeatedly. Here, we measured proteomics data for Saccharomyces 

cerevisiae with both biological and inter-batch technical triplicates, to analyze both accuracy and 

precision of protein quantification via MS. Moreover, we analyzed how these metrics vary when 

applying different methods for converting MS intensities to absolute protein abundances. We found 

that a simple normalization and rescaling approach performs as accurately yet more precisely than 

methods that rely on external standards. Additionally, we show that inter-batch reproducibility is 

worse than biological reproducibility for all evaluated methods. These results subsequently serve 

as a benchmark for assessing MS data quality for protein quantification, whilst also underscoring 

current limitations in this approach. 
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Introduction 

Mass spectrometry (MS) is currently the main technology for determining genome wide protein 

copy number per cell, thanks to its high sensitivity, specificity, and multiplexing capacity [1]. 

Among the different available MS technologies, quantitative label-free methods have become 

increasingly popular, due to their relative ease of use and cost-effectiveness, particularly when they 

are compared to more expensive and laborious methods, as using isotope-labeled peptides [2]. In 

quantitative label-free approaches,  normalization of the raw data is a critical step in determining 

protein absolute estimates [3–6]. Two fundamental metrics for assessing the quality of protein 

estimates are: (i) accuracy, i.e. how far away from the true value the prediction is, and (ii) precision, 

i.e. how variable different estimates are when the same measurement is repeated (also referred to 

as reproducibility) . 

When estimating absolute (non-relative) protein abundances using MS, there are several factors 

that affect the precision and accuracy of quantification: i) the intrinsic biological nature of the 

proteome, which spans the dynamic range of several orders of magnitude in protein abundances; 

ii) the physicochemical nature of amino acids, as peptide molecules have different ionization 

properties (i.e. two similarly abundant molecules might have different responses); and iii) the 

differences in MS instrumentation (e.g. Orbitraps versus time-of-flight instruments), 

chromatography and experimental protocols. All of the above factors yield only modest results in 

MS-based analyses when comparing predictions to the true protein concentrations values [7–9], 

and a large level of variability across different studies [7,10,11]. 

Studies that compute absolute protein abundance commonly address biological reproducibility by 

running biological replicates in the same MS batch [7,12,13]. Awareness however of the impact of 

the MS instrument, i.e. technical reproducibility, has been less studied. This can be determined by 

running the same biological sample in the same batch [14], or in separate batches [15]; the latter 

often referred to as “the batch effect”. As different normalization/scaling methods can be used to 

estimate protein abundance from raw MS intensities [16], it is interesting to study how these 

methods propagate the inter-batch technical variability into uncertainty in the final protein 

abundance estimates. In this study, we analyze both accuracy and technical precision of intensity-

based absolute quantification of a proteomics dataset from S. cerevisiae, and show how prediction 

quality can be improved using different normalization/scaling methods. In particular, we show that 
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a simple rescaling method [5] performs as accurately but more precisely than alternatives that rely 

on the use of costly external standards. 

 

Methods 

We generated a proteomics dataset using the S. cerevisiae’s strain CEN.PK113-7D, with multiple 

biological and technical replicates. Samples were obtained from aerobic glucose-limited 

chemostats at a dilution rate of 0.1 h-1, in triplicate, and mixed with an internal standard (IS), using 

stable isotope labeling by amino acids in cell culture (SILAC). Here, a lysine auxotrophic strain 

was grown in medium supplemented with double labelled heavy 15N, 13C-lysine (Cambridge 

Isotope Laboratories Inc.); samples were then mixed in a 1:1 ratio with each of the other non-

labelled (“light”) samples. The IS was also mixed with an external standard of known 

concentrations, in a ratio of 6:1.1. The external standard used here was the Proteomics Dynamic 

Range Standard Set (UPS2) mix (Merck), consisting of 48 human proteins in a dynamic 

concentration range from 500 amoles to 50 pmoles. All mixed samples were stored at -80°C until 

analysis, wherein they were similarly processed, to isolate variability from the biology and the MS 

equipment, and not from other sources such as sample preparation differences. 

For proteome identification, samples were digested with 1:50 LysC overnight at room temperature. 

Peptides were then separated on an Ultimate 3000 RSLCnano system (Dionex), eluted to a Q 

Exactive Plus (Thermo Fisher Scientific) tandem mass spectrometer, and identified with the 

MaxQuant 1.4.0.8 software package [17], maintaining the peptide-spectrum match and the protein 

false discovery rate below 1% using a target-decoy approach. Each sample was measured six times: 

on three separate batches of the MS instrument (with a time difference of 12 and 30 days), and each 

time twice, using Top5 and Top10 data-dependent acquisition strategies, wherein only the top five 

or ten highest intensity peptide peaks per one MS full scan were selected for MS/MS analysis, 

respectively. 

Using the described data as a reference, we then evaluated the ability of four different methods for 

transforming the MS intensity computed by MaxQuant (which corresponds to the sum of all 

associated peptide intensities) to protein abundances of the internal standard. The first method, 

known as intensity based absolute quantification (iBAQ) [3], normalizes each protein MS intensity 

by the corresponding number of theoretically observable peptides, then infers the abundances of 
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each internal standard protein using a linear model generated from the external standard 

(normalized protein MS intensity vs. known protein quantities). As this method yields abundances 

that do not always add up to equal amounts of protein injected per sample (Figures S1 – S2), a 

second method was also assessed that rescales all abundances from iBAQ to equal the total injected 

mass. The third method tested was the total protein approach (TPA) [18], which bypasses the need 

for an external standard and instead assumes that the sum of MS intensities of all detected proteins 

multiplied by the corresponding molecular weights should be proportional to the total amount of 

protein injected. Finally, the fourth method analyzed is a variation of the TPA method [5], which 

first normalizes protein intensities with the number of theoretically observable peptides. 

log10(Pi1) = mES ∙ log10 (
Ai

Ni
) + nES          [Method 1] 

Pi2 =
PT

∑ (MWi ∙ Pi1)i
∙ Pi1          [Method 2] 

Pi3 =
PT

∑ (MWi ∙ Ai)i
∙ Ai          [Method 3] 

Pi4 =
PT

∑ (MWi ∙
Ai

Ni
)i

∙ (
Ai

Ni
)          [Method 4] 

where Pij is the estimated absolute abundance of protein i by method j [fmol/sample], mES and nES 

are the parameters of the external standard curve, Ai is the sum of all peptide intensities associated 

to protein i, Ni is the number of theoretically observable peptides for protein i, PT is the total injected 

protein mass [pg], and MWi is the molecular weight of protein i [kDa]. Finally, for all methods, 

the sample abundances were calculated based on the corresponding internal (heavy) standard 

abundance and the normalized H/L ratios obtained from each sample run [19] . 

 

Results and Discussion 

Using the generated dataset, we evaluated accuracy and precision of abundances estimated by the 

four different methods. To evaluate accuracy, we computed the differences as fold changes 

between the estimated abundances of the external standard proteins detected by the MS (n=31/48) 

and the known values in the UPS2 mix. Here, Methods 1, 2 and 4 performed similarly, whereas 
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Method 3 had a significantly higher error (Figure 1A, Figure S3). Specifically, more than 50% of 

protein abundance as estimated by Method 3 deviated from the true value by >2-fold. We further 

evaluated the accuracy of each Method by testing protein estimates in the ribosome, a protein 

complex with subunit abundance in equal stoichiometry [20]. Of these subunits, 42 out of 79 were 

detected (accounting for paralogs) and compared to their median abundance value, as the same 

abundance for each subunit should be predicted [21]. Once again, Methods 1, 2 and 4 performed 

similarly, and outperformed Method 3 (Figure 1B, Figures S4 – S5). 

We then proceeded to evaluate precision, by comparing the protein estimates for each biological 

sample between all three batches (Figures S6 – S7). A cumulative distribution of all possible fold 

changes (Figure 1C) showed that Methods 3 and 4 significantly outperformed Methods 1 and 2 (all 

P-values < 0.001). In particular, TPA-estimated protein abundance varied by less than 2-fold for 

nearly 80% of all proteins, whereas in the case of iBAQ this was closer to 60%. Higher inter-batch 

variability of Methods 1 and 2 was observed both for lowly and highly abundant proteins (Figures 

S8 – S9), and can be explained by the additional variability introduced by the external standard 

(Figures S10 – S11), that Methods 3 and 4 did not use. 

Taking the results of accuracy and precision together (Figure 1), we conclude that the best-

performing method is Method 4, which omits use of the external standard and instead rescales the 

normalized MS intensities to equal the injected sample mass. Even though Methods 1 and 2 

perform similarly to Method 4 in terms of accuracy, they are not as precise; and Method 3 although 

precise, is not as accurate. Therefore, considering that iBAQ involves significant additional cost 

(purchase of the external standard and additional MS running time), but does not yield better 

performance, we propose that rescaling normalized MS intensities can be used instead. This 

method can also be used as a benchmark for assessing the predictive power of alternative 

approaches for computing absolute protein abundances from MS methods. 

It is noteworthy that, despite Method 4 outperforming the other approaches presented here, it is by 

no means perfect, with ~20% of estimates still having high technical inter-batch variability, 

indicative of a batch effect that is not fully resolved. In particular, the variability between biological 

replicates in the same MS batch (Figure 2A) is considerably lower than the variability between 

batches of the same biological sample (Figure 2B). This observation can be confirmed with a 

principal component analysis (Figure 2C), wherein samples cluster based on batches, not biological 
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replicates. Although technical variability becomes lowest when using Method 4 (Figure S6, Table 

S1), many protein abundances still show to vary in abundance by more than one order of magnitude 

between batches. This is due to the presence of stochastic and non-linear effects in shotgun 

proteomics [22,23]; therefore, researchers working with computational methods that rely on 

absolute protein abundances [24] should be aware of these limitations and interpret results 

accordingly. 

 

Conclusion 

In conclusion, we present a comprehensive proteomics dataset of yeast, designed for assessment of 

absolute protein quantification in different biological replicates and batches of samples. 

Furthermore, we show that a simple method of normalization and rescaling can yield superior 

results over more complicated and expensive methods such as iBAQ. Finally, as protein intensity 

is used as input, this method can be used on both pre-existing and future datasets regardless of how 

intensity values were generated, including labeled or unlabeled methods. We therefore expect both 

the dataset and method to be useful when assessing accuracy and precision of MS-based proteomics 

approaches. 

All MS data used in this study have been deposited to the ProteomeXchange Consortium via the 

PRIDE [25] partner repository with the dataset identifier PXD011725. Output tables from 

MaxQuant, together with all necessary scripts to reproduce the results presented in this study are 

available at https://github.com/SysBioChalmers/reproduce and have been archived in Zenodo [26]. 
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List of Figures 

Figure 1: Cumulative distributions of fold changes (FC) between predictions of all four methods, 

with respect to (A) accuracy (test 1): estimated vs known values of the external standard (N = 167), 

(B) accuracy (test 2): estimated values vs median estimated value for all ribosomal proteins in the 

samples (N = 731), and (C) precision: all possible combinations between batches (N = 21,320). A 

fold change of 2 is indicated with a vertical dashed line. 

Figure 2: (A-B) Variability between biological replicates (A) and MS batches (B). Fold changes 

within a 2-fold are shown in blue, between a 2-fold and 10-fold in yellow, and above a 10-fold in 

gray. The coefficient of determination (R2) and the median absolute fold change (FCm) are also 

displayed. (C) Principal component analysis of all samples. Different colors refer to different 

batches, and different shapes refer to different biological replicates. The amount of variability each 

of the first 2 components explains is shown as a percentage. 
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