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Abstract 

One challenge in conducting DNA methylation-based epigenome-wide association studies 1 

(EWAS) is the appropriate cleaning and quality-checking of the methylation values to minimize 2 

biases and experimental artifacts, while simultaneously retaining potential biological signals. 3 

These issues are compounded in studies that include multiple tissue types, and/or tissues for which 4 

reference data are unavailable to assist in adjusting for cell-type mixture, for example cerebral 5 

spinal fluid (CSF). For our study that evaluated blood and CSF taken from aneurysmal 6 

subarachnoid hemorrhage (aSAH) patients, we developed a protocol to clean and quality-check 7 

genome-wide methylation levels and compared the methylomic profiles of the two tissues to 8 

determine whether blood is a suitable surrogate for CSF. CSF samples were collected from 279 9 

aSAH patients longitudinally during the first 14 days of hospitalization, and a subset of 88 of these 10 

patients also provided blood samples within the first two days. Quality control (QC) procedures 11 

included identification and exclusion of poor performing samples and low-quality probes, 12 

functional normalization, and correction for cell-type heterogeneity via surrogate variable analysis 13 

(SVA). Significant differences in rates of poor sample performance was observed between blood 14 

(1.1% failing QC) and CSF (9.12% failing QC; p = 0.003). Functional normalization increased the 15 

concordance of methylation values among technical replicates in both CSF and blood.  Likewise, 16 

SVA improved the asymptotic behavior of the test of association in a simulated EWAS under the 17 

null hypothesis. To determine the suitability of blood as a surrogate for CSF, we calculated the 18 

correlation of adjusted methylation values between blood and CSF globally and by genomic 19 

regions. Overall, mean correlation (r < 0.26) was low, suggesting that blood is not a suitable 20 

surrogate for global methylation in CSF. However, differences in the magnitude of the correlation 21 

were observed by genomic region (CpG island, shore, shelf, open sea; p < 0.001 for all) and 22 

orientation with respect to nearby genes (3’ UTR, transcription start site, exon, body, 5’ UTR; p < 23 

0.01 for all). In conclusion, the correlation analysis and QC pipelines indicated that DNA extracted 24 

from blood was not, overall, a suitable surrogate for DNA extracted from CSF in aSAH 25 

methylomic studies.26 
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1 Introduction 1 

The epigenome-wide association study (EWAS) approach has emerged in recent years as 2 

a hypothesis-free method for investigating the associations between epigenetic marks, such as 3 

DNA methylation, and human phenotypes. Challenges pertaining to the cleaning and processing 4 

of methylomic data persist, including issues related to sample quality, controlling for cell type 5 

heterogeneity, comparing methylomic profiles across tissue types, and modeling dynamic 6 

changes in methylation over time. Here, we describe our quality control (QC) pipeline for 7 

processing and quality-checking genome-wide methylation data obtained from samples of blood 8 

and cerebral spinal fluid (CSF) in a cohort of acute subarachnoid hemorrhage (aSAH) patients. 9 

aSAH is a form of stroke leading to variation in clinical outcomes such as cerebral vasospasm, 10 

coma, delayed cerebral ischemia (DCI), cognitive decline, and death (Wermer et al. 2007). 11 

Previous work (Endres et al. 2000; Nelson, Kavalali, and Monteggia 2008; Stapels et al. 2010) 12 

has suggested that changes in DNA methylation occur following aSAH. We hypothesize that 13 

these methylomic changes may be clinically relevant. Therefore, the overreaching goal of this 14 

ongoing initiative is to understand the changes in methylomic profiles occurring after aSAH to 15 

identify biomarkers predictive of prognosis and recovery outcomes. The purpose of this specific 16 

study was to develop and implement a pipeline for cleaning and quality-checking methylomic 17 

profiles derived from CSF tissue and to determine the suitability of peripheral blood as a 18 

surrogate for CSF. 19 

 20 

2 Materials and Methods 21 

 22 

2.1 Study Design Overview 23 

Our study population is comprised of individuals who have sustained an aSAH. Patient 24 

DNA was obtained from two biological tissues, CSF (drained as standard of care) and blood. This 25 

study investigated CSF samples collected longitudinally from 279 patients during the first 14 days 26 

of hospitalization, and blood samples from 88 of these individuals collected within the first day of 27 

hospitalization. Methylomic profiles were obtained using a genome-wide array, from which 28 

methylation levels, quantified as beta-values (i.e., percent methylation) and M-values (i.e., a 29 

transformation of the beta-values, which exhibit beneficial properties for statistical analysis), were 30 

assessed for over 450,000 cytosine-phosphate-guanine (CpG) sites. QC analyses of methylation 31 
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data were performed in the R statistical computing environment using the following packages: 1 

minfi (Aryee et al. 2014), ENmix (Xu et al. 2016) and sva (Leek et al. 2012). After QC, cleaned 2 

methylomic profiles were contrasted between blood and CSF samples to determine the utility of 3 

blood as surrogate for CSF. 4 

 5 

2.2 Patient Recruitment and Sample Collection 6 

Participants were considered for this study if they were admitted to the University of 7 

Pittsburgh Medical Center Neurovascular Intensive Care Unit with an aSAH confirmed by digital 8 

subtracted cerebral angiography and/or head computed tomography (CT) and a Fisher grade 9 

(measure of hemorrhage burden) > 1. Informed consent was obtained from the participant or their 10 

legal proxy using a protocol approved by the University of Pittsburgh Institutional Review Board. 11 

Exclusion criteria included a history of debilitating neurologic disease or subarachnoid 12 

hemorrhage due to arteriovenous malformation, trauma, or mycotic aneurysm.  13 

Daily CSF samples were collected for the first 14 days after aSAH from an external 14 

ventricular drain placed as standard of care and DNA extracted using the Qiamp Midi kit (Qiagen, 15 

Valencia, CA, USA). Venous blood was collected within the first day of hospitalization and DNA 16 

was extracted using a simple salting out procedure. All DNA was stored in 1X TE buffer at 4°C. 17 

This study included 279 aSAH patients. For the CSF samples, we targeted days 1, 4, 7, 10, 18 

and 13 post-aSAH, and substituted samples +/- 1 day when target days were unavailable. Blood 19 

samples collected within the first day of hospitalization after aSAH were included in this study for 20 

88 of the 279 participants.  21 

 22 

2.2.1 Potential Covariate Assessments 23 

The severity of aSAH was assessed by Fisher grade (Fisher, Kistler, and Davis 1980) 24 

employing CT scan to assess hemorrhage burden and by Hunt and Hess scores (Hunt and Hess 25 

1968) to assess symptom burden. Demographic and anthropometric characteristics such as age, 26 

sex, race, height, and weight were collected from medical records (Table 1).  Smoking status was 27 

also collected.  28 

 29 
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2.3 DNA Methylation Data Collection and Plate Design 1 

The Illumina (San Diego, CA) Infinium HumanMethylation450 BeadChip platform was 2 

used to assess the methylation levels at over 450,000 CpG sites in the samples. Methylation data 3 

collection was performed by the Center for Inherited Disease Research (CIDR) of Johns Hopkins 4 

University. Each BeadChip, hereafter referred to as a plate, consists of eight chips of 12 samples 5 

arranged in a layout of six rows by two columns. This enables 96 samples to be run on a single 6 

plate. To avoid plate effects, all blood samples were assayed together on a single plate. CSF 7 

samples were placed across 11 plates using several strategies to reduce the impact of technical 8 

artifacts. First, all longitudinal samples from the same patient were included on the same chip 9 

within the same plate so that longitudinal changes in methylation were not obscured by chip and 10 

plate effects. Second, row and column positioning of samples from the same patient were carefully 11 

assigned to available positions within a chip so that longitudinal changes in methylation were not 12 

confounded with row and column effects. Third, cases and controls for DCI were balanced within 13 

chips using a checkerboard pattern so that DCI was not confounded with row, column, chip, or 14 

plate effects (see Supplemental Figure 1 for the plate map). To gauge technical variation, we 15 

included four control samples of fixed methylation state (0%, 30%, 70%, and 100% methylated) 16 

and four technical replicates (i.e., repeated assays of the same DNA sample) per plate.  Two of the 17 

control samples were placed in the same position across all plates and two were randomly placed. 18 

For the plate of blood samples, all four technical replicates were randomly positioned duplicates. 19 

In contrast, for the 11 plates of CSF samples, three of the four technical replicates were randomly 20 

chosen duplicate samples, and one was the same sample replicated across all 11 plates.  21 

 22 

2.4 Sample Quality Functional Normalization 23 

 ENmix (Xu et al. 2016) was employed to assess the quality of samples in our methylation 24 

study, separately for blood and CSF samples. Samples having bisulphite control intensities less 25 

than 3 standard deviations below the mean of all samples, and/or for which more than 1% of probes 26 

were inadequately detected (i.e., detection p-values > 0.01 or with fewer than 3 beads) were 27 

categorized as low-quality samples. These, along with outliers in total intensity or beta value 28 

distribution were removed from our subsequent analyses (Xu et al. 2016). After the removal of 29 

low-quality and outlier samples, we performed background correction (Xu et al. 2016) to remove 30 

non-specific signals from the total signal, and performed dye bias correction (Xu et al. 2017). 31 
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Sample quality differences by tissue type were tested using Fisher’s exact test on counts of samples 1 

passing or failing all sample QC filters.  2 

We normalized the methylation data to bring Infinium Type I and Type II probes into 3 

alignment and to reduce noise and technical variation due to batch effects (i.e., plate, chip, row, 4 

and column effects). Specifically, we performed functional normalization, an extension of quantile 5 

normalization, which makes use of the control probes on the array to regress out unwanted 6 

variation in the methylation data (Fortin et al. 2014). Whether functional normalization improved 7 

agreement between technical replicates was tested by comparing the squared differences in median 8 

M-values between technical duplicates before and after normalization using a one-sided paired t-9 

test. 10 

 11 

2.5 CpG Site-Level Quality Control  12 

After normalizing the data, we removed CpG sites from our analysis due to: (1) overlap of 13 

methylation probes with known polymorphic sites (which can cause biased methylation 14 

assessments), (2) probes located on the sex chromosomes (to rectify the artifacts arising due to 15 

unequal distribution of gender in the data) (Marabita et al. 2013), (3) cross-reactive probes that 16 

bind to alternate genomic sequences, (4) probes exhibiting multi-modal distributions indicative of 17 

poor quality or bias (Xu et al. 2016) and (5) probes that were inadequately detected (i.e., detection 18 

p-values > 0.01 or with fewer than 3 beads) in more than 1% of samples. Differences in the number 19 

of CpGs passing quality filters was tested using McNemar’s test. 20 

 21 

2.6 Reference Based Cell Proportions for Blood 22 

Blood has a mixture of cell types and DNA methylation-based references have been 23 

established for blood cells. Therefore, to estimate the proportions (cell counts) of each cell type, 24 

we employed Houseman’s reference based method (Houseman et al. 2012) using the functions 25 

available in the minfi package (Aryee et al. 2014) in our blood data. The method is based on using 26 

DNA methylation as a surrogate measure for cell type distributions and outputs the proportion of 27 

cell types: CD4+ T cells, CD8+ T cells, natural killer cells, monocytes, B -cells and granulocytes 28 

in each sample. The proportion of all cell types equals to one for each sample.  29 

 30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005264doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005264
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

2.7 Cell-Type Heterogeneity Correction and Simulated EWAS Under the Null Hypothesis 1 

Owing to the lack of reference methylation data for cell types found in CSF after an aSAH 2 

event we employed surrogate variable analysis (SVA) to perform reference-free adjustment for 3 

cell-type heterogeneity across the samples in blood and CSF data. SVA, as implemented in the sva 4 

R package (Leek et al. 2012), simultaneously models the effects of known sources of variation 5 

(covariates) and unknown sources of variation (i.e., surrogate variables), conditional on a 6 

phenotype of interest. Including the phenotype of interest in this modeling approach is necessary 7 

to prevent the surrogate variables from accounting for variation due to, for example, differences 8 

between cases and controls of disease, so as not to stymie subsequent analyses aimed at detecting 9 

CpG sites associated with case/control status. For examining the utility of surrogate variables in 10 

adjusting for cell-type heterogeneity in the absence of any particular phenotype-specific analyses, 11 

we generated a random trait by randomly permuting one of our observed traits, DCI, to serve as 12 

our outcome of interest. SVA was performed for this simulated trait along with age and gender as 13 

covariates in the context of an EWAS, whereby each CpG was individually tested for association 14 

with the simulated trait. Given the repeated measures in CSF, we grouped the CSF samples into 15 

five subsets centered on their target days (days 1, 4, 7, 10 and 13) and substituted samples +/- 1 16 

day when a sample on the target day was unavailable. The goal of performing SVA cross-17 

sectionally in CSF subsets is to retain the variation in methylation related to time.  EWAS was also 18 

performed for the simulated trait without adjusting for surrogate variables and the distribution of 19 

p-values for SVA-adjusted and unadjusted EWAS scans under the null hypothesis were 20 

qualitatively compared to determine effect of SVA on genomic inflation.  We measured 21 

inflation/deflation using the genomic inflation factor (λ), which is defined as the ratio of the 22 

empirically observed to expected median of the distribution of the test statistic.   23 

 24 

2.8 Comparisons of Blood and CSF Methylation Profiles 25 

We compared the methylation profiles of individuals with blood samples collected within 26 

the first day after hospitalization and CSF samples collected at day 1, 4, 7, 10 and 13. We used 65, 27 

64, 65, 61 and 47 subjects to compare the methylation profiles of blood and CSF at day 1, day 4, 28 

day 7, day 10 and day 13 respectively to facilitate individual level comparison. For this 29 

comparison, we excluded CpG sites with a methylation beta value less than 10% or greater than 30 

90% from all CpGs that passed QC, as methylation at these sites had little variation across samples 31 
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and would not be informative for the analysis. The M-values at each qualifying CpG site were 1 

adjusted for age, sex and the surrogate variables using the aforementioned random trait to remove 2 

unwanted variation, and were then used to calculate correlation coefficients between the blood and 3 

CSF profile.  4 

 5 

3 Results  6 

 7 

3.1 Sample-level Quality Control 8 

A total of 1,012 methylation profiles (including 44 technical replicates) were measured 9 

from CSF samples collected longitudinally from 279 aSAH patients. Additionally, 92 methylation 10 

profiles (including 4 technical replicates) were measured on blood samples in a subset of 88 of 11 

these patients; the majority of these blood samples (77) were sampled between zero and two days 12 

post-hospitalization (Table S1). QC analyses and filtering procedures were performed separately 13 

for CSF and blood samples. Based on low average bisulphite intensity and/or high proportion of 14 

poorly detected probes, we identified 89 (of 1012; 8.8%) poorly performing CSF samples (Figure 15 

1). Additionally, we identified 3 (0.3%) more CSF outliers based on low total intensity. In contrast, 16 

no blood samples (0 of 92; 0%) failed these criteria. Figure 2 displays the beta-value distributions 17 

of all samples collected, based on which one blood and one additional CSF samples were identified 18 

as outliers. In total, poor sample performance was more common for CSF (93 of 1,012, 9.1%) than 19 

for blood (1 of 92, 1.1%), and these differences in quality of methylomic profiling by tissue type 20 

were statistically significant (Fisher’s exact test p = 0.003). Table S1 gives counts of all samples 21 

collected and samples retained after QC, for each collection time day. 22 

After removing low-quality samples, we performed functional normalization to reduce 23 

probe type (Infinium Type I vs. Type II) and batch (i.e., plate, chip, row, and column) effects. The 24 

reduction in chip, row, and column effects can be visualized in the distribution of M-values, before 25 

and after functional normalization, for samples profiled together on a plate (Figure 3). Row effects 26 

are apparent for some chips as increasing means across adjacent samples. For example, before 27 

normalization the third chip from the left in Figure 3A shows strong row effects indicated by means 28 

forming an upwardly sloped trend across the first to fifth samples (which correspond to ascending 29 

rows in the first column), followed by another upwardly sloped trend across the sixth to eleventh 30 

samples (which correspond to ascending rows in the second column).  Functional normalization 31 
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increased concordance in median methylation between 34 technical replicate CSF samples (p = 1 

0.015) (Figure 4). For the 4 technical replicate blood samples, the same trend of increased 2 

concordance after functional normalization was observed; however, this trend was not statistically 3 

significant (p = 0.153).     4 

 5 

3.2 CpG probe-level Quality Control  6 

Individual probes were filtered out of analyses for reasons pertaining to probe design such 7 

as overlap with common single nucleotide polymorphisms (SNPs) and cross-reactivity with off-8 

target genomic positions. Additionally, CpG probes on the sex-chromosomes were excluded. 9 

Based on QC analyses, CpG probes with multimodal beta-value distributions, low detection 10 

quality across samples, and high technical variation across replicate samples were also filtered out 11 

of analyses. CpG probe-level filtering criteria are summarized in Table 2.  For each QC filtering 12 

step, and overall, fewer CpGs were filtered out in blood than in CSF (p < 2.2 x 10-16 for all), 13 

indicating that CSF samples may yield somewhat lower-quality methylation data, as is also evident 14 

in Figure 1. 15 

 16 

3.3 B-cell Leukemia Outlier 17 

Estimated blood cell type proportions using the reference-based method followed 18 

expectations for all blood samples with one exception, which showed high B-cell composition in 19 

analysis. Further clinical investigation confirmed the presence of chronic lymphocytic leukemia 20 

(CLL) in the individual, which is known to cause increased proliferation of B cells in blood, bone 21 

marrow and other lymphoid tissues (Zhang and Kipps 2014; Ciccone et al. 2014; Hallek 2015; 22 

Greenberg and Probst 2013; Ghia and Hallek 2014). Samples from this participant were excluded 23 

from further analyses. 24 

 25 

3.4 Adjustment for Cell Type Heterogeneity 26 

Because methylomic profiles differ widely by cell type, modeling cell type heterogeneity 27 

across samples is crucial for valid cross-sample analyses of methylation data. However, external 28 

cell type-specific reference data was not available for post-aSAH CSF for use in reference-based 29 

adjustment. Therefore, we performed reference-free adjustment using SVA to remove unknown 30 

sources of variation including cell type heterogeneity. We further excluded technical replicates 31 
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from all samples that passed QC, leaving 70 blood samples and 154, 246, 217, 152, and 95 CSF 1 

samples for days 1, 4, 7, 10 and 13 respectively. Ten surrogate variables (SVs) were generated for 2 

the set of blood samples, and 13 SVs were generated for day 1 CSF samples. Fifteen, 15, 14 and 3 

10 surrogate variables were generated for CSF samples for day 4, 7, 10 and 13 respectively. To 4 

determine the benefit of SV-adjustment, we interrogated its effect on CpG site association tests 5 

under the null model of no association by simulating a dummy binary phenotype similar to the 6 

distribution of DCI and performing EWAS, with and without including SVs as covariates. The 7 

behavior of the test statistic better followed the null distribution after SV-adjustment, as shown in 8 

quantile-quantile plots (Figure 5). Specifically, genomic inflation factor (λ) improved from 1.11 9 

to 0.98 in the set of blood samples, and improved from 0.73 to 0.99 in the set of CSF samples 10 

within two days after hemorrhage (Figure 5) and likewise in other CSF subsets (Supplemental 11 

Figures 2 and 3). Genomic deflation may be caused by sources of variation including cell type 12 

heterogeneity that cause correlation across CpG sites within a sample, equating to a reduction in 13 

the effective number of independent tests. These results show that in the absence of reference data, 14 

SVA aids in controlling the adverse impact of cell-type heterogeneity and other sources of 15 

unwanted variation on tests of epigenetic association.   16 

 17 

3.5 Correlation was low when comparing DNA methylation of post-aSAH blood and CSF 18 

   Following our long-term goal of understanding the methylomic changes occurring across 19 

tissues after aSAH, we explored the suitability of peripheral blood collected within the first day of 20 

hospitalization as a surrogate for the normally less accessible longitudinally collected CSF based 21 

on the correlation of adjusted M-values between the two tissue types obtained from aSAH patients. 22 

Specifically, we compared the methylation profile of blood collected within 48h of hospitalization 23 

versus CSF samples collected at day 1, 4, 7, 10 and 13 post rupture respectively. Table 3 24 

summarizes the numbers of CpGs used and the correlation coefficients for each day. In general, 25 

the mean correlation (0.23 - 0.26) was too low to use blood as a surrogate for post-aSAH CSF in 26 

a global manner.  27 

Differences were observed in the magnitude of the correlation by genomic position (CpG 28 

island, shore, shelf, and open sea; p < 0.001 for all), with islands and shores showing greater 29 

positive correlation than shelves and seas (Figure 6, Supplemental Figures 4-7).  Similarly, the 30 

magnitude of the correlation differed by the orientation of CpG with respect to the nearest gene 31 
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([3’ UTR, TSS, Exon, Body, 5’UTR], p < 0.01), with CpG sites near the transcription start site or 1 

first exon showing greater inter-tissue correlation than CpG sites in the upstream, downstream or 2 

in the body of genes. The CpGs sites upstream or in the body of genes, in turn, showed greater 3 

correlation than CpG sites downstream of the gene.  4 

 5 

4 Discussion 6 

Our protocol demonstrated the value of several QC procedures in obtaining clean and 7 

useful methylation data for subsequent scientific analyses. In particular, in addition to quality 8 

filters at the sample and CpG probe level, we showed that functional normalization was helpful in 9 

reducing batch effects for both blood and CSF.  Likewise, SVA was useful for adjusting for 10 

unknown sources of variation, including cell type heterogeneity, as evidenced by improved 11 

genomic inflation factor for a simulated EWAS scan under the null hypothesis. This observation 12 

is particularly important for studies of tissue types, such as CSF, that are underrepresented in the 13 

methylomics literature, and for which external cell type reference data are not yet available. We 14 

also provided evidence that, overall, CSF samples yielded lower-quality methylomic data than did 15 

blood samples.  This observation may reflect the low cell content (de Graaf, Smitt, et al. 2011; de 16 

Graaf, de Jongste, et al. 2011; Svenningsson et al. 1995) in CSF compared to blood.  Altogether, 17 

these lessons can inform the design of future analyses seeking to investigate the methylomic 18 

profiles in post-aSAH CSF samples. The efficiency of a reference-based method in capturing the 19 

outlier with high proportion of B-cells is promising. 20 

We also explored the question of whether methylomic profiles from blood samples could 21 

serve as surrogates for less accessible CSF. Though significant positive correlations were 22 

observed, especially for regulatory regions such as CpG islands and locations near transcriptional 23 

start sites of genes, globally, the correlations in methylation values between blood and CSF were 24 

too low for blood to serve as a useful surrogate for most scientific or clinical purposes. However, 25 

to understand the methylomic changes that occur post-aSAH, we believe that CSF would be a most 26 

relevant source, representing the central nervous system (CNS) environment and its proximity to 27 

the hemorrhagic location. 28 

 This study benefited from several strengths including the thoughtful plate design aimed at 29 

reducing confounding of experimental effects with technical artifacts, thorough and rigorous 30 

application of data QC procedures, pairing of blood and CSF samples from the same patients, and 31 
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assessment of methylomic profiles in a novel tissue type (post-aSAH CSF) that captures the CNS 1 

environment post-aSAH. The study is also novel as this is the first to investigate methylation 2 

patterns in DNA extracted from CSF over a longitudinal period after aSAH. Despite these 3 

strengths, limitations of the current study include limited statistical power to resolve the intra 4 

subject differences among the samples that may ultimately pose challenges in using this dataset 5 

for future EWAS studies.  Additionally, the cell composition of CSF may vary over time after 6 

hemorrhage, which would also affect the methylation levels. Thus, longitudinal analyses of post-7 

aSAH samples are challenging as cell-type heterogeneity may be confounded with days post 8 

injury. Overcoming these challenges will be necessary to accomplish goals such as identifying 9 

genes whose changes in methylation after injury are predictive of recovery outcomes. 10 

 In conclusion, this study is one of the first attempts to investigate DNA methylation at the 11 

genome scale in a sample of aSAH patients, as well as one of the first to measure methylation in 12 

CSF.  Our analysis protocol showed that methylomic profiles can be obtained from CSF for use in 13 

EWAS analysis and that QC steps can improve the analysis by eliminating low-quality data points 14 

and reducing biases and experimental artifacts. Likewise, we show that blood, while readily 15 

accessible, is not a sufficient surrogate for the methylomic status of CSF. Ultimately, efforts to 16 

understand methylation profiles in aSAH patients, and changes that occur post-injury, may lead to 17 

the discovery of biomarkers of clinical utility in predicting patient recovery.   18 
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Figure 1: Identification of low-quality samples (red) based on high proportion of poorly detected 1 

probes (x-axis) and/or low average bisulfite intensity (y-axis) from (A) 92 blood samples and (B) 2 

1,012 CSF samples, both including technical replicates. The horizontal lines represent the 3 

threshold 3 SD below the mean across samples for bisulphite intensity, and the vertical lines 4 

represent the threshold of 1% of probes for which detection was poor (based on detection p-value 5 

and number of beads).   6 

 7 

Figure 2: Distribution of beta-values across (A) all blood and (B) all CSF samples shows that a 8 

subset of poorly performing samples (red) deviate from the typical distribution. After removal of 9 

poor performing samples, distributions in (C) blood and (D) CSF are more consistent. 10 

 11 

Figure 3: Functional normalization reduces batch effects.  Boxplots show the distribution of 12 

M-values per sample across the plate of (A) blood samples before, and (B) after, functional 13 

normalization. For each sample, the median M-value is indicated by the black horizontal line and 14 

the interquartile range (25th to 75% percentile) is indicated by the colored box. The whiskers 15 

(dashed lines) extend to the most extreme data point within 1.5 times the interquartile range beyond 16 

the box, and outlier points beyond this limit are shown individually as circles. Samples are colored 17 

coded by chip, and samples are ordered within each chip as follows: first column ascending by 18 

row number followed by second column ascending by row number.  Before normalization, chip 19 

effects are apparent as differences in median and interquartile range between color groups. (C) 20 

CSF samples before, and (D) after, functional normalization on an example plate. Comparing the 21 

blow-ups to the right of each plot show variation in median M-values across samples is reduced 22 

after functional normalization.    23 

 24 

Figure 4:  Functional normalization increases concordance of technical replicates.  Boxplots 25 

showing distribution of M-values for duplicate (A, B) blood and (C, D) CSF samples (A, C) before, 26 

and (B, D) after, functional normalization.  Pairs of duplicates are adjacent to each other and 27 

differentiated by color.  For each sample, the median M-value is indicated by the black horizontal 28 

line and the interquartile range (25th to 75th percentile) is indicated by the colored box. The 29 

whiskers (dashed lines) extend to the most extreme data point within 1.5 times the interquartile 30 

range beyond the box, and outlier points beyond this limit are shown individually as circles.   31 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005264doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005264
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 1 

Figure 5: Quantile-quantile plots showing the benefit of SVA for tests of epigenetic 2 

association.  The distribution of observed p-values obtained for a random simulated phenotype (y-3 

axis) are plotted against the expected distribution of p-values under the null model of no 4 

association in (A, B) blood samples, and (C, D) CSF samples at day 1. The genomic inflation 5 

factor, λ, is at top left on each plot. (A) Simulated EWAS without SV-adjustment showed inflation 6 

with a λ =1.11 (B) After SV-adjustment the EWAS closely follows the null distribution as 7 

indicated by points closely following the diagonal.  (C) Simulated EWAS exhibits genomic 8 

deflation with a λ = 0.73 (D) After SV-adjustment, the EWAS closely follows the null distribution 9 

(i.e., points closely following the diagonal).  10 

 11 

Figure 6: Correlation between blood and CSF at day 1 for CpG sites across (A) genomic 12 

regions, and (B) relative to genes. Bean plots depict the median correlation coefficient (horizontal 13 

line), mean (diamond), interquartile range (i.e., 25th to 75th percentile, box), and density (width of 14 

the bean). (TSS – Transcription start site; UTR – Untranslated region). 15 

  16 
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 1 

Table 1. Characteristics of study participants  2 

 Blood (N=88)  CSF (N=279) 

Demographic    

Age (years) 52.4±11.1  52.9±11.0 

Gender (female/male) 59/29 (67%)  193/86 (69%) 

Race (white/black/others) 76 (86%)/ 

10 (11%)/ 

2 (2%) 

 243 (87%)/ 

30 (11%)/ 

6 (2%)  

Height (in) 66.1±4.8  66.1±4.3 

Weight (kg) 80.6±19.7  78.6+20.0 

Clinical    

        Current smoke (yes/no) 50/37 (57%)  155/120 (56%) 

Fisher grade (2/3/4) 23 (26%)/ 

48 (55%)/ 

17 (19%) 

 83 (30%)/  

138 (49%)/ 

58 (21%) 

Hunt & Hess sore (1/2/3/4/5) 2 (2%)/ 

26 (30%)/  

37 (42%)/ 

19 (22%)/ 

4 (5%) 

 20 (7%)/ 

84 (30%)/ 

109 (39%)/ 

48 (17%)/ 

18 (6%) 

DCI (yes/no) 45/42 (52%)  123/154 (44%) 

Values are presented as mean±sd for continuous variables, category count followed by 3 

percentage of the first category for binary variables, and count (percentage) for variable with 4 

multiple categories. Missing values exist for some variables, accounting for the discrepancy 5 

between count sum and sample size.  6 
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 1 

Table 2:  CpG probe-level filters 
                Blood CSF 

Sequential filtering step Filtered Retained  Filtered Retained 

none  485,512  485,512 

probe sequence overlapping SNP 17,541 467,971 17,541 467,971 

off-target cross-reactivity 36,489 431,482 36,489 431,482 

sex chromosome  10,191 421,291 10,191 421,291 

multimodal beta-value distribution 2,072 419,219 6,142 415,149 

low-quality detection 972 418,247 1,300 413,849 

*McNemar p-value (< 2.26 x10-16) across all five filtering steps combined. 

 2 

 3 

 4 

Table 3: Correlation analysis of blood (within first day of hospitalization) and CSF at 

different times 

Days of CSF samples Day 1 Days 4 Days 7 Days 10 Days 13 

No of subjects 65 64 65 61 47 

CpG sites 266,009 257,979 255,624 256,758 255,459 

Mean correlation value 0.233 0.263 0.262 0.253 0.242 

Median correlation value 0.174 0.199 0.197 0.190 0.187 

5 
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