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Abstract 40 

Although long thought to be a sterile and inhospitable environment, the stomach is inhabited 41 

by diverse microbial communities, co-existing in a dynamic balance. Long-term use of orally 42 

administered drugs such as Proton Pump Inhibitors (PPIs), or bacterial infection such as 43 

Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the 44 

commensal bacteria re-organize, due to these perturbations of the gastric environment, are in 45 

the early phase. They mainly focus on the most prevalent taxa and rely on linear techniques for 46 

multivariate analysis. 47 

Here we disclose the importance of complementing linear dimensionality reduction techniques 48 

such as Principal Component Analysis and Multidimensional Scaling with nonlinear 49 

approaches derived from the physics of complex systems. Then, we show the importance to 50 

complete multivariate pattern analysis with differential network analysis, to reveal mechanisms 51 

of re-organizations which emerge from combinatorial microbial variations induced by a 52 

medical treatment (PPIs) or an infectious state (H. pylori). 53 

Keywords 54 
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Introduction 59 

The gastric environment with its microbiota is the active gate that regulates access to the whole 60 

gastrointestinal tract, and therefore it has a remarkable impact on the correct functionality of 61 

the entire human organism. Recent studies have revealed that many orally administered drugs 62 

can perturb the elegant balance of the gastric flora 1,2. However, not all of them cause permanent 63 

adverse effects and particular attention should be addressed to drugs that are frequently 64 

prescribed and administered for long periods. They can cause permanent unbalance of the 65 

gastric microbiota that might generate adverse side effects for the patient’s health. Since the 66 

introduction of proton pump inhibitors (PPIs) into clinical practice more than 25 years ago, PPIs 67 

have become the mainstay in the treatment of gastric-acid-related diseases 3. PPIs are potent 68 

agents that block acid secretion by gastric parietal cells by binding covalently to and inhibiting 69 

the hydrogen/potassium (H+/K+)-ATPases (or proton pumps), and additionally they can bind 70 

non-gastric H+/K+-ATPases, both on human cells and on bacteria and fungi, such as 71 

Helicobacter pylori  (H. pylori)4–6. 72 

PPIs are drugs of first choice for peptic ulcers (PU) and their complications (e.g. bleeding), 73 

gastroesophageal reflux disease (GERD), nonsteroidal anti-inflammatory drug (NSAID)-74 

induced gastrointestinal (GI) lesions, Zollinger-Ellison syndrome and dyspepsia 3,7,8. In 75 

particular, dyspepsia is a common clinical problem characterized by symptoms (e.g. epigastric 76 

pain, burning, postprandial fullness, or early satiation) originating from the gastroduodenal 77 

region 9. The potent gastric-acid suppression drugs  PPIs can treat the most frequent causes of 78 

dyspepsia including GERD, medication-induced gastritis, and peptic ulcers, thus minimizing 79 

the need for costly and invasive testing, and moreover are currently recommended to eradicate 80 

H. pylori infection, in combination to antibiotics 7,9,10. Nevertheless, some patients are resistant 81 

or partial responders to empiric PPI therapy, and continue to have dyspepsia 7.  82 

Additionally, there is growing evidence that these medications are associated with increased 83 

rates of pharyngitis and upper and lower respiratory tract infections 11. Their long-term 84 
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overutilization has been associated with potential adverse effects. For instance: the 85 

development of corpus predominant atrophic gastritis in H. pylori positive patients (that is a 86 

precursor of gastric cancer), enteric infections (especially Clostridium difficile-associated 87 

diarrhoea), increased risk of fundic gland polyps, hypomagnesaemia and hypocalcaemia, 88 

osteoporosis and bone fractures, vitamin and mineral deficiency, pneumonia, acute interstitial 89 

nephritis, and increased risk of drug–drug interactions, among others 7,12–15.  90 

Consumption of such acid-suppressive medications has also been associated with changes in 91 

microbial composition and function of gut microbiota. More recent studies relying on amplicon-92 

based metagenomic approaches, have shown that PPIs exert an effect on gastric, oropharyngeal, 93 

and lung microflora in children with a chronic cough 11,  and have a significant impact on the 94 

gut microbiome in healthy subjects, with an increase of oral and pharyngeal bacteria and 95 

potential pathogenic bacteria 16,17. Furthermore, another study by Tsuda et al. 18 revealed that 96 

PPIs influence the bacterial composition of saliva, gastric fluid and stool in a cohort of adult 97 

dyspeptic patients. However, this latter study highlights how the influence of PPI administration 98 

on the fecal and gastric luminal microbiota is still controversial and further investigation is 99 

required to understand the interaction between PPIs and non-H. pylori bacteria. Hence, this 100 

represents the first reason that motivates the present study. 101 

In fact, by irreversibly blocking H+/K+-ATPases, PPIs inhibit gastric acid secretion by gastric 102 

parietal cells, which results in a higher intragastric pH, meaning the microenvironment of this 103 

niche changes, hence allowing more bacteria to survive the gastric acid barrier 4,5,16. The use of 104 

PPIs and higher gastric pH were indeed correlated with the overgrowth of non-H. pylori 105 

bacterial flora in the stomach of patients with gastric-reflux and PPIs were shown to aggravate 106 

gastritis because of co-infection with H. pylori and non–H. pylori bacterial species 4,14,19,20. 107 

However, PPIs may also affect the gastrointestinal microbiome through pH-independent 108 

mechanisms, by directly targeting the proton pumps of naturally occurring bacteria by binding 109 

P-type ATPases (e.g. H. pylori) 4,6.  110 
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Attempts to detect patterns of PPI related gastrointestinal changes have been made in different 111 

studies 21,22 through linear multidimensional analysis techniques, such as Principal Component 112 

Analysis (PCA) and Multidimensional Scaling (MDS), also called  Principal Coordinates 113 

Analysis (PCoA). Nevertheless, they failed to detect the effect of PPIs on gastric fluid samples 114 

21, nor any significant PPI-related modification in esophageal 21 and gastric 22 tissue samples. 115 

This represents the second reason that motivates our investigation. Are these controversial 116 

results due to complex patterns that cannot be detected using linear analysis? 117 

In this study, we show an unprecedented result: unlike linear approaches, Minimum Curvilinear 118 

Embedding (MCE) 23, which is a technique for nonlinear dimension reduction, discriminated 119 

both the esophageal and the gastric tissue microbial profiles of patients taking PPI medications 120 

from untreated ones when re-analyzing the data published in the abovementioned studies. This 121 

finding demonstrates the importance of routinely integrating the use of nonlinear 122 

multidimensional techniques into clinical metagenomic studies, since addressing nonlinearity 123 

could significantly modify the results and conclusions. Indeed, the absence of separation by 124 

means of linear transformations does not imply absence of separation in general, and nonlinear 125 

techniques could prove it, especially in complex datasets such as the ones generated in 126 

metagenomics 16S rRNA. As a matter of fact, the high throughput profiling of bacteria is 127 

frequently used in clinical studies, thus posing a challenge to efficient information retrieval: 128 

understanding how microbial community structure affects health and disease can indeed 129 

contribute to better diagnosis, prevention, and treatment of human pathologies 24.  130 

The common practice in unsupervised dimension reduction data analysis is to consider only the 131 

first two (or three, less used) dimensions of mapping, and the goal is to visually explore  the 132 

distribution of the samples and the incidence of significant patterns 25. This procedure is 133 

particularly useful in case of studies with small size datasets 23, to obtain unbiased (the labels 134 

are not used) confirmation of the separation between groups of samples for which diversity is 135 

theorized or expected. 136 
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Here, we will specifically analyse the many aforementioned 16S rRNA amplicons datasets to 137 

address the following pattern recognition questions: (1) Is PPI treatment affecting change on 138 

the microbiota of esophageal and gastric tissues in dyspeptic patients, regardless of the initial 139 

pathological infection due to H. pylori? (2) Is this PPI-induced change so dominant as to result 140 

in a discernible pattern in the first two dimensions of mapping by unsupervised dimension 141 

reduction? (3) Are linear techniques sufficient to bring out patterns in complex microbial data?  142 

Furthermore, using differential network analysis we will address from the systems point of view 143 

these other questions: (4) How is PPI affecting the microbiota in the gastric environment in 144 

dyspeptic patients?  (5) What is the effect of H. pylori infection on gastric mucosal microflora? 145 

Both factors (PPI treatment and H. pylori infection) can influence the composition of the gastric 146 

microbiota, and this further analysis will help to understand the general (overall) behaviour of 147 

the microbial ecosystem under these conditions. Ultimately, this means that we will try to 148 

clarify and visualize via network representation how the bacterial cooperative organization is 149 

systemically altered either by the use of this acid suppressant drug in the gastric environment 150 

under dyspepsia, or by H. pylori infection in the gastric mucosa. 151 

 152 

Methods 153 

Dataset description 154 

Amir3 (esophageal mucosa) 155 

The 16S rRNA gene sequences were generated by Amir and colleagues 21 and are publicly 156 

available via the MG RAST database  (http://metagenomics.anl.gov/linkin.cgi?project=5767).  157 

The dataset was obtained from 16 esophageal mucosal biopsies of eight individuals before and 158 

after eight weeks of PPI treatment. Two patients with heartburn presented normal 159 

oesophagogastroduodenoscopy (H) indicating that they present healthy oesophageal tissues but 160 

are exposed to gastric refluxate, four patients had oesophagitis (ES) and two had Barrett's 161 
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oesophagus (BE). Metagenomes were obtained by pyrosequencing 16S rRNA amplicons on the 162 

GS FLX system (Roche). Data were processed by replicating the bioinformatics workflow 163 

followed by Amir and colleagues 21 in order to obtain the matrix of the bacterial absolute 164 

abundance: sequence reads were analysed with the pipeline Quantitative Insights into Microbial 165 

Ecology (QIIME) v. 1.6.0 26 using default parameters (sequences were removed if shorter than 166 

200 nt, if they contained ambiguous bases or uncorrectable barcodes, or if the primer was 167 

missing). Operational Taxonomic Units (OTUs), that are clusters of sequences showing a 168 

pairwise similarity no lesser than 97%, were identified using the UCLUST algorithm 169 

(http://www.drive5.com/usearch/). The most abundant sequence in each cluster was chosen as 170 

the representative of its OTU, and this representative set of sequences was then used for 171 

taxonomy assignment by means of the Bayesian Ribosomal Database Project classifier 27 and 172 

aligned with PyNAST103. Chimeras, that are PCR artefacts, were identified using 173 

ChimeraSlayer 28 and removed. The Greengenes database, which was used for the annotation 174 

of the reads, additionally identifies groups of bacteria that are supported by whole genome 175 

phylogeny, but are not yet officially recognized by the Bergeys taxonomy, which is the 176 

reference taxonomy and is based on physiochemical and morphological traits. This results in a 177 

special annotation for some taxa, like Prevotella, that thus appears both with the general 178 

annotation, that is Prevotella, and with the special annotation, that is between square brackets, 179 

[Prevotella]. 180 

 181 

Amir4 (gastric fluid) 182 

The dataset was generated by Amir and colleagues 21, and is public and available in the MG 183 

RAST database (http://metagenomics.anl.gov/linkin.cgi?project=5732). It comprises eight 184 

patients, whose gastric fluid was sampled at two different time points, that is before PPI 185 

treatment and after eight weeks of PPI treatment, for a total of 16 samples. The patients are the 186 

same described in Amir3. Metagenomes were obtained by pyrosequencing fragments of the 187 
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16S rRNA gene on the GS FLX system (Roche). Then the data were processed by replicating 188 

the same bioinformatics workflow  followed by Amir and colleagues 21 that was described in 189 

the previous data description (Amir3), in order to obtain the matrix of the bacterial absolute 190 

abundance. As for Amir3, the Greengenes database was used for the annotation of the reads. 191 

 192 

Paroni Sterbini (gastric mucosa) 193 

The dataset was generated by Paroni Sterbini and colleagues 22, and is public and available in 194 

the NCBI Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra, accession number 195 

SRP060417), where all details pertaining the sequencing experimental design are also reported. 196 

It contains 24 biopsy specimens of the gastric antrum from 24 individuals who were referred to 197 

the Department of Gastroenterology of Gemelli Hospital (Rome) with dyspepsia symptoms (i.e. 198 

heartburn, nausea, epigastric pain and discomfort, bloating, and regurgitation). Twelve of these 199 

individuals (PPI1 to PPI12) had been taking PPIs for at least 12 months, while the others (S1 200 

to S12) were not being treated (naïve) or had stopped treatment at least 12 months before sample 201 

collection. In addition, 9 (5 treated and 4 untreated) were positive for H. pylori infection, where 202 

H. pylori positivity or negativity was determined by histology and rapid urease tests. 203 

Metagenomes were obtained by pyrosequencing fragments of the 16S rRNA gene on the GS 204 

Junior platform (454 Life Sciences, Roche Diagnostics). Then the sequence data were 205 

processed by replicating the bioinformatics workflow followed by Paroni Sterbini et al. 22, in 206 

order to obtain the matrix of the bacterial absolute abundance. 207 

 208 

Parsons (gastric mucosa) 209 

The dataset was generated by Parsons and colleagues 29, and is public and available in the EBI 210 

short-read archive (the European Nucleotide Archive, ENA) (https://www.ebi.ac.uk/ena, 211 

accession number PRJEB21104). In the original study, the authors focused on the analysis of 212 

gastric biopsy samples of 95 individuals (in groups representing normal stomach, PPI treated, 213 
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H. pylori-induced gastritis, H. pylori-induced atrophic gastritis and autoimmune atrophic 214 

gastritis), selected from a larger prospectively recruited cohort patients who underwent 215 

diagnostic upper gastrointestinal endoscopy at Royal Liverpool University Hospital29. RNA 216 

extracted from gastric corpus biopsies was analysed using 16S rRNA sequencing (MiSeq). 217 

Then the sequence analysis was performed, as described by the authors in the supplementary 218 

methods of the original article 29. Here we focused on the analysis of gastric biopsy specimens 219 

(in total 42 samples) from normal stomach group (20 patients) and belonging to the H. pylori 220 

gastritis group (22 patients). As described in 29, patients in the normal stomach group showed 221 

normal endoscopy, no evidence of H. pylori infection by histology, rapid urease test or serology, 222 

were not treated by PPI and were normogastrinaemic. Patients in the H. pylori gastritis group 223 

were instead positive to H. pylori infection by urease test, histology and serology, were not 224 

taking PPI medication and were normogastrinaemic.   225 

 226 

Data exploration and visualization: the reason for unsupervised dimension 227 

reduction  228 

The main reason to perform an unsupervised dimension reduction is to explore and visualize 229 

the most relevant sample patterns that should emerge in the first two dimensions of embedding 230 

(which represent the information of higher variability in the data) from the hidden 231 

multidimensional space of a dataset. The fact that the sample labels (if known) are not used for 232 

the data projection makes the analysis unsupervised. The advantage of performing an 233 

unsupervised analysis is both for data quality checking and to gather the main trends hidden in 234 

the data, independently from any hypothesis or knowledge available on the samples. This is 235 

particularly useful to discover the presence of interesting sub-groups inside the studied cohort 236 

or to detect the influence of confounding factors.  237 

A final interesting advantage offered by unsupervised analysis is in small size datasets, where 238 

the number of samples n is significantly lower that the number of features m, a condition that 239 
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unfortunately occurs in several metagenomic studies. When n<<m the application of 240 

supervised approaches can become problematic, because the supervised procedure of parameter 241 

learning can suffer from overfitting 23,30,31. 242 

The mainstream multivariate methods to unsupervisedly explore data patterns in metagenomic 243 

studies are based on linear dimension reduction, in particular PCA 32,33 and MDS 34,35, also 244 

known as PCoA, methods that have been used to explore and visualize data structure in many 245 

metagenomic studies, from sponge 36,37 to gastric tissue microbiota 22. These tools perform a 246 

dimension reduction of the data either by multidimensional variance analysis (for instance 247 

PCA) or dissimilarity embedding (for instance MDS/PCoA). PCA collects uncorrelated 248 

variance in the multidimensional space, creating new synthetic orthogonal variables, which are 249 

linear combinations of the original ones, then plots the samples in a reduced space using the 250 

new variables that embody the largest orthogonal variances. MDS computes dissimilarities 251 

between every pair of samples, plotting the Euclidean part of these dissimilarities as distances 252 

between every pair of points (MDS) in a reduced space, in this way the linear part of the sample 253 

relations can be represented.  254 

 255 

The Tripartite-Swiss-Roll dataset 256 

In order to test and visualize how the algorithms could detect nonlinearity, we performed the 257 

analyses on the Tripartite-Swiss-Roll dataset: an artificial dataset characterized by nonlinear 258 

structures and generated as discretization of the manifold associated to a Swiss-Roll function 38 259 

in a three-dimensional (3D) space. Indeed, it is a synthetic dataset obtained as the partition in 260 

three sections of a discrete Swiss-Roll manifold depicted in a three-dimensional space 38. It 261 

reproduces the typical nonlinearity (given by the Swiss-Roll shape) and the discontinuity (given 262 

by the tripartition of the manifold), that we do not see and that are often hidden in the 263 

multidimensional representation of our samples. See the illustration in the original 3D-space of 264 

the Tripartite-Swiss-Roll dataset in Fig. 1A. This dataset is useful to introduce readers, not 265 
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expert with nonlinear data analysis, to the basic concepts of nonlinear dimension reduction and 266 

therefore to facilitate their understanding of the new proposed methodologies for nonlinear 267 

dimension reduction.  268 

 269 

PCA, MDS (or PCoA) and LDA 270 

Below, we report some of the PCA major advantages and drawbacks, that were pinpointed in a 271 

recent study on multidimensional population genomics 39, and of other conventional 272 

dimensional reduction techniques employed for the analysis of metagenomic data.  273 

PCA is time-efficient, parameter-free and straightforward to interpret, yet it strives to resolve 274 

structure in datasets with few samples and highly numerous features, which enclose nonlinear 275 

patterns. Therefore, PCA can occasionally fail to reveal differences among samples, even when 276 

differences are known a-priori, which means it can also miss represent hidden nonlinear 277 

relations among the samples in the feature space. For instance, see the illustration of the PCA 278 

two-dimension reduction mapping of the Tripartite-Swiss-Roll dataset in Fig. 1B. PCA clearly 279 

fails to unfold and reveal the structure of the three separated groups of samples.   280 

MDS, on the other hand, preserves the sample distances in a 2D-space based on the calculation 281 

of a distance matrix (Fig. 1C,D). In ecology, distance (or dissimilarity) matrices are a major 282 

way to transpose the ecological information of samples in terms of their species composition 283 

and abundance 40,41. In this article we will consider classical MDS (which uses Euclidean 284 

distance and is in practice equivalent to PCA 42,43), and non-metric MDS (NMDS) obtained 285 

according to Sammon’s Mapping 44. In the latter, the elements of the multivariate space are 286 

mapped onto a lower dimensional space while retaining the original inter-point dissimilarities, 287 

by means of a nonlinear, but monotonic transformation (Sammon Mapping). Since it respects 288 

the ranking of dissimilarities, it tends to linearize the relationships between the samples. In 289 

addition, MDS will be performed also according to Bray-Curtis (MDSbc) dissimilarity and 290 

weighted UniFrac (MDSwUF) distance because they are considered the reference in 291 
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metagenomics studies. Bray-Curtis dissimilarity quantifies how dissimilar two sites (samples) 292 

are based on counts (bacterial abundances), where 0 means two samples are identical and 1 293 

means that the two samples do not share any taxa 45,46. Dissimilarly, the UniFrac distance, either 294 

unweighted (qualitative) or weighted (quantitative), is the most popular phylogenetic distance 295 

measure for the microbial community diversity between different samples (also known as β-296 

diversity 47) and, differently from the previous discussed methods, uses the phylogenetic 297 

information (which is an external knowledge not contained in the dataset) on the taxa to 298 

compare samples. In particular, its weighted-version weights the branches of a phylogenetic 299 

tree based of the taxa abundance information 48–51. Hence the weighted UniFrac distance 300 

directly accounts for differences in the abundance of different kinds of bacteria, and can be 301 

crucial to describe community changes 49 in the studied samples.  302 

We need to specify that both MDSwUF and NMDS are in practice nonlinear methods and 303 

weighted UniFrac is not a classical unsupervised technique like the others. In fact, MDSwUF 304 

adopts a distance that combines the information given by the bacterial abundance of the dataset 305 

with the supervised prior (external) knowledge regarding the known hierarchical phylogenetic 306 

relationship among the bacteria. However, like PCA, MDS can fail to detect patterns if data are 307 

not properly linearized 52. For instance, see Fig. 1C-D where MDSbc and NMDS respectively 308 

fail to resolve the Tripartite-Swiss-Roll dataset. When we consider clinical metagenomic data, 309 

this failure potentially reduces the chances of correctly pinpointing samples which may 310 

represent clinical subspecies, and thus remain undetected and undiagnosed. In brief, these 311 

methods are not efficient to perform hierarchical embedding directly from the abundance value, 312 

since hierarchies preserve tree-like structures, and tree-like structures follow a hyperbolic, thus 313 

nonlinear, geometry 53–55. Only MDSwUF is able to account for nonlinear hierarchical 314 

organization, yet this is not directly inferred from the abundance values, but rather forced as a 315 

constraint of prior supervised knowledge on the phylogeny of bacteria. For this reason we 316 

cannot offer a test on the Tripartite-Swiss-Roll dataset. 317 
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In our analysis of the Paroni Sterbini dataset, we also showed the results of a supervised 318 

technique, Linear Discriminant Analysis (LDA), which uses the labels to perform dimension 319 

reduction. LDA aims to separate the samples into groups based on hyperplanes and describe 320 

the differences between groups by a linear classification criterion that identifies decision 321 

boundaries between groups 34. This technique is not congruous (and sometimes statistically 322 

invalid) for small sample size datasets. The reason is that given the reduced sample size we 323 

cannot divide the dataset in a training and test set, which is a fundamental requirement of 324 

supervised methods such as LDA. 325 

 326 

Minimum Curvilienar Embedding (MCE) 327 

In 2010, Cannistraci et al. 23 introduced the centred version of Minimum Curvilinear 328 

Embedding (MCE), which provided notable results in: i) visualisation and discrimination of 329 

pain patients in peripheral neuropathy, and the germ-layer characterisation of human organ 330 

tissues 23; ii) discrimination of microbiota in sea sponges 36; iii) embedding of networks in the 331 

hyperbolic space 54; iv) stage identification of embryonic stem cell differentiation based on 332 

genome-wide expression data 56. In this fourth example, MCE performance ranked first on 12 333 

different tested approaches (evaluated on 10 diverse datasets). More recently in 2013 30, the 334 

non-centred version of the algorithm, named ncMCE, has been used: i) to visualise clusters of 335 

ultra-conserved regions of DNA across eukaryotic species 57 ; ii) as a network embedding 336 

technique for predicting links in protein interaction networks 30, outperforming several other 337 

link prediction techniques; iii) to unsupervisedly reveal hidden patterns related with gender 338 

difference and metabolic-disease risk-factors in lipidomic profiles extracted from human 339 

plasma samples 58; iv) to unsupervisedly infer and visualize phylogenetic (hierarchical) 340 

relations directly from individual SNP profiles in human population genetics 39. Finally, also 341 

applications in non-biological problems such as the unsupervised discrimination of bad from 342 
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good radar signals 30, represented a proof of concept of the universality of MCE for addressing 343 

nonlinear investigation of data and signals in general. Also in the case of the metagenomics 344 

studies targeting sea sponges, 36,37, both MCE and its non-centred variant 23,30 once again proved 345 

successful in detecting structure where PCA and MDS could not, or hardly find any. This is 346 

mainly because MCE/ncMCE are unsupervised and parameter-free topological machine 347 

learning for nonlinear dimensionality reduction and multivariate analysis, that are able to 348 

perform a hierarchical embedding.  349 

This study stems from the intuition that MCE/ncMCE analysis could successfully reveal 350 

undetected patterns also in esophageal and gastric metagenomics data, where only unsupervised 351 

linear methods or classical nonlinear methods such as NMDS and MDSwUF had been used and 352 

had failed to achieve any clear-cut result 21,22. 353 

Minimum Curvilinearity (MC) 23, the principle behind MCE and ncMCE, was invented with 354 

the aim to reveal nonlinear data structures also, and especially, in the case of datasets with few 355 

samples and many features. MC principle suggests that curvilinear (nonlinear) distances 356 

between samples may be estimated as pairwise distances over their Minimum Spanning Tree 357 

(MST), constructed according to a selected distance (Euclidean, correlation-based, etc.) in a 358 

multidimensional feature space (here the metagenomic data space). In this study, we considered 359 

Pearson-correlation based distance (refer to 23 for details on the way to compute the distance 360 

for the MST). The collection of all nonlinear pairwise distances forms a distance matrix called 361 

the MC-distance matrix or MC-kernel, which can be used as an input in algorithms for 362 

dimensionality reduction, clustering, classification and generally in any type of machine 363 

learning. In MCE and ncMCE, the MC-kernel (which is non-centred for ncMCE) is followed 364 

by dimensionality reduction using singular value decomposition (SVD), and then by the 365 

projection of the samples onto a two-dimensional space for visualisation and analysis. Thus, 366 

MCE/ncMCE is a form of nonlinear and parameter-free kernel PCA 30. In the rest of the article 367 

we will simply use the name MCE to indicate both MCE and ncMCE, since the centring 368 
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transformation is related to the specific data pre-processing and will be specified for each 369 

dataset as a technical detail in the respective results’ tables.  370 

 371 

MCE to unsupervisedly infer and visualize phylogenetic (hierarchical) relations 372 

A previous study by Alanis-Lobato et al. 39 showed that MCE is automatically able to 373 

unsupervisedly infer and visualize phylogenetic (hierarchical) relations directly from individual 374 

SNP profiles in human population genetics. Precisely, ncMCE detected separation between 375 

ethnic groups and provided an ordering over the discriminating dimension that was related to 376 

the phylogenetic organization of these populations. 377 

This ability of MCE to infer and visualize phylogenetic (hierarchical) relationships was 378 

confirmed in our study on the Paroni Sterbini et al. dataset 22 (see Results section-‘ Gastric 379 

tissue dataset unsupervised analysis’). As previously mentioned (see the previous section 380 

‘PCA, MDS (or PCoA) and LDA’), MDSwUF uses a weighted Unifrac distance that combines 381 

the prior knowledge of the bacterial phylogenetic tree with the information given by the 382 

bacterial abundance. Here we show that MCE perform better than MDSwUF on the Paroni 383 

Sterbini et al. dataset, due to its ability to infer the (hierarchical) phylogenetic relationship 384 

among the bacteria directly from the bacterial abundance of the dataset, by performing a 385 

hierarchical embedding. Hence, MCE can be used to compare the composition of microbial 386 

communities in the studied samples, where the phylogenetic information is instead directly 387 

inferred from bacterial abundance, differently from MDSwUF. 388 

 389 

Procedure to evaluate the performance of the dimension reduction algorithms 390 

The performance of the mentioned dimension reduction algorithms is evaluated as the ability 391 

to separate the samples in the first two dimensions of embedding since, as discussed above, this 392 

is one of the preferred unsupervised strategies to investigate the presence of patterns in 393 

multidimensional datasets. In order to quantitatively evaluate the performance, we use a 394 
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recently proposed index for sample separation 59. This index can be defined for any separation-395 

measure and in this study we considered three well-known measures: p-value of Mann-Whitney 396 

U test, Area Under the ROC-Curve (AUC) and Area Under the Precision-Recall curve (AUPR), 397 

that are regularly used to quantitatively measure the performance of a binary predictor.  398 

More precisely, in the 2D space a line is drawn between the centroids of the two groups that are 399 

compared, subsequently all the points are projected on this line and then a p-value, AUC and 400 

AUPR are computed for the projected points. This new index is named projection-based 401 

separability index (PSI) and can actually be applied not only in a 2D space, but in any N 402 

dimensional space. For the calculation of the centroids we consider the 2D-median of each 403 

cluster/class’s group. In case more than two groups are present in a dataset, all the p-values, 404 

AUC and AUPR between the possible pair-groups are computed, and the average values of all 405 

the pairwise p-values, AUC and AUPR are chosen as an overall estimator of separation between 406 

the groups in the 2D reduced space. This case applies only to the Paroni Sterbini dataset, which 407 

is composed of three or, possibly, four groups of samples. All the other datasets are instead 408 

composed of two groups.  409 

It is important to note that the PSI was also applied to the data in the original high-dimensional 410 

(HD) space, as a reference to see how good the unsupervised dimension reduction approaches 411 

are in preserving the original group separability of the HD space. 412 

All the algorithms were tested considering (when allowed by the dimension reduction method) 413 

data centring or non-centring. In addition, multiple normalization options were investigated and 414 

the datasets were considered under a certain type of normalization: division by the column - 415 

which reports the OTU - sum (indicated by DCS); division by the row – which reports the 416 

sample - sum (indicated by DRS); function log10(1+x) applied to the dataset (indicated by 417 

LOG). 418 

 419 
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From Markov Clustering (MCL) to Minimum Curvilinear Markov Clustering 420 

(MC-MCL) 421 

MCL is an unsupervised algorithm for the clustering of weighted graphs based on simulations 422 

of (stochastic) flow in graphs 60 (http://micans.org/mcl/). By varying a single parameter called 423 

inflation (with values between 1.1 and 10), clustering patterns on different scales of granularity 424 

can be detected. For clustering samples of a multidimensional dataset, the workflow starts with 425 

the computation of correlations (generally Pearson correlations) between the samples, and 426 

creates an edge between each pair of samples, where the edge-weight assumes the value of the 427 

respective pairwise positive sample correlation, or values zeros in case of negative correlations. 428 

This generates a weighted correlation graph (network), which is used as a map to simulate 429 

stochastic flows and detect the structural organization of clusters in the graph.  430 

With the purpose of creating and testing a nonlinear variant of the MCL algorithm, we adopt 431 

an innovative algorithm which was recently proposed and called MC-MCL 61. The idea is the 432 

following. The MC-kernel – discussed above in the MCE section - is a nonlinear distance matrix 433 

(or kernel) that expresses the pairwise relations between samples as a value of distance: small 434 

samples distance indicates sample similarity, while large samples distance indicates sample 435 

dissimilarity. Here we reverse (using the following function:  𝑓(𝑥) = 1 − 𝑥) and after this we 436 

put to zero the negative values of the MC-distance kernel to get a MC-similarity kernel, where 437 

small values (close to zero) indicate low sample similarity and large values (close to one) 438 

indicate high sample similarity. A technical detail: for the computation of the MC-distance 439 

kernel, it is necessary to firstly square root the original distances (correlation-based) between 440 

the samples. As already investigated in 23, this attenuates the estimation of large distances and 441 

amplifies the estimation of short distances; consequently it helps to regularize the nonlinear 442 

distances inferred over the MST in order to subsequently use them for message passing 23 (such 443 

as affinity propagation) or flow simulation (such as MCL) clustering algorithms. 444 
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Then, the standard stochastic flow simulations of MCL algorithm runs on the graph weighted 445 

with the values of the MC-similarity kernel (which collects pairwise nonlinear associations 446 

between samples) instead of the Pearson-correlation kernel (which collects pairwise linear 447 

associations between samples). In practice, this is a new algorithm for clustering that is a 448 

nonlinear version (based on the MC-kernel) of the classical MCL. The goal of the MC-MCL 449 

analysis is to verify whether the use of the MC-kernel improves performance, by solving 450 

nonlinearity, not only in dimension reduction (such as in MCE) but also in clustering (such as 451 

in MC-MCL).  452 

 453 

Procedure to evaluate the performance of clustering algorithms 454 

The clustering algorithms MCL and MC-MCL were applied to the datasets, either raw, or after 455 

the same normalization procedures used before dimensionality reduction (DCS: division by 456 

column (OTU) sum; DRS: division by row (sample) sum; LOG: function log10(1+x) applied 457 

to the dataset) and their performance was evaluated by means of accuracy. The accuracy is 458 

computed as the ratio of the number of samples assigned to the correct clusters over the total 459 

number of samples. For both MCL and MC-MCL, we tested Pearson and Spearman correlations 460 

to build the similarity measure to feed into the clustering methods. The Spearman correlation 461 

can also detect a subclass of nonlinear associations (which have monotonic shape function) or 462 

correct for outliers. Differently from what suggested for large gene datasets with thousands of 463 

samples in 60 (http://micans.org/mcl/), in this study we had to consider the whole set of original 464 

positive correlations without applying any threshold (cut-off) to the values. This was 465 

compulsory, since we considered datasets with few samples. In our case, to keep the graph 466 

connected, with one unique connected component, we could not introduce any kind of threshold 467 

that would otherwise alter the real graph connectivity (dividing the graph in disconnected 468 

components) and hence the clustering result. Since the MCL algorithm needs a single input 469 
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parameter (inflation) to control the granularity of the output clustering, we ran it for different 470 

inflation values until we achieved the desired number of clusters. Finally, in the Paroni Sterbini 471 

et al. dataset 22 it was not clear in advance whether the correct number of clusters present in the 472 

multidimensional space was three or four. Hence, we tested the clustering algorithms 473 

considering as output both three and four clusters’ configurations, and we identified as the best 474 

solution the one that offered the highest accuracy.  475 

 476 

PC-corr network 477 

Furthermore, we investigated the effect of PPI on the microbiota of gastric fluid and gastric 478 

mucosa in dyspeptic patients, and the changes induced by H. pylori infection on the gastric 479 

mucosal microbiota, by means of the PC-corr approach 62. PC-corr represents a simple 480 

algorithm that associates to any PCA segregation a discriminative network of features’ 481 

interactions 62. It is a method for linear multivariate-discriminative correlation network reverse 482 

engineering, that, thanks to its multivariate nature, can help to stress and squeeze out the 483 

underlying combinatorial and multifactorial mechanisms that generate the differences between 484 

the studied conditions 62. Hence, for the studied datasets, it can be employed to point out the 485 

possible presence of bacterial alterations and their interplay, induced by a medical treatment 486 

(PPIs in dyspepsia) or infectious state (H. pylori).  487 

 488 

Computing platforms adopted to implement the algorithms  489 

Dimensionality reduction was performed in MATLAB on the abundance matrix of genus-level 490 

taxonomic assignments, with samples in rows and taxonomic assignments (OTUs) in columns. 491 

For MDSwUF, the computation of the weighted UniFrac distance was performed in R. We used 492 

the following MATLAB functions to calculate PCA, MDS and NMDS (Sammon Mapping) 493 

respectively: svd, cmdscale and mdscale. For the calculation of Bray-Curtis dissimilarity, we 494 

used the function MATLAB f_braycurtis in the Fathom Toolbox 63 495 
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(http://www.marine.usf.edu/user/djones/matlab/matlab.html). Instead, for the calculation of the 496 

weighted Unifrac distance for all sample pairs, we used the R function UniFrac in the phyloseq 497 

package (https://bioconductor.org/packages/release/bioc/html/phyloseq.html), after creating a 498 

phyloseq-class object (with R function phyloseq in the same package) that contains both the 499 

abundance table (OTU table) and the phylogenetic tree. The MATLAB code for MCE/ncMCE 500 

is available online at: https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-501 

matlab-code/minimum-curvilinearity-ii-april-2012. For MCL clustering, we installed the 502 

MCL-edge software (http://micans.org/mcl/) in a Windows environment, following the 503 

procedure suggested by the authors in the software website. To apply this algorithm, we created 504 

a MATLAB function that generates automatically the input for MCL (equivalent to the 505 

mcxarray function in the software) and then uses a system call to run MCL in a UNIX-like 506 

environment (Cygwin, https://www.cygwin.com/). PC-corr method was performed in 507 

MATLAB on the abundance matrix of the genus-level taxonomic assignments, with samples in 508 

rows and taxonomic assignments in columns. The PC-corr algorithm is available as MATLAB 509 

function (as well as R function) at: https://github.com/biomedical-cybernetics/PC-corr_net. 510 

Then the obtained PC-corr networks were displayed by Cytoscape (http://www.cytoscape.org/). 511 

 512 

Results  513 

To answer the five questions stated in the Background section, we analysed the abovementioned 514 

16S rRNA gene sequencing datasets with information on PPI consumption in dyspeptic 515 

patients, following the workflow shown in Fig. 2. It is important to underline that, in one of the 516 

three initially analysed datasets (in Paroni Sterbini et al.22), we have the additional information 517 

on positivity or negativity to H. pylori infection. A fourth dataset (Parsons et al. 29) is used only 518 

for the validation of the PC-corr network results and it contains not only information on PPI 519 

consumption but also additional information on positivity or negativity to H. pylori infection. 520 
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Unsupervised approaches were chosen for dimension reduction, and clustering because 521 

supervised (constrained) methods have been shown to perform poorly on small datasets, as 522 

explained in the paper by Smialowski et al. 31 and the work by Zagar and colleagues 56. 523 

Firstly, we performed unsupervised dimension reduction, both linear and nonlinear (described 524 

in the ‘Methods- PCA, MDS (or PCoA) and LDA’ and ‘Methods- Minimum Curvilinear 525 

Embedding (MCE)’) and we focused on the first two dimensions of embedding as it is common 526 

practice 25. As we will show, linear techniques will fail to bring out the patterns in the microbial 527 

datasets, related to PPI-treatment. Instead, nonlinear dimension reduction will reveal the 528 

presence of hidden patterns related to PPI treatment. In particular, in the gastric biopsies dataset 529 

(Paroni Sterbini et al. 22), nonlinear dimension  reduction will point out the evidence of PPI 530 

perturbation. Secondly, clustering algorithms were applied to the studied datasets to confirm 531 

that the hidden patterns detected by nonlinear dimension reduction are well posed. Finally, the 532 

PC-corr algorithm 62 is used to find the bacteria community (features) that make the difference 533 

between the patterns or groups, allowing our understanding of the PPI-induced and H. pylori-534 

induced microbial perturbations. 535 

 536 

Gastric tissue dataset unsupervised analysis 537 

According to the questions formulated in our study, we are interested in an unsupervised 538 

approach to verify whether PPI drugs cause a major change in the gastric tissue microbiota of 539 

dyspeptic patients regardless of the initial pathological infection due to H. pylori 22.  540 

In our first analysis, we focused on the Paroni Sterbini et al. dataset 22 and, to facilitate the 541 

visualization of the sample separations in the 2D reduced space, we assigned: red colour to 542 

untreated dyspeptic patients without H. pylori infection (HP-); green colour to untreated 543 

dyspeptic patients with H. pylori infection (HP+); and blue colour to patients treated with PPI 544 

regardless of their H. pylori infection (PPI). However, to help to detect also the effect of the H. 545 

pylori infection we reported the labels close to each sample, with a ‘+’ indicating the infection 546 
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(PPI+) or a ‘-’ indicating the absence of infection (PPI-). Finally, we also tested whether this 547 

separation into three main groups (HP-, HP+, PPI) is more truthful, from the metagenomics 548 

data standpoint, than the one in four groups (HP-, HP+, PPI-, PPI+). 549 

Figure 3 shows the results of the multivariate techniques widely employed in metagenomic 550 

studies, PCA (Fig. 3A), MDSbc (Fig. 3B) and MDSwUF (Fig. 3C), and NMDS (with Sammon 551 

Mapping) (Fig. 3D) (for more detail see the corresponding method section; the plots represents 552 

the best results based on average p-value in Supplementary Table S1), which could only 553 

differentiate the group of untreated H. pylori positive samples (green dots) with respect to the 554 

group of untreated H. pylori negative samples (red dots), and no further separation is 555 

significantly detectable. Considering the PSI results, the p-values are significant (p-value<0.05, 556 

Table 1 and Fig. 3) (evaluated in the 2D embedding space, for details see ‘Procedure to evaluate 557 

the performance of the dimension reduction algorithms’). PCA and NMDS exhibit the lowest 558 

p-value (0.0090), while MDSwUF and MDSbc displays p-values higher than 0.01 (respectively 559 

0.011 and 0.021). This trend is also confirmed by their AUC and AUPR values, with highest 560 

values for PCA (AUC=0.924, AUPR=0.960) and NMDS (AUC=0.924, AUPR=0.954). Indeed, 561 

in all the plots there is a visible trend of separation between PPI-treated (blue dots) and untreated 562 

(red and green dots) samples, but this is not sufficient to declare the presence of the complete 563 

separation, and a manifest ‘crowding problem’ 30 mixes the two cohorts together. According to 564 

this output, the dataset appears to be strongly influenced by the presence of H. pylori, which is 565 

the predominant taxon (abundance > 50%, Supplementary Table S2, percent abundance sheet) 566 

in four of the untreated H. pylori positive patients: where H. pylori is predominant, sample 567 

groups are quite close to one another and far from all the other samples in all four multivariate 568 

analyses (Fig. 3). Thus, PCA and MDS mainly show us that these metagenomes separate 569 

according to H. pylori abundance, and there is no treatment-related pattern. 570 

Non-centred MCE (Figure 4A, DCS normalization) was the best performing technique, with a 571 

p-value of 0.004, AUC of 0.967 and AUPR of 0.987 (Table 1) (for details see Supplementary 572 
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Table S1). It even outperforms the nonlinear methods NMDS (Sammon Mapping) and 573 

MDSwUF, since it is automatically able to infer the (hierarchical) phylogenetic relationship 574 

among the bacteria directly from the bacterial abundance of the dataset by performing a 575 

hierarchical embedding, as already shown in the study of Alanis-Lobato et al. 39 (see ‘Methods- 576 

MCE to unsupervisedly infer and visualize phylogenetic (hierarchical) relations’). 577 

Furthermore, the MCE performance does not depend on its centring/non-centring, in fact the 578 

centred MCE version resolves the nonlinearity in the data too. Whereas, PCA regardless of 579 

being centred or non-centred does not resolve the nonlinearity in the data. 580 

While MDS and PCA are confounded by the mixture of factors characterizing the samples and 581 

do not manage to resolve the differences between treated and untreated samples, non-centred 582 

MCE is the only technique that visibly separates samples by ordering them along the second 583 

dimension into three groups, detecting a treatment-related structure in the data (Fig. 4A). This 584 

is plausible, because in any non-centred embedding the first dimension points towards the 585 

centre of the manifold 30, while the second dimension in the case of non-centred MCE represents 586 

the direction of higher topological nonlinear extension of the manifold. Interestingly, untreated 587 

H. pylori negative samples (red dots, HP-) gather in the upper tail of the samples’ distribution, 588 

while treated samples (blue dots, PPI), both H. pylori test positive (PPI+) and negative (PPI-), 589 

are mixed and show no other internal discernible groups. Untreated H. pylori positive samples 590 

(green samples, HP+) gather at the bottom of the plot (Fig. 4A). Unlike the other approaches, 591 

non-centred MCE detects a treatment-related structure in the data and separates patients into 592 

three, not four, groups: PPI-treated, untreated H. pylori negative and untreated H. pylori 593 

positive. This last group appears as a subgroup marginally discriminating from the PPI-treated 594 

group and the topology of the samples seems to suggest that PPI treatment modifies the gastric 595 

microbiota of H. pylori-negative patients with dyspeptic symptoms and gastric mucosa 596 

inflammation, shifting their gastric ecosystem in the same direction of PPI-treated H. pylori-597 

positive patients. We speculate that the fact that PPI treatment and H. pylori infection determine 598 
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the samples to gather in a similar position (i.e. out of the PPI-untreated/HP-negative group) in 599 

the non-centred MCE reduced space, indicates that both the PPI drugs and H. pylori induce an 600 

ecological change in the stomach, which might be driven by similar mechanisms. As a matter 601 

of fact, H. pylori can colonize the acidic lumen of the stomach thanks to its ability to hydrolyse 602 

urea into carbon dioxide (CO2) and ammonia (NH3) 
64, thus increasing the intragastric pH. On 603 

the other hand, PPIs obtain the same result through the inhibition of acid secretion in gastric 604 

parietal cells, which blocks H+/K+ -ATPases. Both processes are therefore shifting the gastric 605 

environment towards an alkaline condition. Thus, MCE provides an ordering of the groups 606 

along the second dimension that is related to pH increment (from HP- to PPI+).  607 

Similarly to the Paroni Sterbini et al. microbial dataset, the Tripartite-Swiss-roll dataset (that is 608 

a synthetic dataset containing nonlinear structures obtained by tri-partitioning a discrete Swiss-609 

Roll manifold 38 in a three-dimensional space, for more details see the method section: The 610 

Tripartite-Swiss-Roll dataset’), presents a hierarchical-organized nonlinearity (Fig. 1A). And 611 

also in this case, similarly to the result of the Paroni Sterbini et al. analysis, non-centred MCE 612 

is able to perform a hierarchical embedding that orders the hidden subgroups of the dataset 613 

along the second dimension of embedding (Fig. 4B). On the contrary - as already commented 614 

in the method section - PCA, MDSbc and NMDS (Fig. 1B-D) were unable to resolve the 615 

nonlinearity of the Tripartite-Swiss-Roll: its three partitions are either superimposed (Fig. 1B, 616 

D) or twisted in a horseshoe shape (Fig. 1C). Indeed, the Tripartite-Swiss-Roll is purposely 617 

created to reproduce a manifold that is nonlinear and discontinuous (broken in three parts) such 618 

as the results of MCE analysis of Paroni Sterbini et al. seems to be.  619 

For the Paroni Sterbini dataset, we also performed a supervised linear approach for dimension 620 

reduction, LDA (Supplementary Figure S1), yet the cross-validation test showed that this 621 

constrained technique could re-assign samples to their groups with 54% of error (ldaCVErr in 622 

Supplementary Table S3), confirming its statistical invalidity for the small size dataset problem. 623 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005587
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Moreover, the clustering algorithms MCL and MC-MCL, that is the minimum curvilinear 624 

version of MCL were applied to the Paroni Sterbini et al. dataset and the best results (highest 625 

accuracies) are shown in Table 1 (bottom panel) (for more details see the methods’ sections 626 

‘From Markov Clustering (MCL) to Minimum Curvilinear Markov Clustering (MC-MCL)’ and 627 

‘Procedure to evaluate the performance of clustering algorithms’).  MC-MCL performs better 628 

than the MCL (both for three and four clusters), even if their accuracies are not remarkably 629 

high, confirming that difficulties in pattern-recognition arise also from the presence of three 630 

clusters in the high-dimensional space. In addition, the hypothesis of three clusters seems more 631 

congruous than four clusters, because both MC-MCL and MCL decrease their accuracies in 632 

detecting four clusters. 633 

While MC-MCL represents the minimum curvilinear version of MCL, MCE is the minimum 634 

curvilinear version of PCA, particularly valuable for small sample size datasets. The principle 635 

behind them is MC23, that suggests that curvilinear (nonlinear) distances between samples may 636 

be estimated as pairwise distances over their Minimum Spanning Tree (MST) (constructed 637 

according to a selected distance). In fact, as explained in 65, to approximate nonlinear 638 

(curvilinear) distances between the points of the manifold it is not necessary to reconstruct the 639 

nearest-neighbour graph. Indeed, a greedy routing process (that exploits a norm, for instance 640 

Euclidean) between the points in the multidimensional space is enough to efficiently navigate 641 

the hidden network that approximates the manifold in the multidimensional space. And a 642 

preferable greedy routing strategy, at the basis of MC-kernel, is the minimum spanning tree 643 

(MST). 644 

Overall, we can conclude that both MCE in dimensionality reduction and MC-MCL in 645 

clustering perform better than the respective non-MC-based versions, and this result confirms 646 

the presence of nonlinear complexity in this dataset, generated by a three-body interaction 647 

(presence of three clusters). In addition, when considering correlation-based distances, they do 648 

not react to the presence of compositionality, since pairwise correlations are computed between 649 
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samples. Compositionality instead is a problem that arises when the correlations is computed 650 

between OTUs (features) from metagenomics abundance data (which are normalized by diving 651 

each OTU count to the total sum of counts in the sample 66,67), which yields unreliable results 652 

due to dependency of microbial relative abundances. 653 

Moreover, because of the discovered major nonlinear complexity in the Paroni Sterbini gastric 654 

biopsy dataset, we wanted to verify whether it was generated by multi-grouping (three-body 655 

interaction problem associated to the presence of three hidden clusters). To do so, we applied 656 

PCA to three subsampled versions of the dataset (with the best normalization originally found 657 

for the complete dataset), each corresponding to the combination of two groups (Fig. 5A-C), 658 

and PCA could find significant separation (p-values <0.02 and AUC, AUPR > 0.80). To further 659 

confirm that the presence of multiple sample groups generates the data complexity, we did the 660 

same for the Tripartite Swiss-Roll (Fig. 5D-F), where we recovered the discrimination, even 661 

though two comparisons overlap to some extent (Fig. 5D and F). Furthermore, to have another 662 

confirmation that the PPI-treated samples are not separable for H. pylori infection, we analysed 663 

the dataset considering exclusively the PPI-treated samples. The result is that no internal 664 

separation related to H. pylori infection emerges within the PPI-treated patients, as shown by 665 

the best MCE result (Supplementary Figure S2).  666 

In conclusion, the results confirm that linear techniques, even if supervised like LDA, are not 667 

able to resolve the differences in the data due to the presence of nonlinear complexity generated 668 

by the three-body interaction (HP-, HP+ and PPI). Once the complexity is reduced to a two-669 

body interaction, the problem tends to vanish and PCA can detect significant differences 670 

between the groups, as shown by the PCA pairwise comparisons.  671 

Hence, the results of unsupervised analysis on Paroni Sterbini et al. dataset show that PPI 672 

treatment causes a major change in gastric mucosal communities of dyspeptic patients, 673 

regardless of the initial pathological infection due to H. pylori. 674 

 675 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005587
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Comparison of unsupervised analysis in three gastro-esophageal datasets 676 

We compared the performance of unsupervised analysis (dimensional reduction and clustering) 677 

in the Paroni Sterbini dataset 22 (gastric biopsies) and two additional datasets by Amir and 678 

colleagues 21, that investigated the PPI influence on the esophageal microbiota (Amir3) and 679 

gastric fluid (Amir4).   680 

Table 1, top panel, shows the best results in performance of unsupervised dimension reduction 681 

(PCA, MDSwUF, MDSbc, NMDS, MCE, for details see ‘Methods - PCA, MDS (or PCoA) and 682 

LDA’ and ‘Methods - Minimum Curvilienar Embedding (MCE)’) according to the PSI 683 

(projection-based separability index) in the space of the first two dimensions of embedding, 684 

based on the p-value of Mann-Whitney U test, AUC and the AUPR, on the three different 685 

datasets (for more details on the PSI see ‘Methods - Procedure to evaluate the performance of 686 

the dimension reduction algorithms’). The mean performance across all datasets is shown in 687 

the last column of the table for each method. The corresponding ranked performance for each 688 

method, based on p-value, AUC and AUPR, is presented instead in Table 2. For the Paroni 689 

Sterbini dataset, we show the results for three different labels (untreated HP-, untreated HP+ 690 

and PPI-treated). For the Amir datasets, the p-values were computed for two groups, identified 691 

by the presence or absence of PPI treatment. The PSI was also applied to the data in the original 692 

high-dimensional (HD) space, as a reference to see how good the unsupervised dimension 693 

reduction approaches are in preserving the group separability in the HD. Moreover, the average 694 

p-value, AUC and AUPR best results with standard error on the original datasets, when 695 

applying leave-one-out-cross-validation (LOOCV), are shown in Supplementary Table S5.  696 

For the Paroni Sterbini dataset, the PSI evaluation in the first two dimensions of embedding 697 

identifies MCE as the best dimension reduction technique that is able to preserve the group 698 

separability in the HD space. Surprisingly, MCE (presented in Fig. 4A, p-value= 0.0040, AUC 699 

= 0.967, AUPR=0.987) outdoes HD in sample separation in three groups (for HD, p-value= 700 

0.0056, AUC= 0.937, AUPR=0.967). Similarly, in Amir4, MCE (p-value=0.0047, AUC=0.906, 701 
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AUPR=0.920) succeeds in preserving the separability of the original HD space (in HD, p-702 

value=0.0003, AUC=0.984, AUPR=0.985), better than the other dimension reduction methods. 703 

Finally, dimension reduction analysis on the Amir3 dataset shows that esophageal biopsies were 704 

significantly different before and after PPI treatment, as shown by MDSwUF results (p-value= 705 

0.0002, AUC=1=AUPR), that surpass the p-value, AUC and AUPR values in HD space (p-706 

value=0.0011, AUC=0.953, AUPR=0.957). Markedly, MDSwUF reaches a value of AUPR and 707 

AUC of 1, meaning perfect classification of the samples. 708 

Overall, when averaging across all datasets, the two metrics based on AUC and AUPR pointed 709 

out that MDSwUF (AUC=0.932, AUPR= 0.949) gave the best results of separability compared 710 

to HD (AUC=0.958, AUPR=0.970), followed by MCE with closer results (AUC=0.919, 711 

AUPR=0.933), while MCE gave the highest separability according to p-value (p-712 

value=0.0055). Then PCA is the third best result (p-value=0.0095, AUC=0.896, AUPR=0.914), 713 

followed by NMDS and MDSbc. However, to conclude what is the best method, we considered 714 

an evaluation based on ranking (Table 2). It is important to note that MCE was the dimension 715 

reduction approach that ranked first in performance across all the datasets, followed by 716 

MDSwUF (Table 2). Hence, the results of sample separability suggest the presence of hidden 717 

patterns that emerge by applying nonlinear dimension reduction techniques like MCE and 718 

MDSwUF. 719 

Then clustering algorithms, MCL and its Minimum Curvilinear version (for more information 720 

see ‘Methods - From Markov Clustering (MCL) to Minimum Curvilinear Markov Clustering 721 

(MC-MCL)’), were used to confirm the well-possedeness of the hidden patterns that were 722 

recognized by nonlinear dimension reduction. The best results as highest accuracies in each 723 

dataset and the mean performance across all the datasets are exhibited in Table 1, bottom panel. 724 

As already discussed in the previous section, the minimum curvilinear version of MCL (MC-725 

MCL, acc=0.67) outperforms the MCL clustering algorithm (acc=0.58) in the Paroni Sterbini 726 

dataset, confirming the presence of underlying non-linear complexity in the data. However, the 727 
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accuracy doesn’t reach high values, because of the difficulty in pattern recognition generated 728 

by the three-body problem in the HD space. Curiously, the accuracies for four clusters (HP-, 729 

HP+, PPI-, PPI+) drop to 0.58 for MC-MCL and to 0 for MCL, supporting the hypothesis that 730 

three clusters are more congruous than four clusters. Notably in Amir3, MC-MCL attains high 731 

clustering accuracy (acc=0.81), compared to MCL (acc=0.69). This is the dataset for which, 732 

surprisingly, Amir and collaborators did not find significant changes in the esophageal tissue 733 

microbiota following PPI-treatment, using classical MDS unsupervised multivariate method 734 

with unweighted UniFrac distance 21. Instead, in the gastric fluid dataset (Amir 4), MC-MCL 735 

and MCL got the same accuracy of 0.75, where a significant separation of samples according 736 

to PPI consumption was already proved in the original article 21.  737 

However, we have to clarify that normalizations besides scaling (DRS and DCS) and log-738 

transformation (log(1+x)) could potentially lead to different performance results of 739 

unsupervised analysis. Normalization is crucial to address uneven sampling depth and sparsity 740 

(high proportion of zeros) in microbiome data, like rarefying an OTU table, that is randomly 741 

sampling without replacement from each sample such that all samples have the same number 742 

of total counts (sequencing depth) 68–71 (http://qiime.org/scripts/single_rarefaction.html). This 743 

normalization is recommended to moderate the sensitivity of UniFrac distances to sequencing 744 

(sampling) depth 50,72, especially differences in the presence of rare OTUs 48, nonetheless it is 745 

also considered statistically improper due to the omission of data 72. 746 

Another normalization was introduced in 2010 by Anders and colleagues for general sequence 747 

count data (function varianceStabilizingTransformation implemented in the Bioconductor 748 

DESeq2 package), that uses a Variance-Stabilization Transformation (VST) by modelling 749 

microbiome count data with Negative Binomial (NB) distribution 69,72. 750 

We also provide the results with these two different normalizations, and we further confirm that 751 

the data are segregated in the HD space when pre-processed according to them, as shown in the 752 

p-value, AUC and AUPR tables in Additional file (for negative binomial, Supplementary 753 
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Tables S5-6; for rarefaction, Supplementary Table S11-12). Interestingly, across all the datasets 754 

MCE decreases its performance with these pre-processing techniques, remarkably with rarefied 755 

datasets, while the other linear techniques improve in performance (Supplementary Table S6 756 

for negative binomial; Supplementary Table S12 for rarefaction), suggesting that these 757 

adjustments linearize the datasets. Indeed, since MCE is a hierarchical technique, it needs the 758 

presence of nonlinearity to perform well. In a similar way, with these two normalizations the 759 

accuracy of MC-MCL drops down (less remarkably in the rarefaction datasets), while the 760 

performance of MCL does not increment (Supplementary Table S9 for negative binomial; 761 

Supplementary Table S14 for rarefaction). It is true that some pre-processing steps such as 762 

negative binomial tend to linearize the data but, in this manner, they can also remove important 763 

nonlinear discriminative information, as we show with the results of unsupervised analysis. 764 

Therefore, some pre-processing approaches can also cancel important nonlinear discriminant 765 

information present in the analysed data.  766 

 767 

Network analysis clarifies the effect of PPI-treatment on the gastric 768 

microbiota 769 

Five major phyla have been detected in the normal gastric microbiota: Firmicutes, 770 

Bacteroidetes and Actinobacteria dominate the gastric fluid samples, while Fusobacteria and 771 

Proteobacteria are the most abundant phyla in gastric mucosal samples 1. 772 

However, the composition and abundance of gastric microbiota may be affected by many 773 

factors, such as dietary habits, H. pylori infection, diseases and drugs, including PPIs 1. 774 

Yet, although recent studies have highlighted the potential of these antacid drugs to affect the 775 

gastric microbiota, more knowledge needs to be gained about the association between PPI usage 776 

and the non-H. pylori bacteria in the stomach. 777 

Since we wanted to investigate the effect of PPI intake on gastric microbiota in dyspepsia, we 778 

analysed: Amir4 for gastric fluid microbiota 21 and Paroni Sterbini et al. dataset 22 for gastric 779 
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mucosal microflora, in the latter case restricting to PPI-treated H. pylori-negative (PPI-) and 780 

untreated H. pylori negative patients (HP-). In both studies, the samples from dyspeptic patients 781 

were analysed using the same next-generation sequencing technologies for direct sequencing 782 

of 16S rRNA gene amplicons, 454 Pyrosequencing.  783 

For this purpose, we employed PC-corr algorithm, that was discussed in the Methods section 784 

named: ‘PC-corr network’.  In brief, PC-corr discloses the discriminative network of features 785 

that are associated to a sample separation along a principal component direction. Hence, we 786 

expect that the PC-corr network of bacteria will offer a view on how the community of 787 

bacteria respond to PPI-treatment perturbation in the gastric niche (environment), in 788 

dyspeptic patients. 789 

In Amir4 (gastric fluid), PCA revealed that gastric fluid samples were separated into two groups 790 

according to PPI treatment along PC2 and their difference is significant (p -value < 0.01) 791 

(Supplementary Figure S3). Hence, we built the PC-corr network 62 using the loadings of PC2 792 

at cut-off 0.5 (Supplementary Figure S4).  793 

Similarly for the Paroni Sterbini dataset (gastric mucosa), PCA (Supplementary Figure S5) 794 

could (significantly or close to significance) separate PPI-treated H. pylori-negative patients 795 

from untreated H. pylori-negative patients along PC2 and PC15 (p-value along PC2 = 0.014, p-796 

value along PC15=0.054). Therefore we built the PC-corr network for both PC2 and PC15 797 

discriminating dimension using 0.5 cut-off (Supplementary Figure S6, panel A and B).  798 

Subsequently, to investigate how PPI is affecting the microbiota in the gastric environment, we 799 

considered the conserved network, which is obtained as the union of the two PC-corr networks 800 

(obtained for PC2 and PC15) derived from the Paroni Sterbini gastric mucosa dataset 801 

intersected with the PC-corr network derived from the Amir4 gastric fluid dataset. The resulting 802 

conserved network displays the bacteria with same trend in the two datasets, i.e. either increased 803 

or decreased with PPI-treatment, respectively in red and black colour, as emphasized by the 804 

violet circle at the centre of Figure 6. Figure 7 is the same as Figure 6 but here the nodes are 805 
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coloured according to phylum-level taxonomy. The conserved network which arises at the 806 

overlap between the two PC-corr networks (union of Paroni Sterbini networks intersected with 807 

the Amir4 network) is statistically significant (p-value=1.00e-04), as a result of the statistical 808 

test based on trying to obtain the same conserved network by random resampling the bacteria 809 

in the two networks (Supplementary Figure S7), implying the difficulty of generating this 810 

intersection simply at random (since this intersection lies to the right of the critical value at the 811 

0.05 level in the distribution of overlap). This is an important result because it confirms the 812 

robustness of the detected conserved network as a microbiota signature perturbed by PPI 813 

treatment. The top and bottom panels in Figure 6 and 7 show instead the remaining part of 814 

Amir4’s network (top panel) and of Paroni Sterbini’s network (bottom panel) that are not in the 815 

intersection, and therefore might be more specific for the gastric fluid and mucosa respectively. 816 

The PPI-perturbed conserved network is characterized by a main interconnected module with 817 

nine bacteria of four different phyla (Bacteroidetes, Fusobacteria, Proteobacteria, Firmicutes) 818 

that are positively associated (red edges) and by two single bacteria order without interactions 819 

(Streptophyta, Clostridiales), all being increased following PPI treatment, except Streptophyta 820 

that is instead decreased with PPI-treatment (Fig. 6 and 7). Note that a mix between genera, 821 

phyla and order of bacteria can be found in the networks. The reason behind it is the availability 822 

of detail information regarding different bacteria. Some of the spotted bacteria (Veillonella, 823 

Clostridiales, Campylobacter) were already observed in previous studies. The genus 824 

Veillonella was found increased in relation to PPI use 16 in the gut microbiome and has been 825 

associated with increased susceptibility to Clostridium difficile infection 73.  These Gram-826 

negative anaerobic cocci with lactate fermenting abilities are abundant in the human 827 

microbiome and are normally found in the intestines and oral mucosa of humans 74. 828 

Interestingly, they favour nitrite accumulation in the stomach during nitrate reduction, 829 

promoting a carcinogenic effect 1. In addition, the order Clostridiales, that is associated to 830 

Clostridium difficile infection, was also seen significantly changed in the gastrointestinal tract, 831 
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however Freedberg et al. 4 found it significantly decreased during PPI use, in contrast to our 832 

results. PPIs use also increases the risk of other enteric infections, apart from C. difficile 833 

infection, such as campylobacteriosis, as reported in 75,76. Moreover, half of the bacteria present 834 

in the network normally colonize the human oral cavity.  Indeed, it is the main purpose of PPI 835 

treatment to increase the stomach pH, and the higher pH of treated patients is known to 836 

favour the growth of bacteria that usually reside in the mouth and esophagus and are not 837 

adapted to survive the normal gastric acidity 6,20. Among genera usually reported as part of 838 

the normal flora of the gastrointestinal tract, only Veillonella is found regularly at other sites, 839 

like the mouth 77. Leptotrichia species mostly colonize the oral cavity  and they were isolated 840 

from various human infections, suggesting that they are emerging human pathogens 78,79. 841 

Oribacterium also inhabits the mouth, besides the upper respiratory tract 80. Prevotella is a 842 

genus of Gram-negative bacteria that tend to colonize the human gut, mouth and vagina, and 843 

may cause infections, mostly observed in the oral cavity (odontogenic infections) 79. 844 

Porphyromonas has been found by 81 as part of the salivary microbiome. Both Prevotella and 845 

Porphyromonas contribute to the formation of abscesses and soft tissue infections in various 846 

part of the body and they can cause infections, including periodontal and endodontal diseases 847 

82. Capnocytophaga are inhabitants of the oral cavity too, and these opportunistic pathogens 848 

can cause infections (both in immunocompromised and immunocompetent hosts), the severity 849 

of which depend on the immune status of the host 83,84. As well, Granulicatella are Gram-850 

positive cocci normally found in the oral flora and are uncommon causes of infections, 851 

nevertheless they can cause infections, including bloodstream infection and infective 852 

endocarditis 85. Besides, the genus Fusobacterium inhabits the mucosal membranes of humans 853 

and all its species are parasites of humans 86, and some species are found in the oral cavity. The 854 

remaining bacteria (Campylobacter, Bulleidia) do not belong to the oral microbiota 82. The 855 

genus Campylobacter was increased in relation to PPI use and the increased abundance of these 856 

Gram-negative bacteria has the potential to cause diseases and infections in humans (most 857 
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commonly diarrhoea). Due to the induced increase of pH, PPI is hypothesised to facilitate 858 

gastrointestinal infections and a study by Brophy et al. 87 reported an increased risk of 859 

Campylobacter infection following PPI therapy. Moreover Campylobacteriosis, mostly caused 860 

by eating undercooked foods derived from poultry or other warm-blooded animals or contact 861 

with contaminated water or ice 88, has been shown by the Dutch National Institute for Public 862 

Health and the Environment to noticeably increase in incidence when PPI use grows 75.  863 

Altogether, PC-corr approach was applied on gastric fluid and gastric mucosal datasets (in the 864 

latter case, excluding the samples positive to H. pylori infection) to investigate how PPI is 865 

affecting the gastric microbiota (both gastric fluid and gastric mucosal microbiota), because of 866 

PC-corr’s ability to pinpoint the combination of bacteria that play a major role in the 867 

discrimination of the samples, in this case according to PPI intake. The PC-corr conserved 868 

network identified eleven genera and order of bacteria, which belong to the phyla 869 

(Bacteroidetes, Fusobacteria, Proteobacteria, Firmicutes) commonly found in the stomach 870 

which, with exception of Streptophyta, demonstrated increased abundance following PPI 871 

treatment. Mostly all the found bacteria were not reported in previous studies, except 872 

Veillonella, Clostridiales and Campylobacter, but they were found as inhabitants of the oral 873 

cavity and/or possible cause of infections and diseases in humans. Hence, and in concordance 874 

to previous studies 6,20, these results point out that PPI treatment, by increasing the intragastric 875 

pH, favours the growth of bacteria that usually reside in the mouth and survive through the 876 

harsh acidic conditions of the stomach. Furthermore, the results suggest that PPI-associated 877 

increas of some bacterial populations may lead to infections and diseases or increase 878 

susceptibility for other bacterial infections (like Veilonella) or promote a carcinogenic effect 879 

(like Veilonella). Previous studies have highlighted that PPI intake is associated with decreased 880 

bacterial richness 16,18,89,90, increased risk of enteric and other infections (e.g. caused by 881 

Salmonella, Clostridium difficile, Shigella, Listeria) 17,91, increase in the abundance of oral and 882 

upper GI tract commensals and potential pathogenic bacteria  (e.g. Enterococcus, 883 
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Streptococcus, Staphylococcus, and Escherichia coli ) 16,17 in the gut microbiota. Nevertheless, 884 

our analysis by means of PC-corr does not spot single bacteria perturbed in the gastric 885 

environment by PPI treatment, but a community of bacteria is altered in abundance by PPIs and 886 

their inter-specific bacterial interactions in the gastric niche. 887 

Therefore our study will ground the basis for further investigations that could better clarify the 888 

effect of PPI-treatment on the human gastric microbiota and additionally verify the identified 889 

altered bacteria, as PPIs may have possible side-effects, including increased risks of different 890 

infections and diseases.  891 

 892 

Network analysis clarifies the effect of H. pylori infection on gastric mucosal 893 

microbiota 894 

The stomach was long thought sparsely colonized by bacteria due to the gastric microbicidal 895 

acidic barrier (pH<4.0) 92. This view dramatically changed with the discovery of the Gram-896 

negative bacterium H. pylori in the 1980’s by Warren and Marshall 93, that is a carcinogenic 897 

bacterial pathogen infecting the stomach of more than one-half of the world’s 898 

human population. This human pathogen is able to survive in the highly acidic environment 899 

within the stomach by producing cytoplasmic urease that, by catalysing the hydrolysis of urea 900 

into CO2 and NH4, produces a  neutralizing ammonia cloud around it 19,94,95. However, most H. 901 

pylori avoid the acidic environment of the gastric lumen by swimming towards the mucosal cell 902 

surface (using their polar flagella and chemotaxis mechanisms) and may adhere and invade the 903 

gastric mucosal epithelial cells 96,97. Hence, it doesn’t represent a dominant species in gastric 904 

fluid microbiota 98, but was found to generally to reside in the gastric mucosae 5,96,99.  905 

Persistent (chronic) infection with this Gram-negative bacterium induces changes in gastric 906 

physiology and immunology, e.g. reduced gastric acidity and parietal cell mass, perturbed 907 

nutrient availability, local innate immune responses 100,101, that most probably induces shift in 908 

gastric microbiota composition 100. Although H. pylori colonization usually persists in the 909 
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human stomach for many decades without adverse effects, the infection of this bacteria is 910 

associated with increased risk for several diseases, including peptic ulcers, chronic gastritis, 911 

mucosa-associated lymphoid tissue lymphoma, gastric adenocarcinoma 102,103, and dyspepsia 912 

104,105. The potential alterations induced by the H. pylori can in turn lead to dysbiosis and may 913 

cause aberrant proinflammatory immune responses 106, susceptibility to bacterial pathogens and 914 

increased risk of gastric disease, including cancer 1,107.  However, the effect of H. pylori 915 

infection on overall composition of gastric microbiota at genus level and the bacterial interplay 916 

in presence of this widespread human infection remain unclear.  917 

To investigate the influence of H. pylori infection on the gastric mucosal microbiota, we 918 

analysed: 1) Paroni Sterbini et al. 22 considering only PPI-untreated dyspeptic patients, either 919 

infected (HP+) or not by H. pylori (HP-); 2) Parsons et al. 29 restricting to PPI-untreated patients 920 

from: i) normal stomach group with no evidence of H. pylori infection; ii) H. pylori gastritis 921 

group with evidence of H. pylori infection. Even though the same technology is important for 922 

a comparative study, unfortunately in the literature there was no such data available like Paroni 923 

Sterbini’s one, that is 16S rRNA gene pyrosequencing data (derived from gastric mucosal 924 

microflora in dyspeptic untreated patients either positive or negative for H. pylori). Despite  925 

this, the two studied datasets, obtained with two different next-generation sequencing 926 

technologies for direct sequencing of 16S rRNA gene amplicons (454 Pyrosequencing for 927 

Paroni Sterbini et al. and Illumina MiSeq for Parsons et al.) 108, both contain community 928 

profiling of gastric mucosa-associated microbiota in PPI-untreated H. pylori-negative and -929 

positive subjects. However, for the sake of clarity, we have to specify a difference: while in 930 

Paroni Sterbini’s dataset the gastric mucosal biopsy specimens were collected from patients 931 

with dyspepsia, this is not the case for Parsons’s data.   932 

To enhance the understanding of the H. pylori-triggered microbial perturbation in this 933 

ecological niche, we employed again PC-corr algorithm, that is able to associate to any PCA 934 

analysis of an omic dataset, where a sample separation emerges, a network of discriminative 935 
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features (for details see ‘Methods-PC-corr network’). The analysis of the 16S rRNA sequencing 936 

data was restricted only the overlapping OTUs, excluding Helicobacter because our goal is to 937 

investigate its impact on the rest of the microbial network. 938 

In Paroni Sterbini’s dataset, since PCA could significantly separate gastric mucosal biopsy 939 

samples of PPI-untreated patients according to H. pylori-positivity (p-value=0.01) along PC2 940 

(Supplementary Figure S8), the PC-corr network was constructed from PC2 loadings at 0.5 cut-941 

off (Supplementary Figure S9). Similarly, for Parsons’ dataset, since PCA (Supplementary 942 

Figure S10) could significantly separate patients from the normal stomach group with no 943 

evidence of H. pylori infection and PPI-untreated (Control) from H. pylori gastritis group 944 

positive to H. pylori infection and not using PPIs (HPGas) along PC1 (p-value along PC1 945 

<0.01,), the PC-corr network was constructed from this discriminating dimension at 0.5 cut-off 946 

(Supplementary Figure 11). The obtained microbial differential networks (top panel for and 947 

bottom panel in Figure 8, coloured according to phylum level) pinpointed, from the system 948 

point of view, the bacteria affected by H. pylori infection in the gastric mucosa, that are 949 

precisely bacteria whose abundance is decreased in H. pylori-positive patients. A presumable 950 

explanation of this trend is already pointed out in literature, where the presence of H. pylori 951 

leads to a reduced gastric microbial diversity 109–111. Nevertheless, in some cases the diversity 952 

increases again, because of diverse factors that allow survival and colonization of bacteria in 953 

the stomach 1,112. Then, the preserved network of gastric mucosa microbiota was constructed 954 

by intersecting the two PC-corr networks obtained from Paroni Sterbini’s and Parsons’s dataset. 955 

Figure 8, middle panel, shows the conserved network (violet circle), which presents the 956 

common bacteria coloured according to phylum level and their associations. The spotted 957 

bacteria display decreased abundance with H. pylori infection (i.e. increased in H. pylori-958 

negative subjects) in both the two 16S rRNA gene sequencing data. By performing a statistical 959 

test based on random resampling of the bacteria in the two networks, we verified that the shown 960 

bacterial conserved network is statistically significant and difficult to be generated at random 961 
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(p-value=1.00e-04), because getting this intersection at random is very rare (Supplementary 962 

Figure S12).  The top and bottom panels in Figure 8 show instead the remaining part of Paroni 963 

Sterbini’s network (top panel) and of Parsons’s network (bottom panel) that are not in the 964 

intersection. At the genus level, a study by Klymiuk et al. 113 identified Actinomyces, 965 

Granulicatella, Veillonella, Fusobacterium, Neisseria, Helicobacter, Streptococcus, and 966 

Prevotella as significantly different between the H. pylori-positive and H. pylori-negative 967 

gastric samples. These bacteria do not emerge in the conserved network, while they all (except 968 

Neisseria) appear altered (decreased) during H. pylori infection in the study by Parsons and 969 

colleagues (present in the bottom panel of Figure 8). 970 

Our analysis pinpoints a conserved network from two independent 16S rRNA gene sequencing 971 

data, that reveals microbial communities altered by H. pylori infection and their interactions in 972 

the gastric mucosa. It revealed a main core of six associated bacteria (with positive association, 973 

red edges) and two single nodes without any interaction with the main module, from three 974 

different phyla (Proteobacteria, Firmicutes, Actinobacteria) all resulting decreased in H. 975 

pylori-infected subjects (that is increased in non-infected subjects). The decreased abundance 976 

of the phyla Firmicutes and Actinobacteria in H. pylori-positive patients with respect to H. 977 

pylori-negative subjects was already shown in a previous study by Maldonado-Contreras et al. 978 

114. In addition, other studies have demonstrated an increased colonization of Proteobacteria in 979 

H. pylori-positive patients 114,115, while the obtained conserved PC-corr network shows that the 980 

bacteria from this phylum are instead decreased in those individuals. Among the spotted 981 

bacteria, Methylobacterium is a genus of facultative methylotrophic bacteria that are commonly 982 

found in diverse natural environments (such as leaf surfaces, soil, dust, and fresh water) and in 983 

hospital environment due to contaminated tap water. Methylobacterium species can cause 984 

health care-associated infections (mainly catheter infection), especially in 985 

immunocompromised patients 116. In addition, Sphingomonas plays a role in human health, as 986 

some of the sphingomonads (in particular Sphingomonas paucimobilis) are the cause of a range 987 
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of mostly nosocomial, non-life-threatening infections. Sphinhomonas species are widely spread 988 

in nature, having been isolated from many sources, from water habitats to clinical settings 117, 989 

Pseudomonas, due to its great metabolic versatility, can also colonize different types of niches 990 

118, including soil and water, in addition to plant and animal associations, and includes 991 

pathogenic species in humans 119. Acinetobacter species are instead common, free-living 992 

saprophytes found in soil, water, sewage and foods and are ubiquitous organisms in hospitals. 993 

They have been increasingly identified as a key source of infection in debilitated patients in 994 

hospitals, due to their rapid development of resistance to antimicrobials 120. In particular, one 995 

species, Acinetobacter lwoffi, can trigger gastritis, apart from H. pylori 121. Propionibacterium, 996 

so named for their unique ability to synthesize propionic acid by using unusual transcarboxylase 997 

enzymes 122, are primarily facultative pathogens and commensals of humans, living on the skin, 998 

while other members are widely employed for synthetizing  vitamin B12, tetrapyrrole 999 

compounds, and propionic acid, as well as used as probiotics 123. Catonella is another node in 1000 

the network and this bacterial genus is obligative anaerobic, non-spore-forming and non-motile, 1001 

with one known species (Catonella morbi) from the human gingival crevice 124,125, that has been 1002 

associated with periodontitis 124 and endocarditis 126. Besides, the bacterial genus 1003 

Enhydrobacter so far contains a single species, Enhydrobacter aerosaccus, a Gram negative 1004 

non-motile bacterium that is both oxidase and catalase positive and shows gas vacuoles 127,128. 1005 

Bulleidia, a Gram-positive, non-spore-forming, anaerobic and non-motile genus,  has one 1006 

known species too (Bulleidia extructa)129.  1007 

In conclusion, by means of the PC-corr approach, we determined the combination of bacteria 1008 

responsible for the difference between H. pylori-positive and H. pylori-negative gastric mucosa 1009 

of untreated patients and their microbe-microbe interactions. All the bacteria, both in the 1010 

conserved network and not, were decreased in H. pylori-infected individuals (i.e. increased in 1011 

H. pylori-negative group).  H. pylori, like acid suppressing medications (for the treatment of 1012 

dyspepsia), alters the population structure of the gastric and intestinal microbiota 130 and 1013 
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regularly, this bacterium constitutes most of the gastric microbiota 112, literally depleting 1014 

bacterial biodiversity. Moreover, most of the identified bacteria represent bacteria of potential 1015 

health concern, as agents of diseases and infections.  1016 

 1017 

Discussion 1018 

This study indicates the necessity of including nonlinear multidimensional techniques into 1019 

clinical studies based on 16S metagenomic sequencing data, since drawing a study’s 1020 

conclusions by solely relying on linear techniques, such as PCA and MDS, can lead to data 1021 

misinterpretation and impair the translational path from research to diagnostic. In the era of 1022 

post-genomics and systems approaches, nonlinear dimension reduction and clustering by MCE 1023 

and MC-MCL can offer new insights into complex clinical 16S metagenomics data, like the 1024 

ones studied in this article or the presence of clinical sub-types, and serve as a valuable tool in 1025 

the run towards precision medicine. Moreover, this study shows how it is possible to 1026 

complement multivariate analysis by means of network analysis employing PC-corr algorithm, 1027 

that accounts for the bacteria responsible for the sample discrimination and their co-occurrence 1028 

relationships. Precisely, from the system point of view the obtained microbial differential 1029 

networks pinpointed marked bacteria-bacteria interactions and modules affected by PPI 1030 

treatment in the gastric environment in dyspepsia and by H. pylori infection in the gastric 1031 

mucosa. We suggest that our findings can be an important starting point to design new therapies 1032 

that consider not only H. pylori infection but also the directly associated microbial alterations 1033 

as well as the indirect alterations due to the drugs used for H. pylori eradication such as PPI. 1034 

 1035 

List of abbreviations 1036 

LDA: Linear Discriminant Analysis 1037 

MC: Minimum Curvilinearity 1038 
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MCE: Minimum Curvilinear Embedding 1039 

MCL: Markov Clustering 1040 

MC-MCL: Minimum Curvilinear Markov Clustering 1041 

MDS: Multidimensional Scaling 1042 

MDSbc: Multidimensional Scaling with Bray-Curtis dissimilarity 1043 

MDSwUF: Multidimensional Scaling with weighted UniFrac distance 1044 

MST: minimum spanning tree 1045 

ncMCE: non-centred Minimum Curvilinear Embedding 1046 

NMDS: non-metric (Sammon criterion) Multidimensional Scaling 1047 

PC: Principal Component 1048 

PCA: Principal Component Analysis 1049 

PCoA: Principal Coordinate Analysis 1050 

PPI: Proton Pump Inhibitor 1051 

PSI: Projection-based separability index  1052 

SVD: Singular Value Decomposition 1053 
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Figures and tables 1395 

 1396 

Figure 1. The Tripartite-Swiss-Roll as an example of data nonlinear organization.  1397 

A) Tripartite-Swiss-Roll; B) PCA; C) MDS (Bray-Curtis dissimilarity); D) NMDS (Sammon Mapping). 1398 

The three different colours (red, blue and green) represent the three partitions of the Swiss-roll manifold. 1399 
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This figure shows the inability of PCA, MDS and NMDS to reveal the inner nonlinear structure of the 1400 

Tripartite-Swiss-Roll, which appears collapsed (B, D) or with a horseshoe shape (C). 1401 

 1402 

 1403 

Figure 2. Flowchart of the data analysis. To answer the five questions under investigation in our study, 1404 

we implemented a workflow based on machine learning tools. Following the flowchart shown in the 1405 

figure, we analysed three 16S rRNA gene sequencing datasets with information on PPI use in dyspeptic 1406 

patients; for one of the datasets (Paroni Sterbini et al. 22), patients were also determined to be positive 1407 

or negative to H. pylori infection. 1408 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005587
http://creativecommons.org/licenses/by-nc-nd/4.0/


57 
 

Firstly, we performed unsupervised dimension reduction, both linear and nonlinear, in the first two 1409 

dimensions of embedding.  Nonlinear dimension reduction will show the presence of hidden patterns, 1410 

in the form of sample groups. Secondly, nonlinear clustering was applied to confirm the well-1411 

possedeness of the hidden patterns found by nonlinear dimension reduction. Lastly, our workflow ends 1412 

with the PC-corr algorithm, that reveals which combination of bacteria (features) are responsible for the 1413 

identified differences between the groups of samples. A fourth dataset (Parsons et al 29.) is used only for 1414 

the validation of the PC-corr network results and it contains information of PPI treatment and H. pylori 1415 

infection. 1416 
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 1417 

Figure 3. Dimension reduction techniques usually employed in metagenomic data analysis and 1418 

applied to the Paroni Sterbini dataset. The plots represent the best PCA and MDS results based on 1419 

(average) p-value projection-based separability index (PSI) for the three different labels (PPI-treated, 1420 

untreated HP+ and untreated HP-), evaluated in the 2D embedding space. Moreover, also the average 1421 

values of all pairwise AUC and AUPR PSI are reported as overall estimators of separation between the 1422 

groups in the 2D reduced space. A) PCA; B) MDS with Bray-Curtis dissimilarity (MDSbc); C) MDS 1423 
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with weighted UniFrac distance (MDSwUF); D) non-metric MDS with Sammon Mapping (NMDS). 1424 

Blue dots represent PPI-treated samples, while red and green dots are the untreated samples which 1425 

resulted either negative (red) or positive (green) to the H. pylori test (histological observation and urease 1426 

test). 1427 
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Figure 4. MCE, a topological machine learning for nonlinear and hierarchical dimension 

reduction. (A) Results on the Paroni Sterbini et al.22 dataset. The shown best MCE result is based on 

(average) p-value projection-based separability index (PSI) for the three different labels (PPI-treated, 

untreated HP+ and untreated HP-), evaluated in the 2D embedding space under the DCS normalization. 

The average values of all pairwise AUC and AUPR PSI are reported as well as overall estimators of 

separation between the groups in the 2D reduced space. Blue dots represent PPI-treated samples, while 
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red and green dots are the untreated samples which resulted either negative (red) or positive (green) to 

the H. pylori test (histological observation and urease test). (B) Results on the Tripartite-Swiss Roll. The 

three different colours (red, blue and green) represent the three partitions of the Swiss-roll manifold. 

 

 

 

 

 

 

 

 

 

Table 1. Results of unsupervised analysis on the original datasets. Best results of unsupervised 

dimension reduction techniques (top panel) and of clustering (bottom panel).  

(Top panel): Best results of unsupervised dimension reduction techniques according to the index for 

sample separation in the space of the first two dimensions of embedding. HD (no dimension reduction) 

represents the reference results to see how good the separability present in the high dimensional space 

is preserved by dimension reduction techniques. Results are ordered from the best (top) to the worst 

(bottom) method. For the Paroni Sterbini dataset, we show the results for three different labels (PPI-

treated, untreated HP+ and untreated HP-). For the Amir datasets, the p-values were computed for two 

groups, identified by the presence or absence of PPI treatment. 

(Bottom panel): Best results of clustering (highest accuracies, regardless of the normalization and type 

of correlation) MCL and MC-MCL, in each of the three studied datasets (Paroni Sterbini, Amir3 and 

Amir4), and the mean performance (mean of the highest accuracies) across all the datasets.  

For Paroni Sterbini dataset, we show the results for three clusters (PPI-treated, untreated HP+ and 

untreated HP-) and in brackets the results for four clusters (PPI-treated HP+, PPI-treated HP-, untreated 

HP+ and untreated HP-). Instead, for Amir datasets, the accuracies were computed for two groups, 
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identified according to the presence or absence of PPI treatment.

 

Note:  all the P-values, AUC and AUPR can be found in Supplementary Table S1, while all the 

accuracies can be found in Supplementary Table S4. 

Abbreviations: HD: High Dimension; MCE: Minimum Curvilinear Embedding; MDSbc: 1428 

Multidimensional Scaling with Bray-Curtis dissimilarity; MDSwUF: Multidimensional Scaling with 1429 

weighted UniFrac distance; NMDS: Non-metric Multidimensional Scaling; PCA: Principal Component 1430 

Analysis; MCL: Markov Clustering; MC-MCL: Minimum Curvilinear Markov Clustering; p-value: 1431 

Mann-Whitney p-value; AUC: Area Under the Curve; AUPR: Aurea Under the Precision Recall. 1432 

. 
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Figure 5. Pairwise PCA of Paroni Sterbini’s gastric samples and of the Tripartite-Swiss-Roll. (A-

C) PCA was applied to three subsampled versions of the Paroni Sterbini dataset (keeping the best 

normalization found for the original dataset), each corresponding to the combination of two groups: A) 

PPI-treated and untreated H. pylori negative samples; B) PPI-treated and untreated H. pylori positive 

samples; C) untreated H. pylori negative and untreated H. pylori positive samples. The p-value, AUC 

and AUPR PSI are reported as well as overall estimators of separation between the groups in the 2D 

reduced space (D-F) In a similar manner, PCA was applied to the three datasets obtained by subsetting 
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the Swiss-roll dataset, each one corresponding to a combination of two groups: D) red vs blue groups, 

E) blue vs green groups, F) red vs green groups. 

 

Table 2. Ranked performance of unsupervised dimension reduction techniques on the original 

datasets. The table shows the ranked performance of unsupervised dimension reduction techniques 

according to the index for sample separation (based on Mann-Whitney P-value, AUC and AUPR) in the 

space of the first two dimensions of embedding, for the three studied datasets (Paroni Sterbini, Amir3 

and Amir4). Each rank is related to the results obtained in Table 1, top panel. The results are ordered by 

the mean performance (fourth column) from the best (top) to the worst (bottom) method.

 

Abbreviations: HD: High Dimension; MCE: Minimum Curvilinear Embedding; MDSbc: 1433 

Multidimensional Scaling with Bray-Curtis dissimilarity; MDSwUF: Multidimensional Scaling with 1434 

weighted UniFrac distance; NMDS: Non-metric Multidimensional Scaling; PCA: Principal Component 1435 

Analysis; p-value: Mann-Whitney p-value; AUC: Area Under the Curve; AUPR: Aurea Under the 1436 

Precision Recall. 1437 
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Figure 6. PC-corr method to unveil how PPI is affecting the microbiota in gastric environment in 1438 

dyspeptic patients. (Middle panel) To investigate the effect of PPIs on the gastric microbiota in 1439 

dyspeptic patients, we constructed the conserved PC-corr network at 0.5 cut-off, by merging the PC-1440 
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corr networks obtained from the gastric mucosa (Paroni Sterbini et al. 22) and the gastric fluid (Amir et 1441 

al. 21). To do so, we firstly considered the union of the two PC-corr networks obtained from the gastric 1442 

tissue dataset and then we intersected it with the PC-corr network from the gastric fluid dataset. All the 1443 

bacteria spotted in the conserved PC-corr network (violet circle) were found increased with PPI use.  In 1444 

both the two studied datasets, red nodes indicate bacteria whose abundance is increased with PPI-1445 

treatment, while black nodes indicate bacteria with lower abundance following treatment with this acid 1446 

suppressing medication. The common bacteria that showed an opposite trend in the two datasets, i.e. 1447 

microbial abundance increased in one dataset and decreased in the other dataset, were removed from the 1448 

network. (Top panel) The top panel shows the obtained Amir4’s network, not in common with the 1449 

Paroni Sterbini’s network. The module on the left side (except Enterobacteriaceae) include bacteria 1450 

more abundant following PPI-treatment in Amir4’s data, while the module on the right (and 1451 

Enterobacteriacea) is composed of decreased bacteria in abundance under PPI therapy in Amir4’s data.  1452 

(Bottom panel) The bottom panel represents the part of Paroni Sterbini’s network (union of the two 1453 

PC-corr network), that is not shared with Amir4’s one. As in the top and middle panels, the colour of 1454 

the nodes represents if the bacteria display higher (red nodes) or lower abundance (black nodes) in PPI-1455 

treated samples of Paroni Sterbini’s dataset. 1456 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005587
http://creativecommons.org/licenses/by-nc-nd/4.0/


67 
 

 

Figure 7. PC-corr networks to unveil how PPI is affecting the microbiota in gastric environment 1457 

in dyspeptic patients, coloured according to phylum-level taxonomy. To investigate the effect of 1458 

PPIs on the gastric microbiota in dyspeptic patients, we constructed the conserved PC-corr network at 1459 
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0.5 cut-off, by merging the PC-corr networks obtained from the gastric mucosa (Paroni Sterbini et al. 1460 

22) and the gastric fluid (Amir et al. 21). To do so, we firstly considered the union of the two PC-corr 1461 

networks obtained from the gastric tissue dataset and then we intersected it with the PC-corr network 1462 

from the gastric fluid dataset. All the bacteria spotted in the conserved PC-corr network (violet circle) 1463 

were found increased with PPI use. (Top panel) The top panel shows the obtained Amir4’s network, 1464 

not in common with the Paroni Sterbini’s network. The module on the left side (except 1465 

Enterobacteriaceae) include bacteria more abundant following PPI-treatment in Amir4’s data, while the 1466 

module on the right (and Enterobacteriacea) is composed of decreased bacteria in abundance under PPI 1467 

therapy in Amir4’s data.  (Bottom panel) The bottom panel represents the part of Paroni Sterbini’s 1468 

network (union of the two PC-corr network), that is not shared with Amir4’s one. As in the top and 1469 

middle panels, nodes are coloured according to bacterial phylum level. 1470 
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 1471 

Figure 8. PC-corr network to investigate the effect of H. pylori infection on the gastric mucosal 1472 

microbiota, coloured according to phylum-level taxonomy. (Middle panel) To investigate the effect 1473 
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of H. pylori infection on the gastric mucosal microbiota, we constructed the conserved PC-corr network 1474 

at 0.5 cut-off, by intersecting the PC-corr networks obtained from Paroni Sterbini et al. 22 and Parsons 1475 

et al 29 dataset. All the bacteria spotted in the conserved PC-corr network (violet circle) were found 1476 

decreased in abundance with H. pylori infection.  The common bacteria that showed an opposite trend 1477 

in the two datasets, i.e. microbial abundance increased in one dataset and decreased in the other dataset, 1478 

were removed from the network. (Top panel) The top panel show the obtained Paroni Sterbini’s 1479 

network, not in common with the Parsons’s network. It contains all bacteria whose abundance is 1480 

decreased in H. pylori-positive patients in Paroni Sterbini et al. dataset. (Bottom panel) The bottom 1481 

panel represent the part of Parsons’s network that is not shared with Paroni Sterbini’s one. As in the top 1482 

and middle panels, it includes bacterial communities decreased in H. pylori-infected patients. 1483 
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