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Abstract 26	

Temporal discounting refers to the tendency of humans and many animals to devalue rewards 27	

as a function of time. Steep discounting of value over time is associated with a range of 28	

psychiatric disorders, including substance use disorders and behavioral addictions, and 29	

therefore of potentially high clinical relevance. One cognitive factor that has repeatedly been 30	

shown to reduce temporal discounting in humans is episodic future thinking, the process of 31	

vividly imagining future outcomes, which has been linked to hippocampal mechanisms in a 32	

number of studies. However, the analytical approaches used to quantify the behavioral effects 33	

have varied between studies, which complicates a direct comparison of the obtained effect sizes. 34	

Here we re-analyzed temporal discounting data from previously published functional magnetic 35	

resonance imaging (fMRI) and behavioral studies (six data sets from five papers, n=204 36	

participants in total) using an identical model structure and hierarchical Bayesian parameter 37	

estimation procedure. Analyses confirmed that engagement in episodic future thinking leads to 38	

robust and and consistent reductions in temporal discounting with on average medium effect 39	

sizes. In contrast, effects on choice consistency (decision noise) where small and with 40	

inconsistent directionality. We provide standardized and unstandardized effect size estimates 41	

for each data set and discuss clinical implications as well as issues of hierarchical Bayesian 42	

parameter estimation.  43	
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Introduction 45	

Temporal discounting refers to the tendency of humans and many animals to de-value rewards 46	

as a function of the time to their delivery 1,2. While earlier studies have focused on steep reward 47	

discounting in substance-use-disorders3 and behavioral addictions such as gambling disorder 4, 48	

both steep and shallow discounting have been associated with various psychiatric and 49	

neurological disorders5. 50	

In the light of these associations between temporal discounting and mental disorders, 51	

cognitive factors and interventions with the potential to attenuate discounting are of 52	

considerable clinical interest 6,7. One such mechanism that has gained substantial empirical 53	

support in recent years is episodic future thinking, that is, the ability to use prospection to form 54	

vivid mental representations of future outcomes 8. Following earlier theoretical work 9 initial 55	

empirical work confirmed that engagement in episodic future thinking can reduce temporal 56	

discounting behavior 10. This effect has since then been replicated numerous times using a range 57	

of different tasks and experimental manipulations, as outlined in a recent meta-analysis 11. 58	

Episodic future thinking has been shown to affect temporal discounting in a variety of 59	

experimental designs 7,11. Previous work from our group has focused on trial-wise 10,12,13 and 60	

block-wise 14,15 presentation of episodic cues during temporal discounting. In this experimental 61	

design, control trials involve choices between smaller-but-sooner and larger-but-later rewards. 62	

In some trials (episodic trials), the larger-but-later reward is additionally enriched by verbal 63	

episodic cues (tags) that serve as reminders of subject-specific events scheduled for the 64	

respective future time point associated with the delayed reward. In our trial-wise design, 65	

episodic and control trials are randomly intermixed10,12,13, whereas in the block.-wise design, 66	

blocks of episodic and control trials are completed separately in the same experimental 67	

session14,15. We investigated this effect in a number of previous studies summarized in Table 1 68	

with n=204 participants in total. However, because modeling methods have continued to 69	

evolve, in our previous studies we have applied a range of different analytical approaches and 70	

model estimation schemes. In Peters & Buchel (2010), we fit hyperbolic discounting functions 71	

to estimated indifference points, separately for each participant and experimental condition, an 72	

approach that can be associated with some methodological problems16, e.g. this approach 73	

confounds goodness-of-fit (R2) with the discount rate 16. In Bromberg et al. (2017) and Sasse et 74	

al. (2015, 2017), we applied Maximum Likelihood estimation using softmax action selection17, 75	

and fitted models separately to the data from each subject and condition. In Wiehler et al. 76	

(2017), we used hierarchical Bayesian parameter estimation, and assumed separate group-level 77	

distributions per group (gamblers vs. controls) and condition (episodic vs. control). It is clear 78	
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that effect size estimates obtained from these different analytical approaches are not readily 79	

comparable, which poses a problem for e.g. meta-analyses of factors influencing discounting 80	

behavior 11 or future power analyses that depend on the availability of comparable effect size 81	

estimates for different subject populations or age groups. 82	

We therefore re-analyzed all our previously published data sets using the identical 83	

Bayesian estimation framework and using exactly the same hierarchical Bayesian model, 84	

yielding effect size estimates that are unconfounded by differences in the applied analytical 85	

approaches.  86	

  87	
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Methods 88	

We re-analyzed six data sets from five previously published studies on the effects of trial-wise 89	

and block-wise episodic cues on temporal discounting behavior (see Table 1).  90	

 91	

Table 1. Overview of the included data sets and temporal discounting task details. §Data from 92	
Experiment 1 (n=30) and the Experiment 2 (n=16) were pooled. #Data from n=23 (n=24) gamblers 93	
(controls) that underwent fMRI was pooled with data from n=7 (n=8) gamblers (controls) that only 94	
performed a behavioral version of the task. $In addition to the participants reported in Sasse et al. (2015, 95	
2017), data from participants that were excluded from the fMRI analyses due to excessive motion were 96	
included in the present re-analysis. 97	
 N 

(fMRI/Behav) 

Mean age Smaller-sooner 

value (€) 

Episodic tag 

presentation mode 

Peters & Büchel (2010)§     

Healthy young adults 30/16 25.4 20 Trial-wise 

Wiehler et al. (2017)#     

Pathological gamblers 23/7 29.7 20 Trial-wise 

Healthy matched controls 24/8 28.5 20 Trial-wise 

Bromberg et al. (2017)     

Healthy adolescents -/44 15.0 10 Trial-wise 

Sasse et al. (2015, 2017)$     

Healthy young adults 26/- 24.9 20 Block-wise 

Healthy older adults 26/- 66.6 20 Block-wise 

 98	

In the control condition, participants made repeated choices between a smaller-but-sooner (SS) 99	

reward available immediately, and larger-but-later (LL) rewards.  100	

In the trial-wise presentation studies10,12,13, in episodic trials subjects were additionally 101	

presented with subject-specific episodic event cues (episodic tags) referring to events planned 102	

at the respective time of delivery of the LL reward. These events were obtained for each 103	

individual participant in pre-experimental interviews and always referred to real and subject-104	

specific events. Experiment 2 from Peters & Buchel (2010) additionally included an 105	

“unspecific” condition with hypothetical event cues. Due to lack of comparability with the other 106	

data sets, these data were not included here. In the trial-wise studies, participants completed 107	

112 trials for each condition, and episodic and control trials were randomly intermixed.  108	

In the block-wise presentation studies14,15, control blocks (two blocks of thirty six trials 109	

each) consisted of trials without episodic information. Episodic familiar blocks (two blocks of 110	

thirty-six trials each) involved the additional reference to a personally familiar event 111	

(individualized, each block with one distinct cue, e.g. “meeting with mum”). Data from the 112	

episodic unfamiliar condition14,15 included a cue referring to an unfamiliar episode (e.g. 113	
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“meeting chancellor Merkel”). These data were not included here for lack of comparability with 114	

the trial-wise experimental designs outline above, which always included personally familiar 115	

episodes. 116	

For further details regarding trial construction and timing we refer the reader to the 117	

original publications (see Table 1). 118	

 119	

Computational modeling 120	

Temporal discounting model 121	

We applied a simple single-parameter hyperbolic discounting model to account for how value 122	

changes as a function of delay: 123	

𝑆𝑉(𝐿𝐿%) =
𝐴%

1 + exp.𝑘 + 𝑠123	(5) ∗ 𝐼%8 ∗ 𝐷%
						(𝐸𝑞. 1) 124	

Here, At is the numerical reward amount of the LL option on trial t, Dt is the LL delay in days 125	

on trial t and It is an indicator variable that takes on a value of 1 for trials from the episodic 126	

condition (including episodic tags) and 0 for trials from the control condition (without episodic 127	

tags). The value function has two free parameters: k is the hyperbolic discounting rate from the 128	

control condition (modeled in log-space) and sk is a coefficient modeling the degree of change 129	

in discounting for episodic vs. control trials. 130	

We then used softmax action selection to model choice probabilities as a sigmoid 131	

function of value differences 18: 132	

 133	

𝑃(𝐿𝐿)% =
𝑒.?@AB∗CD8∗EF(GGD)

𝑒.?@AB∗CD8∗EF(EED) + 𝑒.?@AB∗CD8∗EF(GGD)
							(𝐸𝑞. 2) 134	

 135	

Here, SV is the subjective value of the delayed reward according to Eq. 1 and 𝛽 is an inverse 136	

temperature parameter, modeling choice stochasticity (for 𝛽 = 0, choices are random and as 𝛽 137	

increases, choices become more dependent on the option values). The value of the immediate 138	

smaller-sooner reward SV(SSt) was fixed throughout the experiments, but differed between 139	

studies (see Table 1). It is again a dummy predictor coding for the episodic condition, and sb 140	

models the effect of the episodic condition on 𝛽.  141	

 142	

Data sets and participants 143	

Model fitting was performed separately for each of the six datasets (see Table 1). For the Peters 144	

& Buchel (2010) and Wiehler et al. (2017) studies, we pooled data across participants that 145	
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underwent fMRI, and participants that performed the same task without imaging (i.e. 146	

Experiment 1 and the temporally specific condition of Experiment 2 for Peters & Buchel 147	

(2010); behavioral pilot subjects and fMRI participants for Wiehler et al. (2017)). Note that we 148	

excluded one participant from the gambling group of the Wiehler et al. (2017) study, who made 149	

only a very small number of larger-later choices. Inclusion of this participant resulted in the 150	

hierarchical model that included within-subject changes in the softmax 𝛽 parameter (Eq. 2) to 151	

fail to converge. For the Sasse et al. (2015, 2017) data, we additionally included the data from 152	

participants that were excluded from the original analyses due to excessive motion during fMRI 153	

(n=3 for Sasse et al., 2015; n=4 for Sasse et al., 2017), which is the reason for the discrepancy 154	

in sample sizes between Table 1 and the original papers.  155	

 156	

Table 2. Overview of priors for group means. 157	
Parameter Group-level prior (µ) 
log(k) Uniform (-20, 3) 
slog(k) Gaussian (0, 2) 
𝛽 Uniform (0,10) 
𝑠?	 Gaussian (0, 2) 

 158	

Hierarchical Bayesian models 159	

We analyzed each data set of Table 1 separately. Models were fit to all trials from all 160	

participants in a hierarchical Bayesian framework using Markov Chain Monte Carlo as 161	

implemented in JAGS 4.2.0 19 using the matjags interface for Matlab © (The Mathworks). We 162	

applied the same hierarchical model for each data set. Parameter values for each participant 163	

were drawn from group-level Gaussian distributions, the mean and precision of which were 164	

estimated from the data. For group-level precision parameters, we used Gamma distributed 165	

priors. For group-level means of log(k) and 𝛽, we used uniform priors defined over numerically 166	

plausible parameter ranges (see Table 2). For group-level means of effects of the episodic 167	

condition (slog(k), sb) we used Gaussian priors centered at zero (see Table 2). JAGS model code 168	

is available on the Open Science Framework (https://osf.io/bkgfd/).  169	

We ran two chains with a burn-in period of 150k samples and thinning factor of 2. 5k 170	

additional samples where then retained for further analysis. Chain convergence was confirmed 171	

using the Gelman-Rubinstein convergence diagnostic 𝑅L , where we considered values of 1 ≤172	

𝑅L ≤ 1.01 as acceptable for all group-level and subject-level parameters. Evidence for an effect 173	

of the episodic future thinking manipulation was examined by computing Bayes Factors testing 174	

for directional effects 20,21 on the posterior distributions of the group-level means of slog(k) and 175	

sb. We also report standardized effect sizes for all condition effects (Cohen’s d) which were 176	
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calculated based on the means of the posterior means and precisions of slog(k)  and sb (see 177	

Equations 1 and 2). 178	

 179	

Results 180	

Mean changes for log(k) and 𝛽 (𝑠123	(5), 𝑠N) in the episodic condition are summarized in Table 181	
3. Figure 1 shows posterior distributions for log(k) (upper panels) as well as changes in log(k) 182	
due to episodic cueing (lower panels) for all data sets. 183	
 184	
Table 3. Overview of mean condition effects (change in model parameters from control to episodic 185	
condition) and Bayes Factors for directional effects (dBF: parameter reduction vs. increase). 186	
Standardized effect sizes (Cohen’s d) were calculated based on the estimated group-level posterior mean 187	
and precision parameters for 𝑠123	(5) (see Eq. 1) and 𝑠N (see Eq. 2) from the hierarchical model. §Data 188	
from Experiments 1 and the temporally specific condition of experiment 2 were pooled. #Only data from 189	
the personally familiar episodic and control conditions were included (see Sasse et al., 2015, 2017). 190	

 Log (k) Softmax 𝜷 

 M (SD) d dBF M (SD) d dBF 
Peters & Büchel (2010)§       

Healthy young adults (n=46) -.108 (.207) -.519 97.15 -.004 (.059) -.071 1.24 
Wiehler et al. (2017)       

Pathological gamblers (n=30) -.120 (.217) -.552 34.69 -.034 (.149) -.223 4.43 
Healthy controls (n=32) -.069 (.240) -.287 6.52 .020 (.071) .284 0.26 

Bromberg et al. (2017)       
Adolescents (n=44) -.221 (.277) -.799 2441.2 .003 (.061) .041 1.02 

Sasse et al. (2015, 2017)#       
Halthy young adults (n=26) -.280 (.578) -.485 38.89 .075 (.264) .284 3.62 
Healthy older adults (n=26) .006 (.315) .018 .91 -.054 (.146) -.367 .115 

 191	
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 192	
Figure 1. Posterior distributions of the hyperbolic discount rate log(k) in the control condition (upper 193	
panels) and the change in log(k) in the episodic vs. the control condition (𝑠123	(5), lower panels). a) 194	
Healthy adolescents from Bromberg et al. (2017). b) Healthy young adults from Peters & Buchel (2010). 195	
c) Gambling disorder participants from Wiehler et al. (2017). d) Healthy matched controls from Wiehler 196	
et al. (2017). e) Healthy young adults from Sasse et al. (2015). f) Healthy older adults from Sasse et al. 197	
(2017). The solid (thin) horizontal lines denote 85% (95%) highest density intervals. 198	
 199	
Across studies, the change in log(k) was consistently negative, with the older adults from Sasse 200	

et al. 2017 being the only exception with a posterior distribution that was centered at zero. 201	

However, effect sizes (mean changes) in log-space ranged from -.07 to -.280 (d ranged from 202	

.018 to -.799, Table 3 and Figure 1). There was also heterogeneity in this effect across 203	

participants. We illustrate this variability in Figure 2, where we plot posterior distributions of 204	

𝑠123	(5) for each individual participant, separately for the six data sets.  205	

In contrast, the observed mean changes in 𝛽 (see Figure 3) were generally small and 206	

with inconsistent directionality across groups (see Table 3).  207	

 208	
 209	
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 210	
Figure 2. Individual subject posterior distributions of the change in log(k) in the episodic vs. the control 211	
condition (𝑠123	(5)). a) Healthy adolescents from Bromberg et al. (2017). b) Healthy young adults from 212	
Peters & Buchel (2010). c) Gambling disorder participants from Wiehler et al. (2017). d) Healthy 213	
matched controls from Wiehler et al. (2017). e) Healthy young adults from Sasse et al. (2015). f) Healthy 214	
older adults from Sasse et al. (2017).  215	
  216	
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 217	
Figure 3. Posterior distributions of softmax inverse temperature parameter 𝛽 in the control condition 218	
(top row) and the change in 𝛽 in the episodic vs. the control condition (𝑠?, bottom row). a) Healthy 219	
adolescents from Bromberg et al. (2017). b) Healthy young adults from Peters & Buchel (2010). c) 220	
Gambling disorder participants from Wiehler et al. (2017). d) Matched controls from Wiehler et al. 221	
(2017). e) Young adults from Sasse et al. (2015). f) Older adults from Sasse et al. (2017). The solid 222	
(thin) horizontal lines denote 85% (95%) highest density intervals. 223	
 224	
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Discussion 226	

Here we re-analyzed previously published data on episodic future thinking effects on temporal 227	

discounting (six data sets from five papers, n=204 subjects in total). Our results provide 228	

comparable effect size estimates across studies, and confirm robust and consistent effects of 229	

episodic future thinking on temporal discounting in designs involving trial-wise and block-wise 230	

presentations of episodic cues (tag effect) in most data sets.  231	

 Our analyses advance over previous analytical approaches in three ways. First, we 232	

accounted for the within-subject nature of the experimental design at the model estimation 233	

stage. That is, model parameters in the control condition were modeled as the baseline, and 234	

changes from that baseline due to episodic cueing were modeled as additive within-subject 235	

changes. There is generally a high level of both short-term and long-term stability in discount 236	

rates 22–25. Modeling condition effects as within-subject changes from a baseline condition 237	

reduces the variability in the posterior distribution of the treatment effect (e.g. 𝑠123	(5) ), 238	

compared to a model that estimates independent parameters or posterior distributions per 239	

condition, as we have done previously10,12–1510,12,13. Second, our use of hierarchical Bayesian 240	

parameter estimation entails additional advantages. In hierarchical Bayesian estimation, 241	

individual participant’s parameters are assumed to be drawn from group-level Gaussian 242	

distributions, such that each participant’s parameters are informed and constrained by the 243	

distribution of parameters in the entire sample. This “partial pooling” or “shrinkage” can 244	

increase the robustness of the resulting estimates 26. Finally, we have applied the exact same 245	

hierarchical model and estimation procedure across all six datasets. Consequently, the effect 246	

size estimates reported here are unconfounded by differences in model structure, priors, and/or 247	

estimation procedures, and therefore constitute the best available estimates of effect sizes for 248	

these experimental designs. 249	

 In contrast to some of our earlier work 10,13, we additionally examined the degree to 250	

which episodic tags affected overall decision noise (softmax 𝛽). Note that potential changes in 251	

𝛽 could reflect differences in the best-fitting discounting model17 and/or unmodeled systematic 252	

influences on choice patterns, as well as the level unsystematic noise in the behavioral data. In 253	

contrast to episodic effects on log(k), which showed consistent directionality across studies and 254	

generally medium effect sizes, episodic cueing effects on 𝛽  where generally smaller and 255	

showed inconsistent directionality across studies. Under some conditions, changes in decision 256	

noise can seemingly give rise to changes in discounting behavior 27–29, an effect that depends on 257	

the individual level of discounting in relation to the space of choice options examined in a given 258	

experimental task. The fact that episodic thinking effects on 𝛽 where generally small and of 259	
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inconsistent directionality argues against an unspecific effect of episodic cues on overall choice 260	

patterns.  261	

Our analysis revealed robust effects of episodic future thinking on temporal discounting 262	

in pathological gamblers. In our previous report 12, we did not account for the within-subject 263	

nature of the design at the model estimation stage, which likely increased the variance in the 264	

observed group-level parameters, precluding us from accurately estimating the magnitude and 265	

variance of the episodic tag effect. Here we show that the effect size of the tag effect on log(k) 266	

in pathological gamblers is in fact of comparable magnitude to that observed in our previous 267	

study in healthy young participants 10, while the effect is somewhat less pronounced in the 268	

healthy matched control group of the Wiehler et al. (2017) study. This means that, if anything, 269	

we have previously underestimated the magnitude of this effect in pathological gamblers. In 270	

the light of the fact that increases in temporal discounting are implicated in a range of 271	

psychiatric disorders3,5,30, this is a promising first finding. However, a central question that 272	

remains to be addressed by the field is whether experimental modulations of discounting 273	

behavior can yield clinically relevant behavioral changes30. In contrast to training-based 274	

interventions31, the present experimental design is likely not suited to induce long lasting 275	

changes in behavior. Nonetheless, our data show that in principle, future thinking can reduce 276	

temporal discounting in pathological gamblers, a clinical group characterized by high levels of 277	

impulsivity 4. Furthermore, the observed changes in this clinical sample were similar in 278	

magnitude to those observed in healthy young adults. Future studies will likely build upon 279	

recent work that aimed to extend future thinking interventions to everyday decision-making32–280	
36. 281	

In contrast to the findings in healthy young adolescents and adults as well as gamblers, 282	

older adults showed no effect of future thinking on temporal discounting15. This was also shown 283	

in a recent paper from another group37. As discussed in detail in our previous paper 15, in older 284	

adults effects of future thinking might depend on cognitive control abilities. We have shown 285	

that older adults with high levels of cognitive control still benefitted from future thinking, 286	

whereas this was not the case for older adults with relatively lower control abilities15. It remains 287	

to be seen whether similar moderation effects play a role in other age groups or populations.  288	

 This re-analysis of previously published data has a number of limitations. First, the 289	

experimental designs that we applied involved a separation of decision and response phases, as 290	

appropriate for fMRI studies. This precluded us from applying modeling approaches that 291	

leverage information contained in the response time (RT) distributions, as in some of our more 292	

recent work 38,39. Second, comparison of the effect size estimates between the Bromberg et al. 293	
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(2017) data set and the other studies is confounded by the fact that the smaller-sooner reference 294	

reward in that study consisted of 10€, whereas it was 20€ in the other data sets. Steeper 295	

discounting and/or a more pronounced effect of the episodic condition in adolescents could thus 296	

be partially attributable to a magnitude effect 40–43.  297	

 Taken together, our re-analysis of six previously published data sets that examined the 298	

effects of episodic future thinking on temporal discounting provides comparable effect size 299	

estimates across studies. We hope this resource to be helpful for both future power analyses 300	

and for meta-analyses on contextual modulations of temporal discounting more generally. 301	

 302	
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